Subtidal Biodiversity of the Punta de Coles Marine Reserve, Moquegua, Peru
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Field Sampling
2.3. Sample Collection
2.4. Statistical Analysis
3. Results
3.1. Morphological and Biological Characterization of the Shallow Subtidal Habitat
3.2. Community Composition and Structure
3.2.1. Megabenthos
3.2.2. Macrobenthos
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sala, E.; Giakoumi, S. No-take marine reserves are the most effective protected areas in the ocean. ICES J. Mar. Sci. 2018, 75, 1166–1168. [Google Scholar] [CrossRef]
- Sarker, S.; Rahman, M.J.; Wahab, M.A. Modeling the role of marine protected area in biodiversity conservation. J. Sea Res. 2023, 196, 102457. [Google Scholar] [CrossRef]
- Trowbridge, C.D.; Kachmarik, K.; Plowman, C.Q.; Little, C.; Stirling, P.; McAllen, R. Biodiversity of shallow subtidal, underrock invertebrates in Europe’s first marine reserve: Effects of physical factors and scientific sampling. Estuar. Coast. Shelf Sci. 2017, 187, 43–52. [Google Scholar] [CrossRef]
- Pichegru, L.; Ryan, P.; Le Bohec, C.; van der Lingen, C.; Navarro, R.; Petersen, S.; Lewis, S.; van der Westhuizen, J.; Grémillet, D. Overlap between vulnerable top predators and fisheries in the Benguela upwelling system: Implications for marine protected areas. Mar. Ecol. Prog. Ser. 2009, 391, 199–208. [Google Scholar] [CrossRef]
- Guajardo, A.; Navarrete, C. Gestión adaptativa en áreas marinas protegidas de Chile: Un método para su evaluación. Lat. Am. J. Aquat. Res. 2012, 40, 608–612. [Google Scholar] [CrossRef]
- Roura, R. El debate sobre áreas marinas protegidas en la Antártida: ¿conservación o pesca? Ecol. Polít. 2013, 46, 48–56. [Google Scholar]
- Grau Tomás, E.; García Sanabria, J. Comparative analysis of marine-protected area effectiveness in the protection of marine mammals: Lessons learned and recommendations. Front. Mar. Sci. 2022, 9, 940803. [Google Scholar] [CrossRef]
- Henriques, R.; Mann, B.; Nielsen, E.; Hui, C.; von der Heyden, S. Extending biodiversity conservation with functional and evolutionary diversity: A case study of South African sparid fishes. Afr. J. Mar. Sci. 2020, 42, 315–321. [Google Scholar] [CrossRef]
- Kirkman, S.P.; Mann, B.Q.; Sink, K.J.; Adams, R.; Livingstone, T.C.; Mann-Lang, J.B.; Pfaff, M.C.; Samaai, T.; van der Bank, M.G.; Williams, L.; et al. Evaluating the evidence for ecological effectiveness of South Africa’s marine protected areas. Afr. J. Mar. Sci. 2021, 43, 389–412. [Google Scholar] [CrossRef]
- Tarazona, J.; Arntz, W. The Peruvian coastal upwelling system. In Coastal Marine Ecosystems of Latin America, Ecological Studies; Seeliger, U., Kjerfeve, B., Eds.; Springer: Berlin/Heidelberg, Germany, 2001; Volume 144, pp. 229–244. [Google Scholar]
- Thiel, M.; Macaya, E.; Acuña, E. The Humboldt current system of northern-central Chile: Oceanographic processes, ecological interactions. Oceanogr. Mar. Biol. Annu. Rev. 2007, 45, 195–344. [Google Scholar]
- Thiel, M.; Erasmo, C.; Macaya, E.A.; Wolf, E.A. El sistema de la corriente de Humboldt del norte y centro de Chile: Procesos oceanográficos, interacciones ecológicas y retroalimentación socioeconómica. Oceanogr. Y Biol. Mar. 2007, 45, 195–344. [Google Scholar]
- Tejada, A.; Baldarrago, D.; Pastor, R.; Ortiz, M. Assessing the benefits of the marine protected area of Punta Coles, southern Peru (south-east Pacific) on productivity of conspicuous benthic species using preimage population analysis. Aquat. Conserv. Mar. Freshw. Ecosyst. 2023, 33, 29–43. [Google Scholar] [CrossRef]
- Línea Base Biológica Terrestre y Marina de la Reserva Nacional Sistema de Islas, Islotes y Puntas Guaneras—Punta Coles (Ilo, Moquegua); SERNANP: Lima, Perú, 2016; p. 150.
- Libro Rojo de la Fauna Silvestre Amenazada del Perú, 1st ed.; SERFOR (Servicio Nacional Forestal y de Fauna Silvestre): Lima, Perú, 2018; pp. 1–548.
- Figueroa, J.; Roca, M.; Torres, D.; Guillermo, E.; Paredes, F.; Barraza, D. Capítulo 1: Caracterización de la fauna: Aves, mamíferos y reptiles. In Línea Base Biológica Terrestre y Marina de la Reserva Nacional Sistemas de Islas, Islotes y Puntas Guaneras—Punta Coles (Moquegua); SERNANP: Lima, Perú, 2016. [Google Scholar]
- Méndez-Ancca, S.; Pepe-Victoriano, R.; Gonzales, H.H.S.; Aguilar, J.L.C.; Meza, Y.A.; Pacho, M.A.Q.; Cáceres, A.T.; Baldarrago Centeno, D.E.; Aguilera, J.G. Discovering the Bathylithology and Bioengineering Organisms of the Punta Coles Marine Natural Reserve, Moquegua, Peru. J. Mar. Sci. Eng. 2024, 12, 2265. [Google Scholar] [CrossRef]
- Tejada Cáceres, A.; González Vargas, A.; Baldarrago, D.; Liza, C. Bancos naturales de invertebrados marinos en las regiones Moquegua y Tacna, 2016. Inf. Inst. Mar Perú 2020, 47, 261–316. [Google Scholar]
- Plan Maestro de la Reserva Nacional Sistema de Islas, Islotes y Puntas Guaneras 2016–2020; SERNANP: Lima, Perú, 2016; p. 108.
- Tejada, A.; Baldarrago, D.; Aragón, B.; Vizcarra, Y.; Villanueva, J. El chanque Concholepas concholepas en el litoral de las regiones Moquegua y Tacna, 2017. Inst. Mar Perú Inf. 2019, 46, 557–577. [Google Scholar]
- Jahncke, J.; Garcia-Godos, A.; Goya, E. La dieta del guanay Leucocarbo bougainvilli y el piquero peruano Sula variegata en la costa peruana, agosto de 1997. Inst. Mar Perú Inf. 1997, 72, 25–37. [Google Scholar]
- Tarazona, J.; Gutiérrez, D.; Paredes, C.; Indacochea, A. Overview and challenges of marine biodiversity research in Peru una revision y desafios Para la investigacion en biodiversidad marina en Peru. Gayana 2003, 67, 206–231. [Google Scholar]
- Tasso, V.; El Haddad, M.; Assadi, C.; Canales, R.; Aguirre, L.; Vélez-Zuazo, X. Macrobenthic fauna from an upwelling coastal area of Peru (Warm Temperate Southeastern Pacific province-Humboldtian ecoregion). Biodivers. Data J. 2018, 6, e28937. [Google Scholar] [CrossRef] [PubMed]
- Arntz, W.; Gallardo, V.; Gutiérrez, D.; Isla, E.; Levin, L.; Mendo, J.; Neira, C.; Rowe, G.T.; Tarazona, J.; Wolff, M. El Niño and similar perturbation effects on the benthos of the Humboldt, California and Benguela current upwelling ecosystems. Adv. Geosci. 2006, 6, 243–265. [Google Scholar] [CrossRef]
- Correa, D.; Chamorro, A.; Tam, J. Clasificación pentadal de vientos frente a la costa peruana. Rev. Investig. Fís. 2020, 23, 61–65. [Google Scholar] [CrossRef]
- Cárdenas, F.; Pastor, R.; Baldarrago, D.; Castañeda, V.; Romucho, Y. Trazas de metales en agua, sedimento y organismos bentónicos en bancos naturales de las regiones de Tacna y Moquegua. Inst. Mar Perú Inf. 2015, 42, 122–136. [Google Scholar]
- Jones, C.G.; Lawton, J.H.; Shachak, M. Positive and negative effects of organisms as physical ecosystem engineers. Ecology 1997, 78, 1946–1957. [Google Scholar] [CrossRef]
- Conway-Cranos, L. Geographic Patterns of Recovery in Intertidal Communities; Partnership for Interdisciplinary Studies of Coastal Oceans (PISCO) Scientific Symposium: Corvallis, OR, USA, 2007. [Google Scholar]
- Banks, S.; Acuña, D.; Brandt, M.; Calderón, R.; Delgado, J.; Edgar, G.; Garske-García, L.; Keith, I.; Kuhn, A.; Pépolas, R.; et al. Manual de Monitoreo Submareal; Conservación Internacional Ecuador y Fundación Charles Darwin: Quito, Ecuador, 2016. [Google Scholar]
- Fauchald, K. The polychaete worms. Definitions and keys to the orders, families and genera. Science Series; Natural History Museum of Los Angeles County: Los Angeles, CA, USA, 1977; p. 188. [Google Scholar]
- Rozbaczylo, N.; Bolados, J. Nereidos de Iquique, Chile. (Polychaeta, Nereidae). Boletín Mus. Nac. Hist. Nat. 1980, 37, 205–224. [Google Scholar] [CrossRef]
- De León-Gonzales, J.A.; Bastida-Zavala, J.R.; Carrerra-Parra, L.F.; Garcia-Garza, M.E.; Peña-Rivera, A.; Salazar-Vallejo, S.I.; Solis-Weiss, V. Poliquetos (Annelida: Polychaeta) de México y América Tropical; Universidad Autónoma de Nuevo León: Monterrey, Mexico, 2009; p. 737. [Google Scholar]
- Alamo, V.; Valdivieso, V. Lista Sistemática de Moluscos Marinos del Perú, 2nd ed.; Publicación Especial; Inst. Mar Callao-Perú: Callao, Peru, 1997. [Google Scholar]
- Carbajal-Enzian, P.; Santamaría, J.; Baldárrago, D. Guía Ilustrada Para el Reconocimiento de Poliplacóforos, Gasterópodos y Cefalópodos Con Valor Comercial en el Perú; Instituto del Mar del Perú (Imarpe): Lima, Peru, 2018; p. 34. [Google Scholar]
- Osorio, C. Moluscos Marinos en Chile: Especies de Importancia Económica: Guía Para su Identificación; Universidad de Chile: Santiago, Chile, 2022; p. 211. [Google Scholar]
- Garth, J.S. Brachyura of the Pacific coast of America, Oxyrhyncha. Allan Hancock Pac. Exped. 1958, 21, 1–499. [Google Scholar]
- Chirichigno, N. Lista de Crustáceos del Perú (Decapoda y Stoma-topoda) con datos de distribución geográfica. Inf. Inst. Del Mar Del Perú 1970, 35, 95. [Google Scholar]
- Moscoso, V. Catálogo de crustáceos decápodos y estomatópodos del Perú. Boletín Inst. Del Mar Del Perú 2012, 27, 8–207. [Google Scholar]
- Anderson, M.J.; Gorley, R.N.; Clarke, K.R. PERMANOVA + Primer: Guide to Software and Statistical Methods; PRIMER-E Ltd.: Plymouth, UK, 2008. [Google Scholar]
- Oksanen, J.; Guillaume Blanchet, F.; Kindt, R.; Legendre, P.; Minchin, P.R.; O’Hara, R.B.; Solymos, P.; Stevens, M.H.H.; Szoecs, E.; Wagner, H.; et al. Vegan: Community Ecology Package, R package version 2.3-2; 2015. Available online: https://cran.r-project.org/package=vegan (accessed on 22 January 2024).
- Wickham, H. Getting Started with ggplot2. In ggplot2: Elegant Graphics for Data Analysis; Springer: Cham, Switzerland, 2016; pp. 11–31. [Google Scholar]
- Ihaka, R.; Gentleman, R. R: A language for data analysis and graphics. J. Comput. Graph. Stat. 1996, 5, 299–314. [Google Scholar] [CrossRef]
- R Core Development Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna. 2004. Available online: https://www.R-project.org/ (accessed on 22 January 2024).
- Clarke, K.; Warwick, R. Statistical analysis and interpretation of marine Community data. I.O.C. In Draft, Manuals and Guides 22; UNESCO: Paris, France, 1990; p. 52. [Google Scholar]
- Clarke, K.; Warwick, R. Changes in Marine Communities: An Approach to Statistical Analysis and Interpretation, 2nd ed.; PRIMER-E, Ltd., Plymouth Marine Laboratory: Plymouth, UK, 1994; p. 144. [Google Scholar]
- Clarke, K.; Gorley, R. PRIMER v5: User Manual/Tutorial. PRIMER-E: Plymouth. Bull. Mar. Coast. Res. 2001, 50, 91. [Google Scholar]
- Kruskal, J.B. Multidimensional scaling by optimizing goodness of fit to a nonmetric hypothesis. Psychometrika 1964, 29, 1–27. [Google Scholar] [CrossRef]
- Clarke, K.R. Non-parametric multivariate analyses of changes in community structure. Aust. J. Ecol. 1993, 18, 117–143. [Google Scholar] [CrossRef]
- Pastor, R.; Gonzáles Araujo, A.; Zavalaga Talledo, F. Comunidades bentónicas de los ecosistemas de fondos blandos y duros en el intermareal y submareal somero. Sitio piloto isla Lobos de Tierra, 2014. Inf. Inst. Mar. Perú 2017, 44, 385–408. [Google Scholar]
- Ramírez Díaz, P.; De la Cruz Galloso, J.; Castro Gálvez, J. Biodiversidad marina en isla Lobos de Tierra, Lambayeque (agosto, 2017). Inf. Inst. Mar. Perú 2020, 47, 549–565. [Google Scholar]
- Ramírez Díaz, P.; De la Cruz Galloso, J.; Torres, D. Biodiversidad en la isla Lobos de Tierra, Región Lambayeque, setiembre 2015. Inf. Inst. Mar. Perú 2019, 46, 444–461. [Google Scholar]
- Pastor, R.; Gonzáles Araujo, A.; Zavalaga Talledo, F. Comunidades bentónicas de los ecosistemas de fondos blandos y duros en el intermareal y submareal somero. Sitio piloto Islas Ballestas. Setiembre-Octubre 2013. Inf. Inst. Mar. Perú 2017, 44, 303–331. [Google Scholar]
- Betti, F.; Enrichetti, F.; Bavestrello, G.; Costa, A.; Moreni, A.; Bo, M.; Ortiz Saini, P.; Daneri, G. Hard-bottom megabenthic communities of a Chilean fjord system: Sentinels for climate change? Front. Mar. Sci. 2021, 8, 635430. [Google Scholar] [CrossRef]
- Crooks, J.A. Characterizing ecosystem-level consequences of biological invasions: The role of ecosystem engineers. Oikos 2002, 97, 153–166. [Google Scholar] [CrossRef]
- Hastings, A.; Byers, J.E.; Crooks, J.A.; Cuddington, K.; Jones, C.G.; Lambrinos, J.G.; Talley, T.S.; Wilson, W.G. Ecosystem engineering in space and time. Ecol. Lett. 2007, 10, 153–164. [Google Scholar] [CrossRef] [PubMed]
- Wright, J.T.; Gribben, P.E.; Latzel, S. Native ecosystem engineer facilitates recruitment of invasive crab and native invertebrates. Biol. Invasions 2016, 18, 3163–3173. [Google Scholar] [CrossRef]
- Vásquez, J.A.; Buschmann, A.H. Herbivore-kelp interactions in Chilean subtidal communities: A review Interacciones alga-herbívoro en comunidades submareales chilenas: Una revision. Rev. Chil. De Hist. Nat. 1997, 70, 41–52. [Google Scholar]
- Vásquez, J.A.; Donoso, G.A. Loxechinus albus. In Developments in Aquaculture and Fisheries Science; Lawrence, J.M., Ed.; Elservier: Amsterdam, The Netherlands, 2013; Volume 38, pp. 285–296. [Google Scholar] [CrossRef]
- Rodriguez, S.; Ojeda, F. Distribution patterns of Tetrapygus niger (Echinodermata: Echinoidea) off the central Chilean coast. Mar. Ecol. Prog. Ser. 1993, 101, 157. [Google Scholar] [CrossRef]
- Rodriguez, S.R.; Ojeda, F.P. Behavioral responses of the sea urchin Tetrapygus niger to predators and food. Mar. Freshw. Behav. Phy. 1998, 31, 21–37. [Google Scholar] [CrossRef]
- Gianguzza, P.; Bonaviri, C.A. Developments in Aquaculture and Fisheries Science; Elsevier: Amsterdam, The Netherlands, 2013; Volume 38, pp. 275–283. [Google Scholar]
- Barahona, M.; Navarrete, S. Movement patterns of the seastar Heliaster helianthus in central Chile: Relationship with environmental conditions and prey availability. Mar. Biol. 2010, 157, 647–661. [Google Scholar] [CrossRef]
- McClintock, J.B.; Lawrence, J.B. Characteristics of foraging in the soft-bottom benthic starfish Luidia clathrata (Echinodermata: Asteroidea): Prey selectivity, switching behavior, functional responses and movement patterns. Oecologia 1985, 66, 291–298. [Google Scholar] [CrossRef] [PubMed]
- Baldarrago, D.; Aragón, B.; Vizcarra, Y.; Tejada Cáceres, A. Estructura Bentónica en el submareal somero de Punta Coles (Ilo–Moquegua)–2017. Inst. Mar Perú Lima-Callao 2019, 46, 578–600. [Google Scholar]
- Baldarrago, D.; Aragón, B.; Vizcarra, Y.; Mamani, L.; Tejada Cáceres, A. Caracterización de la Estructura Bentónica en el submareal somero de la reserva de Punta Coles (Ilo, Región Moquegua), 2019. Inst. Mar Perú Lima-Callao 2022, 49, 275–295. [Google Scholar]
- Tokeshi, M.; Romero, L. Filling a gap: Dynamics of space occupancy on a mussel-dominated subtropical rocky shore. Mar. Ecol. Prog. Ser. 1995, 119, 167–176. [Google Scholar] [CrossRef]
- Thiel, M.; Ullrich, N. Hard rock versus soft bottom: The fauna associated with intertidal mussel beds on hard bottoms along the coast of Chile, and considerations on the functional role of mussel beds. Helgol. Mar. Res. 2002, 56, 21–30. [Google Scholar] [CrossRef]
- Roff, J.C.; Taylor, M.E.; Lauhgren, J. Geophysical approaches to the habitat classification, delineation and monitoring of marine habitats and their communities. Aquat. Conserv. Mar. Freshw. Ecosyst. 2003, 13, 77–90. [Google Scholar] [CrossRef]
- Gribben, P.E.; Wright, J.T. Invasive seaweed enhances recruitment of a native bivalve: Roles of refuge from predation and habitat choice. Mar. Ecol. Prog. Ser. 2006, 318, 177–185. [Google Scholar] [CrossRef]
- Cerda, M.; Castilla, J. Diversidad y biomasa de macroinvertebrados en matrices intermareales del tunicado Pyura praeputialis (Heller, 1878) en la Bahía de Antofagasta, Chile. Rev. Chil. Hist. Nat. 2001, 74, 841–853. [Google Scholar] [CrossRef]
- Altieri, A.H.; Silliman, B.R.; Bertness, M.D. Hierarchical organization via a facilitation cascade in intertidal cordgrass bed communities. Am. Nat. 2007, 169, 195–206. [Google Scholar] [CrossRef] [PubMed]
- Crowe, T.P.; Frost, N.J.; Hawkins, S.J. Interactive effects of losing key grazers and ecosystem engineers vary with environmental context. Mar. Ecol. Prog. Ser. 2011, 430, 223–234. [Google Scholar] [CrossRef]
- Branch, G.M.; Griffiths, C.L. The Benguela ecosystem. Part V. The coastal zone. Oceanogr. Mar. Biol. Annu. Rev. 1988, 26, 395–486. [Google Scholar]
- Monteiro, S.; Champman, M.; Underwood, A. Patches of the ascidian Pyura stolonifera (Heller, 1878): Structure of habitat and associated intertidal assemblajes. Exp. Mar. Biol. Ecol. 2002, 270, 171–189. [Google Scholar] [CrossRef]
- Sepulveda, R.; Camus, P.; Moreno, C. Diversity of faunal assemblages associated with ribbed mussel beds along the South American coast: Relative roles of biogeography and bioengineering. Mar. Ecol. 2016, 37, 943–956. [Google Scholar] [CrossRef]
- Craeymeersch, J.A.; Jansen, H.M. Bivalve Assemblages as Hotspots for Biodiversity. Goods and Services of Marine Bivalves; Springer: Berlin/Heidelberg, Germany, 2019. [Google Scholar] [CrossRef]
- Orostica, M.H.; Aguilera, M.A.; Donoso, G.A.; Vásquez, J.A.; Broitman, B.R. Effect of grazing on distribution and recovery of harvested stands of Lessonia berteroana kelp in northern Chile. Mar. Ecol. Prog. Ser. 2014, 511, 71–82. [Google Scholar] [CrossRef]
- Vásquez, J.A.; Vega, J.M.A. El Niño 1997–1998 en el norte de Chile: Efectos en la estructura y en la organización de comunidades submareales dominadas por algas pardas. In El Niño–La Niña 1997–2000. Sus Efectos en Chile; Avaria, S., Carrasco, J., Rutllant, J., Yáñez, E., Eds.; CONA: Valparaíso, Chile, 2004; pp. 119–135. [Google Scholar]
- Skein, L.; Robinson, T.B.; Alexander, M.E. Impacts of mussel invasions on the prey preference of two native predators. Behav. Ecol. 2018, 29, 353–359. [Google Scholar] [CrossRef]
- Coleman, N.; Cuff, W.; Moverley, J.; Gason, A.; Heiselrs, S. Depth, sediment type, biogeography and high species richness in shallow-water benthos. Mar. Freshw. Res. 2007, 58, 293–305. [Google Scholar] [CrossRef]
- Pacheco, A.S.; Laudien, J.; Thiel, M.; Oliva, M.; Heilmayer, O. Succession and seasonal onset of colonization in subtidal hard-bottom communities off northern Chile. Mar. Ecol. 2011, 32, 75–87. [Google Scholar] [CrossRef]
- McClanahan, T.R. Response of the coral reef benthos and herbivory to fishery closure management and the 1998 ENSO disturbance. Oecologia 2008, 155, 169–177. [Google Scholar] [CrossRef] [PubMed]
- Manríquez, P.H.; Castilla, J.C.; Ortiz, V.; Jara, M.E. Empirical evidence for large-scale human impact on intertidal aggregations, larval supply and recruitment of Pyura praeputialis around the Bay of Antofagasta, Chile. Aust. Ecol. 2016, 41, 701–714. [Google Scholar] [CrossRef]
- Albertson, L.K.; Sklar, L.S.; Tumolo, B.B.; Cross, W.F.; Collins, S.F.; Woods, H.A. The ghosts of ecosystem engineers: Legacy effects of biogenic modifications. Funct. Ecol. 2024, 38, 52–72. [Google Scholar] [CrossRef]
Community | Variable | Factor | df | F | p Value |
---|---|---|---|---|---|
Coverage | Richness | Depth | 2 | 3.55 | 0.062 |
Sector | 1 | 1.98 | 0.184 | ||
Depth x Sector | 2 | 0.40 | 0.681 | ||
Abundance | Depth | 2 | 1.03 | 0.386 | |
Sector | 1 | 5.44 | 0.038 | ||
Depth x Sector | 2 | 0.93 | 0.420 | ||
Megabenthic | Richness | Depth | 2 | 0.07 | 0.932 |
Sector | 1 | 1.24 | 0.287 | ||
Depth x Sector | 2 | 1.69 | 0.226 | ||
Abundance | Depth | 2 | 0.63 | 0.548 | |
Sector | 1 | 0.09 | 0.769 | ||
Depth x Sector | 2 | 0.39 | 0.684 |
Diversity Indices | I (1–5 m) | II (5–10 m) | III (10–15 m) | Sector: South | Sector: North |
---|---|---|---|---|---|
Species (S) | 68 | 75 | 71 | 86 | 73 |
Margalef (d) | 11.81 | 14.44 | 12.67 | 14.87 | 14.03 |
Shannon (H’) | 2.89 | 2.36 | 3.21 | 2.78 | 3.20 |
Pielou’s (J’) | 0.68 | 0.55 | 0.75 | 0.62 | 0.74 |
Simpson (1–λ) | 0.89 | 0.77 | 0.94 | 0.87 | 0.93 |
(a) Abundance | (b) Biomass | ||||||
Factor | df | F | p Value | Source | df | F | p Value |
Depth | 2 | 3.39 | 0.0142 | Depth | 2 | 2.37 | 0.0339 |
Sector | 1 | 1.47 | 0.2143 | Sector | 1 | 5.21 | 0.0035 |
Depth x Sector | 2 | 1.47 | 0.2023 | Depth x Sector | 2 | 1.89 | 0.0821 |
(c) Richness | (d) Community structure | ||||||
Source | df | F | p Value | Source | df | F | p Value |
Depth | 2 | 1.79 | 0.1502 | Depth | 2 | 2.09 | 0.0024 |
Sector | 1 | 0.45 | 0.5944 | Sector | 1 | 3.02 | 0.0008 |
Depth x Sector | 2 | 3.95 | 0.016 | Depth x Sector | 2 | 1.67 | 0.0235 |
Comparison of groups | Species | Abundance | Dissimilarity | Contribution | |||
---|---|---|---|---|---|---|---|
Prom. | Prom. | Prom. | Prom. | Parc. | Accum. (%) | ||
(%) | |||||||
1–5 m and 10–15 m | Phragmatopoma moerchi | 78.67 | 18.72 | 15.94 | 0.58 | 17.85 | 17.85 |
Avg. Dissimilarity: 89.28 | Ophiactis kroeyeri | 6.50 | 75.11 | 8.92 | 0.53 | 9.99 | 27.84 |
Syllis sp. | 35.28 | 6.50 | 8.40 | 0.90 | 9.40 | 37.25 | |
Eatoniellidae | 24.33 | 0.00 | 5.47 | 0.43 | 6.13 | 43.37 | |
Tegula tridentata | 9.39 | 1.33 | 4.49 | 0.62 | 5.03 | 48.40 | |
Amphipoda sp. 1 | 17.67 | 0.33 | 3.47 | 0.42 | 3.89 | 52.29 | |
1–5 m and 5–10 m | Phragmatopoma moerchi | 78.67 | 38.33 | 16.95 | 0.65 | 21.41 | 21.41 |
Avg. Dissimilarity: 79.17 | Syllis sp. 1 | 35.28 | 24.83 | 7.38 | 0.98 | 9.33 | 30.74 |
Eatoniellidae | 24.33 | 21.28 | 6.21 | 0.53 | 7.85 | 38.58 | |
Amphipoda sp. 1 | 17.67 | 16.00 | 4.69 | 0.64 | 5.92 | 44.50 | |
Tegula tridentata | 9.39 | 5.72 | 3.03 | 0.86 | 3.83 | 48.33 | |
Eulithidium macleani | 11.94 | 8.22 | 2.79 | 0.88 | 3.52 | 51.85 | |
5–10 m and 10–15 m | Phragmatopoma moerchi | 18.72 | 38.33 | 15.33 | 0.63 | 17.75 | 17.75 |
Avg. Dissimilarity: 86.37 | Ophiactis kroeyeri | 75.11 | 13.06 | 10.36 | 0.60 | 12.00 | 29.75 |
Syllis sp. 1 | 6.50 | 24.83 | 6.18 | 1.08 | 7.15 | 36.90 | |
Tegula tridentata | 1.33 | 5.72 | 4.34 | 0.58 | 5.02 | 41.93 | |
Amphipoda sp. 1 | 0.33 | 16.00 | 3.26 | 0.62 | 3.78 | 45.70 | |
Aulacomya atra | 21.17 | 0.00 | 2.92 | 0.50 | 3.38 | 49.08 | |
Pagurus edwardsii | 1.89 | 4.22 | 2.85 | 0.59 | 3.30 | 52.38 | |
Sector | Phragmatopoma moerchi | 82.93 | 7.56 | 16.67 | 0.67 | 19.53 | 19.53 |
Avg. Dissimilarity: 85.33 | Ophiactis kroeyeri | 58.93 | 4.19 | 8.89 | 0.49 | 10.42 | 29.95 |
Syllis sp. 1 | 13.85 | 30.56 | 6.97 | 0.96 | 8.17 | 38.13 | |
Eatoniellidae | 30.26 | 0.15 | 4.36 | 0.45 | 5.11 | 43.23 | |
Amphipoda sp. 1 | 3.67 | 19.00 | 3.26 | 0.51 | 3.82 | 47.06 | |
Tegula tridentata | 6.04 | 4.93 | 2.89 | 0.72 | 3.38 | 50.44 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Méndez-Ancca, S.; Pepe-Victoriano, R.; Meza, Y.A.; Gonzales, H.H.S.; Aguilar, J.L.C.; Cáceres, A.T.; Centeno, D.E.B.; Zambrano-Cabanillas, A.W.; Aguilera, J.G. Subtidal Biodiversity of the Punta de Coles Marine Reserve, Moquegua, Peru. J. Mar. Sci. Eng. 2025, 13, 1400. https://doi.org/10.3390/jmse13081400
Méndez-Ancca S, Pepe-Victoriano R, Meza YA, Gonzales HHS, Aguilar JLC, Cáceres AT, Centeno DEB, Zambrano-Cabanillas AW, Aguilera JG. Subtidal Biodiversity of the Punta de Coles Marine Reserve, Moquegua, Peru. Journal of Marine Science and Engineering. 2025; 13(8):1400. https://doi.org/10.3390/jmse13081400
Chicago/Turabian StyleMéndez-Ancca, Sheda, Renzo Pepe-Victoriano, Yesica Alvarez Meza, Hebert Hernán Soto Gonzales, Juan Luis Ccamapaza Aguilar, Alex Tejada Cáceres, Danny Efraín Baldarrago Centeno, Abel Walter Zambrano-Cabanillas, and Jorge González Aguilera. 2025. "Subtidal Biodiversity of the Punta de Coles Marine Reserve, Moquegua, Peru" Journal of Marine Science and Engineering 13, no. 8: 1400. https://doi.org/10.3390/jmse13081400
APA StyleMéndez-Ancca, S., Pepe-Victoriano, R., Meza, Y. A., Gonzales, H. H. S., Aguilar, J. L. C., Cáceres, A. T., Centeno, D. E. B., Zambrano-Cabanillas, A. W., & Aguilera, J. G. (2025). Subtidal Biodiversity of the Punta de Coles Marine Reserve, Moquegua, Peru. Journal of Marine Science and Engineering, 13(8), 1400. https://doi.org/10.3390/jmse13081400