Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (261)

Search Parameters:
Keywords = marine carotenoids

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
81 pages, 6368 KiB  
Review
A Comprehensive Review on the Valorization of Bioactives from Marine Animal By-Products for Health-Promoting, Biofunctional Cosmetics
by Sofia Neonilli A. Papadopoulou, Theodora Adamantidi, Dimitrios Kranas, Paschalis Cholidis, Chryssa Anastasiadou and Alexandros Tsoupras
Mar. Drugs 2025, 23(8), 299; https://doi.org/10.3390/md23080299 - 26 Jul 2025
Viewed by 386
Abstract
In recent decades, there has been a marked surge in the development of marine-by-product-derived ingredients for cosmetic applications, driven by the increasing demand for natural, sustainable, and high-performance formulations. Marine animal by-products, particularly those from fish, crustaceans, and mollusks, represent an abundant yet [...] Read more.
In recent decades, there has been a marked surge in the development of marine-by-product-derived ingredients for cosmetic applications, driven by the increasing demand for natural, sustainable, and high-performance formulations. Marine animal by-products, particularly those from fish, crustaceans, and mollusks, represent an abundant yet underutilized source of bioactive compounds with notable potential in cosmeceutical innovation. Generated as waste from the fishery and seafood-processing industries, these materials are rich in valuable bioactives, such as chitosan, collagen, peptides, amino acids, fatty acids, polar lipids, lipid-soluble vitamins, carotenoids, pigments, phenolics, and mineral-based substrates like hydroxyapatite. Marine by-product bioactives can be isolated via several extraction methods, and most importantly, green ones. These compounds exhibit a broad spectrum of skin-health-promoting effects, including antioxidant, anti-aging, anti-inflammatory, antitumor, anti-wrinkle, anti-hyperpigmentation, and wound-healing properties. Moreover, applications extend beyond skincare to include hair, nail, and oral care. The present review provides a comprehensive analysis of bioactives obtained from marine mollusks, crustaceans, and fish by-products, emphasizing modern extraction technologies with a focus on green and sustainable approaches. It further explores their mechanisms of action and documented efficacy in cosmetic formulations. Finally, the review outlines current limitations and offers future perspectives for the industrial valorization of marine by-products in functional and environmentally-conscious cosmetic development. Full article
Show Figures

Figure 1

24 pages, 2082 KiB  
Review
Exploring the Pharmacological Landscape of Undaria pinnatifida: Insights into Neuroprotective Actions and Bioactive Constituents
by Helena Machado, Jorge Pereira Machado, Christian Alves, Cristina Soares, Clara Grosso, Jorge Magalhães Rodrigues and Maria Begoña Criado
Nutraceuticals 2025, 5(3), 20; https://doi.org/10.3390/nutraceuticals5030020 - 24 Jul 2025
Viewed by 427
Abstract
The marine seaweed Undaria pinnatifida belongs to the large group of brown macroalgae (Ochrophyta) and is valued both as a nutritious food and a source of pharmaceutical compounds. It has been widely consumed in East Asia as part of the traditional [...] Read more.
The marine seaweed Undaria pinnatifida belongs to the large group of brown macroalgae (Ochrophyta) and is valued both as a nutritious food and a source of pharmaceutical compounds. It has been widely consumed in East Asia as part of the traditional diet and is generally regarded as a “healthy longevity food.” Consequently, it represents one of the most promising natural sources of biomedicinal and bioactive products. This review aims to synthesize current scientific evidence on the pharmacologically active compounds of U. pinnatifida, emphasizing their mechanisms of action and therapeutic potential in neurodegenerative and chronic diseases. This narrative review is based on a comprehensive literature search of peer-reviewed articles from scientific databases, focusing on studies addressing the pharmacological properties of U. pinnatifida and its major bioactive constituents. Recent research highlights that compounds such as fucoxanthin (a carotenoid), fucosterol (a sterol), fucoidan (a polysaccharide), alginate, and dietary fiber found in U. pinnatifida possess significant potential for developing treatments for conditions including goitre, urinary diseases, scrofula, dropsy, stomach ailments, and hemorrhoids. Moreover, these compounds exhibit remarkable pharmacological properties, including immunomodulation, antitumor, antiviral, antioxidant, antidiabetic, anti-inflammatory, anticoagulant, antithrombotic, and antibacterial activities, all with low toxicity and minimal side effects. Additionally, U. pinnatifida shows promise in the treatment or prevention of neurodegenerative diseases such as Alzheimer’s and Parkinson’s, as well as neuropsychiatric conditions like depression, supported by its antioxidant effects against oxidative stress and neuroprotective activities. Numerous in vitro and in vivo studies have confirmed that U. pinnatifida polysaccharides (UPPs), particularly fucoidans, exhibit significant biological activities. Thus, accumulating evidence positions UPPs as promising therapeutic agents for a variety of diseases. Full article
Show Figures

Figure 1

17 pages, 1609 KiB  
Article
Green Macroalgae Biomass Upcycling as a Sustainable Resource for Value-Added Applications
by Ana Terra de Medeiros Felipe, Alliny Samara Lopes de Lima, Emanuelle Maria de Oliveira Paiva, Roberto Bruno Lucena da Cunha, Addison Ribeiro de Almeida, Francisco Ayrton Senna Domingos Pinheiro, Leandro De Santis Ferreira, Marcia Regina da Silva Pedrini, Katia Nicolau Matsui and Roberta Targino Hoskin
Appl. Sci. 2025, 15(14), 7927; https://doi.org/10.3390/app15147927 - 16 Jul 2025
Viewed by 337
Abstract
As the global demand for eco-friendly food ingredients grows, marine macroalgae emerge as a valuable resource for multiple applications using a circular bioeconomy approach. In this study, green macroalgae Ulva flexuosa, naturally accumulated in aquaculture ponds as a residual biomass (by-product) of [...] Read more.
As the global demand for eco-friendly food ingredients grows, marine macroalgae emerge as a valuable resource for multiple applications using a circular bioeconomy approach. In this study, green macroalgae Ulva flexuosa, naturally accumulated in aquaculture ponds as a residual biomass (by-product) of shrimp and oyster farming, were investigated regarding their bioactivity, chemical composition, and antioxidant properties. The use of aquaculture by-products as raw materials not only reduces waste accumulation but also makes better use of natural resources and adds value to underutilized biomass, contributing to sustainable production systems. For this, a comprehensive approach including the evaluation of its composition and environmentally friendly extraction of bioactive compounds was conducted and discussed. Green macroalgae exhibited high fiber (37.63% dry weight, DW) and mineral (30.45% DW) contents. Among the identified compounds, palmitic acid and linoleic acid (ω-6) were identified in the highest concentrations. Pigment analysis revealed a high concentration of chlorophylls (73.95 mg/g) and carotenoids (17.75 mg/g). To evaluate the bioactivity of Ulva flexuosa, ultrasound-assisted solid–liquid extraction was performed using water, ethanol, and methanol. Methanolic extracts showed the highest flavonoid content (59.33 mg QE/100 g), while aqueous extracts had the highest total phenolic content (41.50 mg GAE/100 g). Ethanolic and methanolic extracts had the most potent DPPH scavenging activity, whereas aqueous and ethanolic extracts performed best at the ABTS assay. Overall, we show the upcycling of Ulva flexuosa, an underexplored aquaculture by-product, as a sustainable and sensible strategy for multiple value-added applications. Full article
(This article belongs to the Special Issue Advanced Food Processing Technologies and Approaches)
Show Figures

Figure 1

17 pages, 4334 KiB  
Article
Responses of Different Temperature-Acclimated Diatom Species, Smaller Thalassiosira pseudonana and Larger Thalassiosira rotula, to Increased Ambient Temperature
by Wei Zhao, Jihua Liu, Hui Song, Bokun Chen, Hongli Ji, Xue Yang and Gang Li
Microorganisms 2025, 13(7), 1652; https://doi.org/10.3390/microorganisms13071652 - 12 Jul 2025
Viewed by 352
Abstract
The acute rise in temperature due to marine heatwaves has a strong impact on marine phytoplankton. To determine whether these effects depend on ambient temperature and cell size, we acclimated two diatom species, smaller Thalassiosira pseudonana (Hasle and Heimdal, 1970) and larger Thalassiosira [...] Read more.
The acute rise in temperature due to marine heatwaves has a strong impact on marine phytoplankton. To determine whether these effects depend on ambient temperature and cell size, we acclimated two diatom species, smaller Thalassiosira pseudonana (Hasle and Heimdal, 1970) and larger Thalassiosira rotula (Meunier, 1910), at low (LAT), medium (MAT) and high ambient temperatures (HAT) and examined their physiochemical and transcriptional responses to temperature rise (AT + 6 °C). The specific growth rate (µ) of smaller cells was increased by 32% due to temperature rise at LAT, but decreased by 13% at HAT, with the stimulatory and inhibitory extent being ~50% less than that of larger cells. At LAT, chlorophyll a (Chl a), carotenoid (Car) and carbon (POC) contents were increased in smaller cells due to temperature rise, but were decreased in larger cells; at HAT, Chl a and Car were increased in both smaller and larger cells and POC was increased in only smaller cells. At LAT, temperature rise led to a disproportionate increase in photosynthesis and dark respiration, resulting in an increase in carbon utilization efficiency (CUE) in smaller cells and a decrease in CUE in larger cells; at HAT, there was a decrease in CUE in both the smaller and larger cells, but to a lesser extent in the former than in the latter. Our results also show that smaller cells cope with the acute temperature rise mainly by strengthening their enzyme activity (e.g., the antioxidant system) and conservatively regulating their metabolism, while larger cells mainly regulate their photosynthetic and central carbon metabolism. Moreover, larger cells can outperform their smaller counterparts when the temperature rise occurs at lower ambient temperature. Full article
(This article belongs to the Section Environmental Microbiology)
Show Figures

Figure 1

21 pages, 1170 KiB  
Review
Innovative Controlled-Release Systems for Fucoxanthin: Research Progress and Applications
by Shiyan Wang, Mengran Guo and Zhaohui Jin
Pharmaceutics 2025, 17(7), 889; https://doi.org/10.3390/pharmaceutics17070889 - 8 Jul 2025
Viewed by 412
Abstract
Fucoxanthin, a marine-derived carotenoid primarily sourced from algae and microalgae, holds significant potential for pharmaceutical and nutraceutical applications. However, its highly unsaturated structure presents critical challenges, including structural instability, poor aqueous solubility, and limited bioavailability. These restrict its application despite its abundant natural [...] Read more.
Fucoxanthin, a marine-derived carotenoid primarily sourced from algae and microalgae, holds significant potential for pharmaceutical and nutraceutical applications. However, its highly unsaturated structure presents critical challenges, including structural instability, poor aqueous solubility, and limited bioavailability. These restrict its application despite its abundant natural availability. Recently, various controlled-release nanotechnologies have been applied to improve the properties of fucoxanthin formulations. In this review, we systematically summarized the bioactivities of fucoxanthin and highlighted recent advancements in controlled-release systems designed to address the limitations. These controlled-release systems mainly use natural or synthetic organic materials and are employed to develop various formulations, including emulsions, nanoparticles, nanofibers, and nanostructured lipid carriers. In addition, the emerging bioinspired drug delivery systems, particularly extracellular vesicles and cell-membrane-derived biomimetic systems, have gained prominence for their immunocompatibility and ability to penetrate physiological barriers, which is regarded as superior encapsulation vesicles for fucoxanthin. Focusing on innovations, we discussed the state-of-the-art delivery systems for fucoxanthin encapsulation and emphasized their roles in improving biosafety, enhancing bioavailability, preserving bioactivity, and optimizing therapeutic performance across various disease models. These insights will provide promising guidance for engineering controlled-release platforms and will aim to unlock fucoxanthin’s full potential in drug development and dietary supplement formulations. Full article
Show Figures

Figure 1

16 pages, 905 KiB  
Review
From Sea to Relief: The Therapeutic Potential of Marine Algal Antioxidants in Pain Alleviation
by Mariola Belda-Antolí, Francisco A. Ros Bernal and Juan Vicente-Mampel
Mar. Drugs 2025, 23(7), 270; https://doi.org/10.3390/md23070270 - 27 Jun 2025
Viewed by 429
Abstract
Chronic pain affects approximately 20% of the global adult population, posing significant healthcare and economic challenges. Effective management requires addressing both biological and psychosocial factors, with emerging therapies such as antioxidants and marine algae offering promising new treatment avenues. Marine algae synthesize bioactive [...] Read more.
Chronic pain affects approximately 20% of the global adult population, posing significant healthcare and economic challenges. Effective management requires addressing both biological and psychosocial factors, with emerging therapies such as antioxidants and marine algae offering promising new treatment avenues. Marine algae synthesize bioactive compounds, including polyphenols, carotenoids, and sulfated polysaccharides, which modulate oxidative stress, inflammation, and neuroimmune signaling pathways implicated in pain. Both preclinical and clinical studies support their potential application in treating inflammatory, neuropathic, muscular, and chronic pain conditions. Notable constituents include polyphenols, carotenoids (such as fucoxanthin), vitamins, minerals, and sulfated polysaccharides. These compounds modulate oxidative stress and inflammatory pathways, particularly by reducing reactive oxygen species (ROS) and downregulating cytokines such as tumor necrosis factor-alpha (TNF-α) and interleukin-6 (IL-6). Brown and red algae produce phlorotannins and fucoidans that alleviate pain and inflammation in preclinical models. Carotenoids like fucoxanthin demonstrate neuroprotective effects by influencing autophagy and inflammatory gene expression. Algal-derived vitamins (C and E) and minerals (magnesium, selenium, and zinc) contribute to immune regulation and pain modulation. Additionally, sulfated polysaccharides suppress microglial activation in the central nervous system (CNS). Marine algae represent a promising natural source of bioactive compounds with potential applications in pain management. Although current evidence, primarily derived from preclinical studies, indicates beneficial effects in various pain models, further research is necessary to confirm their efficacy, safety, and mechanisms in human populations. These findings advocate for the continued exploration of marine algae as complementary agents in future therapeutic strategies. Full article
Show Figures

Figure 1

15 pages, 3613 KiB  
Article
Ecophysiological and Biochemical Responses of Lessonia spicata to Solar Eclipse-Induced Light Deprivation
by Paula S. M. Celis-Plá, Camilo E. Navarrete, Andrés Trabal, Pablo A. Castro-Varela, Félix L. Figueroa, Macarena Troncoso and Claudio A. Sáez
Plants 2025, 14(12), 1810; https://doi.org/10.3390/plants14121810 - 12 Jun 2025
Viewed by 480
Abstract
Light variability is a key environmental stressor influencing the physiology and productivity of marine macroalgae. This study examined the ecophysiological and biochemical responses of Lessonia spicata (Ochrophyta) during a natural light deprivation event caused by a solar eclipse. We measured the in vivo [...] Read more.
Light variability is a key environmental stressor influencing the physiology and productivity of marine macroalgae. This study examined the ecophysiological and biochemical responses of Lessonia spicata (Ochrophyta) during a natural light deprivation event caused by a solar eclipse. We measured the in vivo chlorophyll a (Chla) fluorescence, photoinhibition, and photosynthetic capacity, along with the pigment content, phenolic compound accumulation, and antioxidant capacity, to evaluate short-term photosynthetic adjustments. Dark-adapted conditions during the eclipse peak led to reduced photosynthetic and biochemical activity, while post-eclipse recovery involved the increased accumulation of photosynthetic pigments and photoprotective compounds. Carotenoids showed high antioxidant potential under eclipse exposure, contrasting with declines in chlorophyll content and productivity under pre-eclipse high irradiance. This study provides valuable insights into the rapid acclimation mechanisms of Lessonia spicata to transient light stress, highlighting its sensitivity and resilience to sudden shifts in solar irradiance. These findings contribute to the broader field of marine macroalgal photobiology and stress physiology, enhancing our understanding of how intertidal brown algae adapt to dynamic environmental conditions. Full article
(This article belongs to the Special Issue Marine Macrophytes Responses to Global Change)
Show Figures

Graphical abstract

15 pages, 823 KiB  
Article
Research on the Influence of Orthogonal Design Optimized Elicitor Combinations on Fucoxanthin Accumulation in Phaeodactylum tricornutum and Its Expression Regulation
by Han Yang, Yifu Gong, Boyue Liu, Yuru Chen, Huan Qin, Heyu Wang and Hao Liu
Mar. Drugs 2025, 23(6), 244; https://doi.org/10.3390/md23060244 - 9 Jun 2025
Viewed by 522
Abstract
Fucoxanthin, a carotenoid with notable pharmaceutical potential, has attracted significant attention due to its efficient accumulation in marine microalgae and the importance of optimizing its induction conditions. In this study, Phaeodactylum tricornutum was employed as a model organism to screen optimal conditions for [...] Read more.
Fucoxanthin, a carotenoid with notable pharmaceutical potential, has attracted significant attention due to its efficient accumulation in marine microalgae and the importance of optimizing its induction conditions. In this study, Phaeodactylum tricornutum was employed as a model organism to screen optimal conditions for fucoxanthin accumulation using a three-factor, four-level orthogonal design. Furthermore, the underlying mechanisms related to photosynthetic physiology and gene regulation were explored. The results revealed that both glycine (Gly) and light intensity significantly enhanced fucoxanthin content (p < 0.05). The optimal condition (Combination C: 0.50 g L−1 Gly, 36 μmol photons·m−2·s−1, 12 h light/12 h dark) yielded a fucoxanthin content of 0.87 μg g−1, representing a 35% increase compared to the control. Meanwhile, Combination p (0.50 g L−1 Gly, 36 μmol photons·m−2·s−1, 24 h light/0 h dark) significantly improved cell density (5.11 × 106 cells mL−1; +18%) and fucoxanthin yield (4.10 μg L−1; +47%). Analysis of photosynthetic parameters demonstrated that the non-photochemical quenching coefficient (NPQ) was suppressed. Gene expression profiling showed that Combination C upregulated photosynthetic genes (psbA, rbcL, rbcS) by up to 2.36-fold, while Combination P notably upregulated fcpb (7.59-fold), crtiso, and pds. Principal component analysis identified that rbcS and pds are key regulatory genes. These findings demonstrate that Gly, light intensity, and photoperiod synergistically regulate the expression of genes involved in photosynthesis and carotenoid biosynthesis, thereby promoting fucoxanthin accumulation. This work provides valuable insights and a theoretical basis for optimizing fucoxanthin production in support of marine drug development. Full article
(This article belongs to the Special Issue Algal Cultivation for Obtaining High-Value Products, 2nd Edition)
Show Figures

Figure 1

18 pages, 2566 KiB  
Article
Potential of Natural Sheep Casings Waste as a Sole Nitrogen Source for the Marine Microalga Scenedesmus rubescens MDP19 Growth and Lipid Production
by Sanaa Ouzakar, Nadia Skali Senhaji, Francesca Rigano, Cinzia Cafarella, Francesco Cacciola, Luigi Mondello and Jamal Abrini
Recycling 2025, 10(3), 109; https://doi.org/10.3390/recycling10030109 - 1 Jun 2025
Viewed by 1042
Abstract
The meat industry is one of the main sources of organic waste in the food processing sector. Due to their high content of biodegradable organic matter, these wastes represent a potentially valuable resource for the development of recycling and valorization processes, particularly with [...] Read more.
The meat industry is one of the main sources of organic waste in the food processing sector. Due to their high content of biodegradable organic matter, these wastes represent a potentially valuable resource for the development of recycling and valorization processes, particularly with regard to the circular economy and environmental sustainability. The present study aimed at assessing the potential of natural sheep casings waste (NSCW) as a source of nitrogen for promoting the growth and lipid production of Scenedesmus rubescens MDP19, a marine microalga isolated from the Mediterranean coastline of northern Morocco. For this purpose, we evaluated the effects of different NSCW concentrations (0.25–5 g L−1) on the microalga growth, its ability to utilize organic waste components (proteins, amino acids, and carbohydrates) as nutrients, and its efficiency in eliminating nitrogen and phosphorus. Lipid and pigment contents were determined using colorimetric methods, and their composition was analyzed by high-performance liquid chromatography coupled with atmospheric pressure chemical ionization mass spectrometry (HPLC-APCI-MS/MS). The results showed that S. rubescens MDP19 achieved the highest biomass production of 1.737 g L−1 at an NSCW concentration of 5 g L−1. This strain removed 33.70–47.63% of protein, 71.84–87.62% of amino acids, 41.9–92.97% of carbohydrates, 59.72–99.30% of nitrogen, and 80.74–99.10% of phosphorus. Furthermore, S. rubescens MDP19 showed a significantly enhanced lipid content (68.11%) at an NSCW concentration of 0.5 g L−1. At this concentration, the lipid composition of S. rubescens MDP19 was particularly complex, including monounsaturated and polyunsaturated fatty acids, digalactosyldiacylglycerols, sulfoquinovosyldiacylglycerols, phosphatidylglycerols, and acylglycerols. The pigment profile includes neoxanthin, canthaxanthin, lutein, chlorophyll a, geranylgeranyl chlorophyll a, chlorophyllide b, hydrochlorophyllide b, and pheophytin a. These results indicate that natural sheep casings waste represents a promising source of nitrogen, reducing the need for nutrient supplementation in microalgae production. This approach not only offers a sustainable and economical alternative for optimizing microalgae cultivation but also contributes to the valorization of organic waste, thus supporting more ecological and responsible practices. Full article
(This article belongs to the Topic The Role of Microorganisms in Waste Treatment)
Show Figures

Figure 1

27 pages, 362 KiB  
Review
Applications of Bioactive Compounds from Marine Microalgae in Health, Cosmetics, and Functional Foods
by José A. M. Prates
Appl. Sci. 2025, 15(11), 6144; https://doi.org/10.3390/app15116144 - 29 May 2025
Viewed by 1127
Abstract
Marine microalgae have emerged as promising biofactories for the sustainable production of high-value bioactive compounds with significant applications in human health, cosmetics, and functional foods. This review offers a comprehensive overview of the primary classes of bioactives synthesised by marine microalgae, including polyunsaturated [...] Read more.
Marine microalgae have emerged as promising biofactories for the sustainable production of high-value bioactive compounds with significant applications in human health, cosmetics, and functional foods. This review offers a comprehensive overview of the primary classes of bioactives synthesised by marine microalgae, including polyunsaturated fatty acids, carotenoids, phycobiliproteins, peptides, sterols, polysaccharides, phenolic compounds, vitamins, mycosporine-like amino acids, and alkaloids. These compounds demonstrate diverse biological activities, such as antioxidant, anti-inflammatory, antimicrobial, anticancer, immunomodulatory, and photoprotective effects, increasingly validated through in vitro, and clinical studies. Their mechanisms of action and roles in disease prevention and wellness promotion are examined in detail, with an emphasis on pharmaceutical (e.g., cardiovascular, neuroprotective), cosmetic (e.g., anti-ageing, UV protection), and nutraceutical (e.g., metabolic and immune-enhancing) applications. The review also addresses critical challenges in strain selection, cultivation technologies, downstream processing, product standardisation, and regulatory approval. Simultaneously, emerging opportunities driven by synthetic biology, omics integration, and circular biorefinery approaches are transforming marine microalgae into precise platforms for next-generation bioproducts. By summarising current knowledge and future directions, this work underscores the essential role of marine microalgae in advancing the blue bioeconomy and tackling global sustainability challenges. Full article
(This article belongs to the Special Issue Marine-Derived Bioactive Compounds and Marine Biotechnology)
21 pages, 1684 KiB  
Review
Marine-Derived Astaxanthin: Molecular Mechanisms, Biomedical Applications, and Roles in Stem Cell Biology
by Aretha Rambaldi, Francesca Paris, Pasquale Marrazzo, Roberta Costa, Stefano Ratti and Francesco Alviano
Mar. Drugs 2025, 23(6), 235; https://doi.org/10.3390/md23060235 - 29 May 2025
Viewed by 891
Abstract
Astaxanthin (ASX) is a xanthophyll carotenoid mainly derived from marine microalgae such as Haematococcus pluvialis and Chlorella zofingiensis, as well as the yeast Phaffia rhodozyma. Its chemical nature structure, rich in conjugated double bonds, carbonyl, and hydroxyl groups, confers potent antioxidant [...] Read more.
Astaxanthin (ASX) is a xanthophyll carotenoid mainly derived from marine microalgae such as Haematococcus pluvialis and Chlorella zofingiensis, as well as the yeast Phaffia rhodozyma. Its chemical nature structure, rich in conjugated double bonds, carbonyl, and hydroxyl groups, confers potent antioxidant and anti-inflammatory properties. ASX modulates oxidative stress via the PI3K/Akt-Nrf2 pathway and suppresses NF-κB-mediated inflammatory responses, reducing cytokine levels such as TNF-α, IL-6, and iNOS. ASX exerts dual apoptotic effects, cytoprotective in non-transformed cells and pro-apoptotic in cancer cells through p53 activation. Sustainable extraction techniques, especially supercritical CO2, have improved its industrial applicability. Recent findings highlight ASX’s role in stem cell biology, enhancing proliferation, supporting lineage-specific differentiation, and protecting against oxidative and inflammatory damage, which is a crucial issue for regenerative medicine applications. These multifaceted molecular effects support ASX’s therapeutic potential in chronic diseases, including diabetes, cardiovascular pathologies, and cancer. This review outlines ASX’s natural sources, extraction methods, and biological mechanisms, emphasizing its application in oxidative stress- and inflammation-related conditions. Full article
(This article belongs to the Special Issue Recent Advances in Marine-Derived Pigments)
Show Figures

Figure 1

15 pages, 1725 KiB  
Review
Marine-Derived Antioxidants: A Comprehensive Review of Their Therapeutic Potential in Oxidative Stress-Associated Diseases
by Ruiqiu Zhang, Yuke Ren, Tianqi Ren, Yue Yu, Bo Li and Xiaobing Zhou
Mar. Drugs 2025, 23(6), 223; https://doi.org/10.3390/md23060223 - 22 May 2025
Cited by 1 | Viewed by 1226
Abstract
Oxidative stress is a critical factor contributing to the pathogenesis of numerous diseases, including cardiovascular disorders, diabetes, and neurodegenerative conditions. In recent years, marine-derived antioxidants have emerged as promising therapeutic agents due to their unique biological activities and diverse sources. This comprehensive review [...] Read more.
Oxidative stress is a critical factor contributing to the pathogenesis of numerous diseases, including cardiovascular disorders, diabetes, and neurodegenerative conditions. In recent years, marine-derived antioxidants have emerged as promising therapeutic agents due to their unique biological activities and diverse sources. This comprehensive review explores the therapeutic potential of various marine antioxidants in mitigating oxidative stress-associated diseases. Marine organisms are rich in bioactive compounds, such as polysaccharides, polyphenols, carotenoids, peptides, and vitamins, which exhibit potent antioxidant and free radical scavenging abilities. These compounds have been shown to effectively inhibit oxidative reactions, repair oxidative damage, and enhance the body’s antioxidant defense mechanisms. For instance, marine polysaccharides and their derivatives can scavenge reactive oxygen species (ROS), protect neurons from oxidative damage, and alleviate inflammation in neurodegenerative diseases like Alzheimer’s and Parkinson’s diseases. Similarly, marine unsaturated fatty acids, such as omega-3 polyunsaturated fatty acids (PUFAs), have been found to reduce cardiovascular risks by lowering serum triglyceride levels and improving vascular endothelial function. Additionally, marine-derived superoxide dismutase (SOD) plays a crucial role in neutralizing ROS, thereby offering protection against oxidative stress in various diseases. Despite these promising findings, challenges remain in the field, including the need for improved extraction and purification technologies, more comprehensive activity evaluation systems, and further research into the safety and bioavailability of these compounds. This review provides a detailed overview of the current research status, highlighting the types, structural characteristics, antioxidant activities, and mechanisms of action of marine antioxidants. It also identifies key areas for future research and development, aiming to harness the full potential of marine-derived antioxidants in the prevention and treatment of oxidative stress-related diseases. Full article
(This article belongs to the Special Issue Marine Anti-inflammatory Agents )
Show Figures

Figure 1

18 pages, 12290 KiB  
Article
Structural Pattern Analysis in Patella vulgata Shells Using Raman Imaging
by María Gabriela Fernández-Manteca, Borja García García, Celia Gómez-Galdós, Jesús Mirapeix, Rosa Arniz-Mateos, Asier García-Escárzaga, Igor Gutiérrez-Zugasti, José Francisco Algorri, José Miguel López-Higuera, Alain A. Ocampo-Sosa, Luis Rodríguez-Cobo and Adolfo Cobo
Appl. Sci. 2025, 15(9), 5180; https://doi.org/10.3390/app15095180 - 7 May 2025
Cited by 1 | Viewed by 648
Abstract
Patella vulgata shells preserve geochemical and structural variations that can provide insights into past environmental conditions. Their composition, primarily calcium carbonate with organic residues from the biomineralization process, is influenced by external factors, such as sea surface temperature. Raman spectroscopy has emerged as [...] Read more.
Patella vulgata shells preserve geochemical and structural variations that can provide insights into past environmental conditions. Their composition, primarily calcium carbonate with organic residues from the biomineralization process, is influenced by external factors, such as sea surface temperature. Raman spectroscopy has emerged as a rapid, non-destructive tool for studying biogenic carbonates, enabling the identification of crystalline phases, organic components, and ion distribution. In this study, Raman imaging was applied to six shell sections of P. vulgata live-collected from Langre Beach in Cantabria, Spain. Spectral data were acquired using a Raman probe with a 532 nm excitation laser, providing high-resolution mapping of structural and compositional features. The analysis revealed spatial variations in mineralogy, organic matrix distribution, and ion incorporation in the calcium carbonate lattice, suggesting patterns originating during shell formation. Notably, the results suggest a consistent relationship between the organic and mineral components of the shells, with carotenoid distribution and carbonate ion substitution in the calcium carbonate lattice following similar growth patterns. These findings highlight the potential of Raman spectroscopy for studying biomineralization processes and the environmental records preserved in marine mollusk shells. Full article
(This article belongs to the Special Issue Novel Laser-Based Spectroscopic Techniques and Applications)
Show Figures

Figure 1

43 pages, 3187 KiB  
Review
Marine-Derived Bioactive Compounds: A Promising Strategy for Ameliorating Skeletal Muscle Dysfunction in COPD
by Meiling Jiang, Peijun Li, Xiaoyu Han, Linhong Jiang, Lihua Han, Qinglan He, Chen Yang, Zhichao Sun, Yingqi Wang, Yuanyuan Cao, Xiaodan Liu and Weibing Wu
Mar. Drugs 2025, 23(4), 158; https://doi.org/10.3390/md23040158 - 4 Apr 2025
Cited by 1 | Viewed by 1117
Abstract
Chronic obstructive pulmonary disease (COPD) is frequently accompanied by skeletal muscle dysfunction, a critical and severe extrapulmonary complication. This dysfunction contributes to reduced exercise capacity, increased frequency of acute exacerbations, and elevated mortality, serving as an independent risk factor for poor prognosis in [...] Read more.
Chronic obstructive pulmonary disease (COPD) is frequently accompanied by skeletal muscle dysfunction, a critical and severe extrapulmonary complication. This dysfunction contributes to reduced exercise capacity, increased frequency of acute exacerbations, and elevated mortality, serving as an independent risk factor for poor prognosis in COPD patients. Owing to the unique physicochemical conditions of the marine environment, marine-derived bioactive compounds exhibit potent anti-inflammatory and antioxidant properties, demonstrating therapeutic potential for ameliorating COPD skeletal muscle dysfunction. This review summarizes marine-derived bioactive compounds with promising efficacy against skeletal muscle dysfunction in COPD, including polysaccharides, lipids, polyphenols, peptides, and carotenoids. The discussed compounds have shown bioactivities in promoting skeletal muscle health and suppressing muscle atrophy, thereby providing potential strategies for the prevention and treatment of COPD skeletal muscle dysfunction. These findings may expand the therapeutic strategies for managing COPD skeletal muscle dysfunction. Full article
Show Figures

Figure 1

9 pages, 2006 KiB  
Communication
Effect of Nrf2 Activators in Hepatitis B Virus-Infected Cells Under Oxidative Stress
by Junsei Taira, Takuya Kubo, Hiroya Nagano, Ryuji Tsuda, Takayuki Ogi, Kenji Nakashima and Tetsuro Suzuki
Mar. Drugs 2025, 23(4), 155; https://doi.org/10.3390/md23040155 - 3 Apr 2025
Viewed by 669
Abstract
The liver is an active metabolic site that generates high levels of reactive oxygen species (ROS). Oxidative stress has been implicated in the chronicity of hepatitis and hepatitis B virus (HBV) infection. This study aimed to determine the involvement of oxidative stress in [...] Read more.
The liver is an active metabolic site that generates high levels of reactive oxygen species (ROS). Oxidative stress has been implicated in the chronicity of hepatitis and hepatitis B virus (HBV) infection. This study aimed to determine the involvement of oxidative stress in HBV-infected cells and the efficacy of natural Nrf2 activators. The intracellular HBV pregenomic RNA copy number relative to total RNA was measured by RT-PCR, and various protein expressions associated with oxidative stress were analyzed by a Western blot analysis. The results showed that the Nrf2, HO-1, Akt, and Bcl-xL proteins were decreased by the continuous infection, indicating that HBV-positive cells were exposed to oxidative stress. The present study evaluated the anti-HBV infection effects of the Nrf2 activator fucoxanthin (Fx), a marine carotenoid from edible biological resources, including the comparative natural Nrf2 activator pteryxin (Ptx). These Nrf2 activators suppressed the HBV pregenomic RNA production in the HBV-infected cells, thus increasing the expression of the proteins of Nrf2 and HO-1. In the persistently infected cells transfected with the HBV genome, the Bcl-xL and Keap1 proteins, which contribute to suppressing the HBx protein involved in the HBV replication, were overexpressed. In particular, the activity of these protein expressions was marked at low concentrations of Fx. This suggests that natural Nrf2 activators may play a significant role in the HBV infection and could be a valuable source for further development through the functional utilization of food resources. Full article
(This article belongs to the Special Issue Marine-Derived Bioactive Substances and Their Mechanisms of Action)
Show Figures

Graphical abstract

Back to TopTop