Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (126)

Search Parameters:
Keywords = marine drive systems

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
38 pages, 6505 KiB  
Review
Trends in Oil Spill Modeling: A Review of the Literature
by Rodrigo N. Vasconcelos, André T. Cunha Lima, Carlos A. D. Lentini, José Garcia V. Miranda, Luís F. F. de Mendonça, Diego P. Costa, Soltan G. Duverger and Elaine C. B. Cambui
Water 2025, 17(15), 2300; https://doi.org/10.3390/w17152300 - 2 Aug 2025
Viewed by 285
Abstract
Oil spill simulation models are essential for predicting the oil spill behavior and movement in marine environments. In this study, we comprehensively reviewed a large and diverse body of peer-reviewed literature obtained from Scopus and Web of Science. Our initial analysis phase focused [...] Read more.
Oil spill simulation models are essential for predicting the oil spill behavior and movement in marine environments. In this study, we comprehensively reviewed a large and diverse body of peer-reviewed literature obtained from Scopus and Web of Science. Our initial analysis phase focused on examining trends in scientific publications, utilizing the complete dataset derived after systematic screening and database integration. In the second phase, we applied elements of a systematic review to identify and evaluate the most influential contributions in the scientific field of oil spill simulations. Our analysis revealed a steady and accelerating growth of research activity over the past five decades, with a particularly notable expansion in the last two. The field has also experienced a marked increase in collaborative practices, including a rise in international co-authorship and multi-authored contributions, reflecting a more global and interdisciplinary research landscape. We cataloged the key modeling frameworks that have shaped the field from established systems such as OSCAR, OIL-MAP/SIMAP, and GNOME to emerging hybrid and Lagrangian approaches. Hydrodynamic models were consistently central, often integrated with biogeochemical, wave, atmospheric, and oil-spill-specific modules. Environmental variables such as wind, ocean currents, and temperature were frequently used to drive model behavior. Geographically, research has concentrated on ecologically and economically sensitive coastal and marine regions. We conclude that future progress will rely on the real-time integration of high-resolution environmental data streams, the development of machine-learning-based surrogate models to accelerate computations, and the incorporation of advanced biodegradation and weathering mechanisms supported by experimental data. These advancements are expected to enhance the accuracy, responsiveness, and operational value of oil spill modeling tools, supporting environmental monitoring and emergency response. Full article
(This article belongs to the Special Issue Advanced Remote Sensing for Coastal System Monitoring and Management)
Show Figures

Figure 1

35 pages, 1467 KiB  
Review
Marine Derived Strategies Against Neurodegeneration
by Vasileios Toulis, Gemma Marfany and Serena Mirra
Mar. Drugs 2025, 23(8), 315; https://doi.org/10.3390/md23080315 - 31 Jul 2025
Viewed by 516
Abstract
Marine ecosystems are characterized by an immense biodiversity and represent a rich source of biological compounds with promising potential for the development of novel therapeutic drugs. This review describes the most promising marine-derived neuroprotective compounds with strong potential for the treatment of neurodegenerative [...] Read more.
Marine ecosystems are characterized by an immense biodiversity and represent a rich source of biological compounds with promising potential for the development of novel therapeutic drugs. This review describes the most promising marine-derived neuroprotective compounds with strong potential for the treatment of neurodegenerative disorders. We focus specifically on the retina and brain—two key components of the central nervous system—as primary targets for therapeutic interventions against neurodegeneration. Alzheimer’s disease and retinal degeneration diseases are used here as a representative model of neurodegenerative disorders, where complex molecular processes such as protein misfolding, oxidative stress, and neuroinflammation drive disease progression. We also examine gene therapy approaches inspired by marine biology, with particular attention to their application in retinal diseases, aimed at preserving or restoring photoreceptor function and vision. Full article
(This article belongs to the Special Issue Marine-Derived Novel Drugs in the Treatment of Alzheimer’s Disease)
Show Figures

Figure 1

21 pages, 5697 KiB  
Article
Subtidal Biodiversity of the Punta de Coles Marine Reserve, Moquegua, Peru
by Sheda Méndez-Ancca, Renzo Pepe-Victoriano, Yesica Alvarez Meza, Hebert Hernán Soto Gonzales, Juan Luis Ccamapaza Aguilar, Alex Tejada Cáceres, Danny Efraín Baldarrago Centeno, Abel Walter Zambrano-Cabanillas and Jorge González Aguilera
J. Mar. Sci. Eng. 2025, 13(8), 1400; https://doi.org/10.3390/jmse13081400 - 23 Jul 2025
Viewed by 314
Abstract
Marine reserves are key instruments for the conservation of biodiversity; however, benthic biodiversity studies often lack comprehensive data on species distribution and richness. The Punta Coles Natural Reserve (PCNR), located on the southern coast of Peru within the Humboldt Current System, represents a [...] Read more.
Marine reserves are key instruments for the conservation of biodiversity; however, benthic biodiversity studies often lack comprehensive data on species distribution and richness. The Punta Coles Natural Reserve (PCNR), located on the southern coast of Peru within the Humboldt Current System, represents a highly productive marine ecosystem, but information on its biodiversity is limited. The present study examines the benthic community of the hard substrate in the area of the PCNR via censuses by semiautonomous diving “Hookah” at depths between 1 and 15 m to provide baseline information to support its ecosystem management. Using NMDS and PERMANOVAs, we confirmed significant differences in species composition among depth strata, underscoring the role of depth as a key factor driving variability and species distribution in shallow zones. The community structure varies both spatially within the reserve and as a function of depth and is determined by the presence and distribution of key habitat-structuring organisms, as well as the configuration of the seabed. Our study highlights the ecological value of the PCNR, improves regional scientific knowledge, provides a useful baseline against which future anthropogenic pressures can be evaluated, and proposes the integration of subtidal kelp forests (Lessonia trabeculata), mussel beds (Aulacomya atra) and sea squirt (Pyura chilensis) network aggregations into conservation strategies to contribute to best management practices for PCNR. Full article
(This article belongs to the Special Issue Marine Biota Distribution and Biodiversity)
Show Figures

Figure 1

25 pages, 2075 KiB  
Article
The Impact of the Spatial Mobility of Marine New Qualitative Productivity Force Factors on the Coordinated Development of China’s Marine Economy
by Shuguang Liu, Yutong Zhang, Jialu Wang, Chenyun Wang, Sumei Chen and Yuhao Liu
Sustainability 2025, 17(13), 5883; https://doi.org/10.3390/su17135883 - 26 Jun 2025
Viewed by 312
Abstract
The driving mechanism of new qualitative productivity forces for coordinated development, which constitutes an inherent requirement of high-quality development, requires creative factor allocation through spatial flows, and the same is true for new maritime qualitative productivity forces. In this study, we constructed an [...] Read more.
The driving mechanism of new qualitative productivity forces for coordinated development, which constitutes an inherent requirement of high-quality development, requires creative factor allocation through spatial flows, and the same is true for new maritime qualitative productivity forces. In this study, we constructed an evaluation indicator system to assess the impact of spatial flows of marine new qualitative productivity force factors on economic coordinated development in China’s coastal regions. Using panel data from 11 coastal provinces (2003–2022), we quantified new qualitative productivity force factor spatial flows and marine economic coordinated development levels, visualized their spatial–temporal patterns, and empirically examined their interaction mechanisms. The key findings include the following: (1) From 2013 to 2022, marine new qualitative productivity force factor spatial flows in coastal China transitioned from clustered “block-style” to scattered “multi-point” distribution patterns, with marine economic coordination exhibiting steady growth alongside pronounced spatial polarization. (2) Marine new qualitative productivity force factor spatial flows demonstrate significant positive direct effects on local marine economic coordination. (3) The notable spatial spillover effects of marine new qualitative productivity force factor spatial flows enhance coordinated development in neighboring regions. (4) Heterogeneous impacts emerge across marine new qualitative productivity force factor dimensions, where the spatial flows of new-type marine objects of labor and means of labor exert particularly significant influences. These findings provide policy insights for optimizing the spatial allocation of marine new qualitative productivity force factors to advance China’s marine economic coordination. Full article
(This article belongs to the Section Sustainable Oceans)
Show Figures

Figure 1

23 pages, 7633 KiB  
Article
Dynamic Modeling and Safety Analysis of Whole Three-Winch Traction System of Shipboard Aircraft
by Guofang Nan, Ying Wang, Yihui Zhou, Haoyu Wang and Yao Li
Aerospace 2025, 12(7), 579; https://doi.org/10.3390/aerospace12070579 - 26 Jun 2025
Viewed by 260
Abstract
The winch traction system for shipboard aircraft, when operating in a marine environment, is subjected to additional forces and moments due to the complex motion of the hull. These loads pose significant threats to the safety of the aircraft during the traction process. [...] Read more.
The winch traction system for shipboard aircraft, when operating in a marine environment, is subjected to additional forces and moments due to the complex motion of the hull. These loads pose significant threats to the safety of the aircraft during the traction process. To address the safety issues under complex sea conditions, this paper adopts harmonic functions to describe the rolling, pitching, and heaving motions of the hull. A theoretical analytical model of the three-winch traction system, considering the intricate coupling motions of the ship, is established. Unlike previous studies that often simplify ship motion or focus on single-component modeling, this work develops a complete, whole-system dynamic model integrating the winch system, rope, aircraft structure, and ship interaction. The dynamic characteristics of the small-deck winch traction system are investigated, with particular focus on the influence of the rear winch position, driving trajectory, and ship motion on the system’s dynamics and safety. This research is innovative in systematically exploring the dynamic safety behavior of a three-winch traction system operating under small-deck conditions and complex sea states. The results show that as the distance between the two rear winches increases, the lateral force on the tire decreases. Additionally, as the aircraft’s turning angle increases, the front winch rope force also increases. Moreover, with higher sea condition levels and wind scales, the maximum lateral force on the tires increases, leading to a significant reduction in the stability and safety of the winch traction system. This is particularly critical when the sea condition level exceeds 3 and the wind scale exceeds 6, as it increases the risk of tire sideslip or off-ground events. This research has substantial value for enhancing the safety and stability of winch traction systems on small decks, and also provides a theoretical basis for traction path design, winch position optimization, and the extension of the service life of key system components, demonstrating strong engineering applicability. Full article
Show Figures

Figure 1

46 pages, 1467 KiB  
Review
Anthozoan Chemical Defenses: Integrating Compounds, Enzymatic Activities, and Omics-Based Discoveries
by Muhammad Zakariya, Oliver J. Lincoln, Isabella D’Ambra and Chiara Lauritano
Int. J. Mol. Sci. 2025, 26(13), 6109; https://doi.org/10.3390/ijms26136109 - 25 Jun 2025
Viewed by 584
Abstract
Anthozoa is a species-rich class with an innate immune system that acts as a defensive tool and shares many of its cellular pathways with mammalian immune responses. In addition to immune-related strategies (e.g., allorecognition and xenorecognition), anthozoans have evolved to use compounds or [...] Read more.
Anthozoa is a species-rich class with an innate immune system that acts as a defensive tool and shares many of its cellular pathways with mammalian immune responses. In addition to immune-related strategies (e.g., allorecognition and xenorecognition), anthozoans have evolved to use compounds or toxins for chemical communication, defense, or predation, which may exhibit biological activities useful for human health, mainly antiviral, antibacterial, anti-inflammatory, anticancer, and antitumor properties of pharmaceutical interest. These compounds/toxins can be alkaloids, amino acids, proteins, ceramides, diterpenes, and sesquiterpenes and are mainly distributed into Hexacorallia and Octocorallia. Anthozoans are enriched in defensive enzymes, which can either be found in anthozoan species or their symbionts and help them survive in hostile conditions. Studies related to genomics and transcriptomics using advanced sequencing efforts revealed the presence of genetic elements in anthozoans that help them survive against abiotic and biotic stressors in the marine environment. This review presents developments and highlights the current state of knowledge about anthozoans’ chemical weaponry that can drive further bioprospection of anthozoan species producing compounds and toxins which may be useful in biotechnological applications. Omics research in Anthozoa is still nascent, and more efforts are required to fully understand the chemical ecology, diversity, and possible biotechnological applications of cnidarian genes and their products. Full article
Show Figures

Graphical abstract

46 pages, 2741 KiB  
Review
Innovative Technologies Reshaping Meat Industrialization: Challenges and Opportunities in the Intelligent Era
by Qing Sun, Yanan Yuan, Baoguo Xu, Shipeng Gao, Xiaodong Zhai, Feiyue Xu and Jiyong Shi
Foods 2025, 14(13), 2230; https://doi.org/10.3390/foods14132230 - 24 Jun 2025
Viewed by 1053
Abstract
The Fourth Industrial Revolution and artificial intelligence (AI) technology are driving the transformation of the meat industry from mechanization and automation to intelligence and digitization. This paper provides a systematic review of key technological innovations in this field, including physical technologies (such as [...] Read more.
The Fourth Industrial Revolution and artificial intelligence (AI) technology are driving the transformation of the meat industry from mechanization and automation to intelligence and digitization. This paper provides a systematic review of key technological innovations in this field, including physical technologies (such as smart cutting precision improved to the millimeter level, pulse electric field sterilization efficiency exceeding 90%, ultrasonic-assisted marinating time reduced by 12 h, and ultra-high-pressure processing extending shelf life) and digital technologies (IoT real-time monitoring, blockchain-enhanced traceability transparency, and AI-optimized production decision-making). Additionally, it explores the potential of alternative meat production technologies (cell-cultured meat and 3D bioprinting) to disrupt traditional models. In application scenarios such as central kitchen efficiency improvements (e.g., food companies leveraging the “S2B2C” model to apply AI agents, supply chain management, and intelligent control systems, resulting in a 26.98% increase in overall profits), end-to-end temperature control in cold chain logistics (e.g., using multi-array sensors for real-time monitoring of meat spoilage), intelligent freshness recognition of products (based on deep learning or sensors), and personalized customization (e.g., 3D-printed customized nutritional meat products), these technologies have significantly improved production efficiency, product quality, and safety. However, large-scale application still faces key challenges, including high costs (such as the high investment in cell-cultured meat bioreactors), lack of standardization (such as the absence of unified standards for non-thermal technology parameters), and consumer acceptance (surveys indicate that approximately 41% of consumers are concerned about contracting illnesses from consuming cultured meat, and only 25% are willing to try it). These challenges constrain the economic viability and market promotion of the aforementioned technologies. Future efforts should focus on collaborative innovation to establish a truly intelligent and sustainable meat production system. Full article
Show Figures

Figure 1

20 pages, 2726 KiB  
Article
A Social–Technical–Ecological Systems Analysis of Sustainable Development Paths for Marine Ranching in Guangdong Province, China
by Xiang Liu, Renke He, Tie Ji, Binbin Shao and Han Meng
Water 2025, 17(13), 1838; https://doi.org/10.3390/w17131838 - 20 Jun 2025
Viewed by 511
Abstract
Marine ranching, an emerging paradigm in sustainable fisheries, integrates technological, social, and ecological dimensions through a social–technical–ecological systems (STESs) framework to enhance ecosystem resilience and resource governance. This study proposes a comprehensive STESs-based framework and applies it to 15 demonstration sites in Guangdong [...] Read more.
Marine ranching, an emerging paradigm in sustainable fisheries, integrates technological, social, and ecological dimensions through a social–technical–ecological systems (STESs) framework to enhance ecosystem resilience and resource governance. This study proposes a comprehensive STESs-based framework and applies it to 15 demonstration sites in Guangdong Province, China, to explore the dynamic interplay among technological innovation, stakeholder engagement, fisheries governance, ecosystem health, biodiversity, and community participation. Through regression analyses and descriptive statistics, we quantified these multi-layered interactions. The study’s findings reveal significant correlations that underscore the importance of integrated approaches to marine ranching sustainability. Notably, stakeholder engagement is strongly linked to technological adoption (r = 0.58), suggesting that inclusive decision-making processes can drive the uptake of innovative, sustainable technologies. Furthermore, technological adoption is positively correlated with ecosystem health (r = 0.62), highlighting the potential for sustainable technologies to enhance marine ecosystem well-being. Community participation emerges as a critical factor in biodiversity conservation (r = 0.71), emphasizing the value of collaborative conservation efforts. Additionally, the strong predictive relationship between marine biodiversity and water quality (β = 0.85, p = 0.001) underscores the importance of preserving biodiversity for maintaining good water quality, which is fundamental to the health and sustainability of marine ranching systems. These insights collectively support the development of holistic management strategies that integrate social, technological, and ecological dimensions to promote the resilience and sustainability of marine ranching. These results underscore the crucial roles of participatory governance, sustainable fishery practices, and biodiversity protection in strengthening the ecological resilience of marine ranching systems. Full article
(This article belongs to the Section Oceans and Coastal Zones)
Show Figures

Figure 1

22 pages, 2109 KiB  
Review
The Competitive Edge: T6SS-Mediated Interference Competition by Vibrionaceae Across Marine Ecological Niches
by Perla Jazmin Gonzalez Moreno and Michele K. Nishiguchi
Microorganisms 2025, 13(6), 1370; https://doi.org/10.3390/microorganisms13061370 - 12 Jun 2025
Viewed by 664
Abstract
Interference competition, wherein bacteria actively antagonize and damage their microbial neighbors, is a key ecological strategy governing microbial community structure and composition. To gain a competitive edge, bacteria can deploy a diverse array of antimicrobial weapons—ranging from diffusible toxins to contact-mediated systems in [...] Read more.
Interference competition, wherein bacteria actively antagonize and damage their microbial neighbors, is a key ecological strategy governing microbial community structure and composition. To gain a competitive edge, bacteria can deploy a diverse array of antimicrobial weapons—ranging from diffusible toxins to contact-mediated systems in order to eliminate their bacterial rivals. Among Gram-negative bacteria, the type VI secretion system (T6SS) has emerged as a potent and sophisticated contact-dependent mechanism that enables the delivery of toxic cargo into neighboring cells, thereby promoting the colonization and dominance of a bacterial taxon within an ecological niche. In this review, we examine the ecological significance of T6SS-mediated interference competition by members of the Vibrionaceae family across a range of marine habitats that include free-living microbial communities and host-associated niches such as coral and squid symbioses. Additionally, we explore the ecological impact of T6SS-mediated competition in modulating biofilm community structure and promoting horizontal gene transfer within those complex microbial populations. Together, these insights underscore the ecological versatility of the T6SS and emphasize its role in driving antagonistic bacterial interactions and shaping microbial community dynamics within marine ecosystems. Full article
(This article belongs to the Special Issue Marine Microorganisms and Ecology, 2nd Edition)
Show Figures

Figure 1

33 pages, 917 KiB  
Systematic Review
Publish/Subscribe-Middleware-Based Intelligent Transportation Systems: Applications and Challenges
by Basem Almadani, Ekhlas Hashem, Raneem R. Attar, Farouq Aliyu and Esam Al-Nahari
Appl. Sci. 2025, 15(12), 6449; https://doi.org/10.3390/app15126449 - 8 Jun 2025
Viewed by 588
Abstract
Countries are embracing intelligent transportation systems (ITSs), the application of information and communication technologies to transportation, to address growing challenges in urban mobility, congestion, safety, and sustainability. Architecture Reference for Cooperative and Intelligent Transportation (ARC-IT) is a notable ITS framework comprising Enterprise, Functional, [...] Read more.
Countries are embracing intelligent transportation systems (ITSs), the application of information and communication technologies to transportation, to address growing challenges in urban mobility, congestion, safety, and sustainability. Architecture Reference for Cooperative and Intelligent Transportation (ARC-IT) is a notable ITS framework comprising Enterprise, Functional, Physical, and Communications Views (or layers). This review focuses on the Communications View, examining how publish/subscribe middleware enhances ITS through the communication layer. It identified application areas across ITS infrastructure, transportation modes, and communication technologies, and highlights key challenges. In the infrastructure domain, publish/subscribe middleware enhances responsiveness and real-time processing in systems such as traffic surveillance, VANETs, and road sensor networks, especially when replacing legacy infrastructure is cost-prohibitive. Moreover, the middleware supports scalable, low-latency communication in land, air, and marine modes, enabling public transport coordination, cooperative driving, and UAV integration. At the communications layer, publish/subscribe systems facilitate interoperable, delay-tolerant data dissemination over heterogeneous platforms, including 4G/5G, ICN, and peer-to-peer networks. However, integrating publish/subscribe middleware in ITS has several challenges, including privacy risks, real-time data constraints, fault tolerance, bandwidth limitations, and security vulnerabilities. This paper provides a domain-informed foundation for researchers and practitioners developing resilient, scalable, and interoperable communication systems in next-generation ITSs. Full article
Show Figures

Figure 1

27 pages, 9421 KiB  
Article
Transport Mechanism and Optimization Design of LBM–LES Coupling-Based Two-Phase Flow in Static Mixers
by Qiong Lin, Qihan Li, Pu Xu, Runyuan Zheng, Jiaji Bao, Lin Li and Dapeng Tan
Processes 2025, 13(6), 1666; https://doi.org/10.3390/pr13061666 - 26 May 2025
Cited by 4 | Viewed by 582
Abstract
Static mixers have been widely used in marine research fields, such as marine control systems, ballast water treatment systems, and seawater desalination, due to their high efficiency, low energy consumption, and broad applicability. However, the turbulent mixing process and fluid–wall interactions involving complex [...] Read more.
Static mixers have been widely used in marine research fields, such as marine control systems, ballast water treatment systems, and seawater desalination, due to their high efficiency, low energy consumption, and broad applicability. However, the turbulent mixing process and fluid–wall interactions involving complex structures make the mixing transport characteristics of static mixers complex and nonlinear, which affect the mixing efficiency and stability of the fluid control device. Here, the modeling and design optimization of the two-phase flow mixing and transport dynamics of a static mixer face many challenges. This paper proposes a modeling and problem-solving method for the two-phase flow transport dynamics of static mixers, based on the lattice Boltzmann method (LBM) and large eddy simulation (LES). The characteristics of the two-phase flow mixing dynamics and design optimization strategies for complex component structures are analyzed. First, a two-phase flow transport dynamics model for static mixers is set up, based on the LBM and a multiple-relaxation-time wall-adapting local eddy (MRT-WALE) vortex viscosity coupling model. Using octree lattice block refinement technology, the interaction mechanism between the fluid and the wall during the mixing process is explored. Then, the design optimization strategies for the flow field are analyzed under different flow rates and mixing element configurations to improve the mixing efficiency and stability. The research results indicate that the proposed modeling and problem-solving methods can reveal the dynamic evolution process of mixed-flow fields. Blade components are the main driving force behind the increased turbulent kinetic energy and induced vortex formation, enhancing the macroscopic mixing effect. Moreover, variations in the flow velocity and blade angles are important factors affecting the system pressure drop. If the inlet velocity is 3 m/s and the blade angle is 90°, the static mixer exhibits optimized overall performance. The quantitative analysis shows that increasing the blade angle from 80° to 100° reduces the pressure drop by approximately 44%, while raising the inlet velocity from 3 m/s to 15 m/s lowers the outlet COV value by about 70%, indicating enhanced mixing uniformity. These findings confirm that an inlet velocity of 3 m/s combined with a 90° blade angle provides an optimal trade-off between mixing performance and energy efficiency. Full article
(This article belongs to the Section Process Control and Monitoring)
Show Figures

Figure 1

16 pages, 2073 KiB  
Article
Marine Algae Extract-Loaded Nanoemulsions: A Spectrophotometric Approach to Broad-Spectrum Photoprotection
by Julian Tello Quiroz, Ingrid Andrea Rodriguez Martinez, Vanessa Urrea-Victoria, Leonardo Castellanos and Diana Marcela Aragón Novoa
Cosmetics 2025, 12(3), 101; https://doi.org/10.3390/cosmetics12030101 - 15 May 2025
Viewed by 907
Abstract
The depletion of the ozone layer and climate change have increased exposure to ultraviolet (UV) radiation, driving the search for natural photoprotective agents. Marine macroalgae, particularly Gracilaria sp. (Rhodophyta) and Sargassum polyceratium (Ochrophyta), are rich in UV-absorbing bioactives, such as mycosporine-like amino acids [...] Read more.
The depletion of the ozone layer and climate change have increased exposure to ultraviolet (UV) radiation, driving the search for natural photoprotective agents. Marine macroalgae, particularly Gracilaria sp. (Rhodophyta) and Sargassum polyceratium (Ochrophyta), are rich in UV-absorbing bioactives, such as mycosporine-like amino acids (MAAs) and fucoxanthin, offering natural alternatives to synthetic sunscreens. This study aimed to develop and optimize a nanoemulsion incorporating both algal extracts, with MAAs and fucoxanthin strategically distributed in the aqueous and oil phases, respectively, to enhance synergistic broad-spectrum UV protection. MAAs were quantified in Gracilaria sp. using UHPLC-DAD, revealing 8.03 mg/g dry weight, primarily composed of shinorine and porphyra-334. Fucoxanthin was identified in S. polyceratium at 0.98 mg/g dry weight. A Box–Behnken design (BBD) was employed to optimize the nanoemulsion, targeting minimal droplet size and optimal ζ potential. The resulting formulation achieved a droplet size less than 100 nm and a ζ potential less than −25.0 mV. In vitro spectrophotometric analysis demonstrated significant photoprotective potential. The nanoemulsion containing only 375 ppm of algal extracts exhibited a UVA ratio of 1.25 and a critical wavelength of 379 nm, meeting the criteria for broad-spectrum protection and outperforming the commercial natural filter Helioguard®365. These results confirm the efficacy of combining red and brown algae extracts in a nanoemulsion platform to deliver sustainable, low-dose photoprotection. This work presents, for the first time, the incorporation of red and brown algae extracts into a single nanoemulsion system, representing a novel strategy to maximize the combined photoprotective potential of MAAs and fucoxanthin. Ultimately, this investigation contributes to the growing field of marine-derived sunscreens and supports the advancement of “blue beauty” innovations aligned with eco-conscious formulation principles. Full article
Show Figures

Figure 1

20 pages, 3544 KiB  
Article
Construction and Application of Marine Ecological Restoration Project Effect Assessment System Based on Analytic Hierarchy Process
by Yitong Yuan, Jun Song, Ming Liu, Jingwen Li, Jun Yang and Yan Zhang
Water 2025, 17(9), 1334; https://doi.org/10.3390/w17091334 - 29 Apr 2025
Viewed by 482
Abstract
This study seeks to scientifically verify the actual effect of a marine ecological restoration project; according to the problems reflected in the assessment, the ecological restoration project can be corrected in time. This study constructs an assessment index system of marine ecological restoration [...] Read more.
This study seeks to scientifically verify the actual effect of a marine ecological restoration project; according to the problems reflected in the assessment, the ecological restoration project can be corrected in time. This study constructs an assessment index system of marine ecological restoration effect from three aspects of ecological environment, social, and economic benefits, and uses the analytic hierarchy process (AHP) to determine the index weight. Taking the Pulandian Bay ecological restoration project and the Daling River estuary ecological restoration project as examples, the application analysis was carried out. The results showed that the Pulandian Bay project scored 77.18 and the restoration effect was ‘good’, while the Daling River estuary project scored 80.19 and the restoration effect was ‘excellent’. Both achieved the effects of improving the regional ecological environment, improving ecosystem service functions, improving the quality of life of residents, and driving regional economic development. The assessment method adopted not only reflects the impact of ecological restoration on the ecological environment and economic society but also visually displays the benefits of the project, reflecting the contribution of the ecosystem to human well-being, which can provide a reference for the evaluation of similar marine ecological restoration projects. Full article
(This article belongs to the Section Oceans and Coastal Zones)
Show Figures

Figure 1

23 pages, 5225 KiB  
Article
Community Characteristics and Potential Risk of Nekton in Waters Adjacent to Ningde Nuclear Power Plant in Fujian, China
by Wen Huang, Biqi Zheng, Dong Wen, Feipeng Wang, Lijing Fan, Zefeng Yu, Wei Liu and Shuang Zhao
Biology 2025, 14(5), 481; https://doi.org/10.3390/biology14050481 - 27 Apr 2025
Cited by 1 | Viewed by 608
Abstract
The impact of bio-invasions and abnormal aggregations of marine life on the safety of cooling water systems in coastal nuclear power plants (NPPs) is significant and cannot be overlooked. In this study, we conducted 12 consecutive monthly surveys from September 2022 to August [...] Read more.
The impact of bio-invasions and abnormal aggregations of marine life on the safety of cooling water systems in coastal nuclear power plants (NPPs) is significant and cannot be overlooked. In this study, we conducted 12 consecutive monthly surveys from September 2022 to August 2023 in the waters near Ningde NPP in Fujian, China, focusing on nekton species composition, dominant species, abundance, biomass, and diversity indices. We conducted statistical analyses to examine potential correlations between the community structure of these organisms and environmental factors. We recorded 120 species of nekton that belonged to 20 orders, 57 families, and 92 genera, including 72 species of fish, 23 species of shrimp, 19 species of crabs, and 6 species of cephalopods. Pearson and redundancy analyses showed that pH, DIP, and inorganic nitrogen were the main environmental factors driving the observed temporal changes in the nekton community structure in the seawater intake area. We also found that May to October is the peak period for nekton abundance and biomass, and during this time, there is a high risk of nekton blocking the cooling water system of the NPP. These results are of practical significance for NPP managers to prevent and control the clogging of the cooling water system by marine organisms, and the diversity and abundance data provide a theoretical basis for bioecological restoration and management of the area around the Ningde NPP. Full article
(This article belongs to the Special Issue Advances in Aquatic Ecological Disasters and Toxicology)
Show Figures

Figure 1

19 pages, 3831 KiB  
Article
A Study on the Degree of Coordination Between Regional Marine Innovation Capacity and Marine Economic Resilience in China
by Chunjuan Wang, Peng Deng, Dahai Liu and Jianjun Chen
Sustainability 2025, 17(9), 3797; https://doi.org/10.3390/su17093797 - 23 Apr 2025
Viewed by 400
Abstract
Marine innovation, as a fundamental driving force behind the development of the marine economy, is crucial for the realization of the maritime power strategy. The reports from the 19th and 20th National Congresses of the Communist Party of China explicitly advocate for the [...] Read more.
Marine innovation, as a fundamental driving force behind the development of the marine economy, is crucial for the realization of the maritime power strategy. The reports from the 19th and 20th National Congresses of the Communist Party of China explicitly advocate for the acceleration of maritime power construction and emphasize the innovation-driven development strategy. Marine innovation and the resilience of the marine economy dynamically interact and mutually reinforce one another. Investigating the coordination between marine innovation and the resilience of the marine economy can provide theoretical support for regional marine technological innovation and sustainable economic development, thereby facilitating the achievement of innovation-driven development goals. This article establishes an evaluation index system for regional marine innovation capacity, considering two perspectives: marine innovation input and output. Additionally, it constructs an evaluation index system for marine economic resilience, which is based on three dimensions: resistance, robustness, and recovery. The entropy weight TOPSIS method is employed to calculate the sub-indices for China’s regional marine technological innovation capacity and marine economic resilience. Furthermore, a coordination degree and coordinated development degree model is developed to assess the coordination and development of marine innovation capacity and economic resilience across 11 coastal provinces (municipalities and autonomous regions) in China from 2013 to 2022. The research results indicate that from 2013 to 2022, the coordination degree of marine innovation capacity and economic resilience in the 11 coastal provinces (municipalities and autonomous regions) of China has exhibited a positive development trend. The southern and eastern economic circles display synchronized development patterns, with the southern economic circle experiencing the fastest improvements, while the northern economic circle shows slight regression. The marginal contribution of this study lies in the integration of marine innovation capacity and economic resilience for the first time, further exploring the degree of coordinated development based on coordination degree and providing a systematic analysis of the coordinated development of regional marine innovation and economic resilience from the perspectives of individual provinces and economic circles. Full article
(This article belongs to the Special Issue Natural Resource Economics and Environment Sustainable Development)
Show Figures

Figure 1

Back to TopTop