Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (186)

Search Parameters:
Keywords = marinated fishery products

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 3216 KiB  
Article
Spatial Prediction and Environmental Response of Skipjack Tuna Resources from the Perspective of Geographic Similarity: A Case Study of Purse Seine Fisheries in the Western and Central Pacific
by Shuyang Feng, Xiaoming Yang, Menghao Li, Zhoujia Hua, Siquan Tian and Jiangfeng Zhu
J. Mar. Sci. Eng. 2025, 13(8), 1444; https://doi.org/10.3390/jmse13081444 - 29 Jul 2025
Viewed by 278
Abstract
Skipjack tuna constitutes a crucial fishery resource in the Western and Central Pacific Ocean (WCPO) purse seine fishery, with high economic value and exploitation potential. It also serves as an essential subject for studying the interaction between fishery resource dynamics and marine ecosystems, [...] Read more.
Skipjack tuna constitutes a crucial fishery resource in the Western and Central Pacific Ocean (WCPO) purse seine fishery, with high economic value and exploitation potential. It also serves as an essential subject for studying the interaction between fishery resource dynamics and marine ecosystems, as its resource abundance is significantly influenced by marine environmental factors. Skipjack tuna can be categorized into unassociated schools and associated schools, with the latter being predominant. Overfishing of the associated schools can adversely affect population health and the ecological environment. In-depth exploration of the spatial distribution responses of these two fish schools to environmental variables is significant for the rational development and utilization of tuna resources and for enhancing the sustainability of fishery resources. In sparsely sampled and complex marine environments, geographic similarity methods effectively predict tuna resources by quantifying local fishing ground environmental similarities. This study introduces geographical similarity theory. This study focused on 1° × 1° fishery data (2004–2021) released by the Western and Central Pacific Fisheries Commission (WCPFC) combined with relevant marine environmental data. We employed Geographical Convergent Cross Mapping (GCCM) to explore significant environmental factors influencing catch and variations in causal intensity and employed a Geographically Optimal Similarity (GOS) model to predict the spatial distribution of catch for the two types of tuna schools. The research findings indicate that the following: (1) Sea surface temperature (SST), sea surface salinity (SSS), and net primary productivity (NPP) are key factors in GCCM model analysis, significantly influencing the catch of two fish schools. (2) The GOS model exhibits higher prediction accuracy and stability compared to the Generalized Additive Model (GAM) and the Basic Configuration Similarity (BCS) model. R2 values reaching 0.656 and 0.649 for the two types of schools, respectively, suggest that the geographical similarity method has certain applicability and application potential in the spatial prediction of fishery resources. (3) Uncertainty analysis revealed more stable predictions for unassociated schools, with 72.65% of the results falling within the low-uncertainty range (0.00–0.25), compared to 52.65% for associated schools. This study, based on geographical similarity theory, elucidates differential spatial responses of distinct schools to environmental factors and provides a novel approach for fishing ground prediction. It also provides a scientific basis for the dynamic assessment and rational exploitation and utilization of skipjack tuna resources in the Pacific Ocean. Full article
(This article belongs to the Section Marine Biology)
Show Figures

Figure 1

81 pages, 6368 KiB  
Review
A Comprehensive Review on the Valorization of Bioactives from Marine Animal By-Products for Health-Promoting, Biofunctional Cosmetics
by Sofia Neonilli A. Papadopoulou, Theodora Adamantidi, Dimitrios Kranas, Paschalis Cholidis, Chryssa Anastasiadou and Alexandros Tsoupras
Mar. Drugs 2025, 23(8), 299; https://doi.org/10.3390/md23080299 - 26 Jul 2025
Viewed by 386
Abstract
In recent decades, there has been a marked surge in the development of marine-by-product-derived ingredients for cosmetic applications, driven by the increasing demand for natural, sustainable, and high-performance formulations. Marine animal by-products, particularly those from fish, crustaceans, and mollusks, represent an abundant yet [...] Read more.
In recent decades, there has been a marked surge in the development of marine-by-product-derived ingredients for cosmetic applications, driven by the increasing demand for natural, sustainable, and high-performance formulations. Marine animal by-products, particularly those from fish, crustaceans, and mollusks, represent an abundant yet underutilized source of bioactive compounds with notable potential in cosmeceutical innovation. Generated as waste from the fishery and seafood-processing industries, these materials are rich in valuable bioactives, such as chitosan, collagen, peptides, amino acids, fatty acids, polar lipids, lipid-soluble vitamins, carotenoids, pigments, phenolics, and mineral-based substrates like hydroxyapatite. Marine by-product bioactives can be isolated via several extraction methods, and most importantly, green ones. These compounds exhibit a broad spectrum of skin-health-promoting effects, including antioxidant, anti-aging, anti-inflammatory, antitumor, anti-wrinkle, anti-hyperpigmentation, and wound-healing properties. Moreover, applications extend beyond skincare to include hair, nail, and oral care. The present review provides a comprehensive analysis of bioactives obtained from marine mollusks, crustaceans, and fish by-products, emphasizing modern extraction technologies with a focus on green and sustainable approaches. It further explores their mechanisms of action and documented efficacy in cosmetic formulations. Finally, the review outlines current limitations and offers future perspectives for the industrial valorization of marine by-products in functional and environmentally-conscious cosmetic development. Full article
Show Figures

Figure 1

49 pages, 11337 KiB  
Review
A Systematic Review of Marine Habitat Mapping in the Central-Eastern Atlantic Archipelagos: Methodologies, Current Trends, and Knowledge Gaps
by Marcial Cosme De Esteban, Fernando Tuya, Ricardo Haroun and Francisco Otero-Ferrer
Remote Sens. 2025, 17(13), 2331; https://doi.org/10.3390/rs17132331 - 7 Jul 2025
Viewed by 474
Abstract
Mapping marine habitats is fundamental for biodiversity conservation and ecosystem-based management in oceanic regions under increasing anthropogenic and climatic pressures. In the context of global initiatives—such as marine protected area expansion and international agreements—habitat mapping has become mandatory for regional and global conservation [...] Read more.
Mapping marine habitats is fundamental for biodiversity conservation and ecosystem-based management in oceanic regions under increasing anthropogenic and climatic pressures. In the context of global initiatives—such as marine protected area expansion and international agreements—habitat mapping has become mandatory for regional and global conservation policies. It provides spatial data to delineate essential habitats, support connectivity analyses, and assess pressures, enabling ecosystem-based marine spatial planning aligned with EU directives (2008/56/EC; 2014/89/EU). Beyond biodiversity, macrophytes, rhodolith beds, and coral reefs deliver key ecosystem services—carbon sequestration, coastal protection, nursery functions, and fisheries support—essential to local socioeconomies. This systematic review (PRISMA guidelines) examined 69 peer-reviewed studies across Central-Eastern Atlantic archipelagos (Macaronesia: the Azores, Madeira, the Canaries, and Cabo Verde) and the Mid-Atlantic Ridge. We identified knowledge gaps, methodological trends, and key challenges, emphasizing the integration of cartographic, ecological, and technological approaches. Although methodologies diversified over time, the lack of survey standardization, limited ground truthing, and heterogeneous datasets constrained the production of high-resolution bionomic maps. Regional disparities persist in technology access and habitat coverage. The Azores showed the highest species richness (393), dominated by acoustic mapping in corals. Madeira was most advanced in the remote mapping of rhodoliths; the Canaries focused on shallow macrophytes with direct mapping; and Cabo Verde remains underrepresented. Harmonized protocols and regional cooperation are needed to improve data interoperability and predictive modeling. Full article
Show Figures

Graphical abstract

28 pages, 20870 KiB  
Article
Reproductive Life-History Traits of Two Aggregating Reef-Associated Groupers (Red Hind and Yellowfin Grouper) in Marine Protected Areas of Southern Gulf of Mexico
by Thierry Brulé, Doralice Caballero-Arango, Virginia Nóh-Quiñones, Armin Tuz-Sulub, Enrique Puerto-Novelo, Teresa Colás-Marrufo and Ximena Renán
Diversity 2025, 17(7), 452; https://doi.org/10.3390/d17070452 - 26 Jun 2025
Viewed by 1358
Abstract
Overexploitation is the main anthropogenic threat to groupers (Epinephelidae) that aggregate to spawn. Fishing negatively affects their reproductive success and indirectly harms fishery economic yield. In the southern Gulf of Mexico, grouper catches, which include thirteen species, are in decline. A lack of [...] Read more.
Overexploitation is the main anthropogenic threat to groupers (Epinephelidae) that aggregate to spawn. Fishing negatively affects their reproductive success and indirectly harms fishery economic yield. In the southern Gulf of Mexico, grouper catches, which include thirteen species, are in decline. A lack of biological information on each exploited species prevents optimising fishery management. Using histological examination of the gonads, the reproductive traits of red hind Epinephelus guttatus and yellowfin grouper Mycteroperca venenosa were studied from January 2008 to October 2009. Collections were made at two reef systems (Alacranes Reef and Bajos del Norte) on the continental shelf of the Yucatan Peninsula, Mexico, where these species form transient spawning aggregations. The results confirmed that previously identified spawning aggregation sites at both reefs constitute productive seasonal and perennial “hotspots” for both groupers; they spawn annually between January and April. Females of these protogynous hermaphroditic species exhibit a reproductive strategy characterised by asynchronous ovarian development organisation and ovulation. Sex ratios and maximum sizes at each reef suggest that populations of both groupers had a good conservation status as of the late 2000s. Both reefs are now marine protected areas, and a discussion is made of the consequent possible benefits to grouper population conservation and sustainability in the southern Gulf of Mexico. Full article
Show Figures

Graphical abstract

17 pages, 1219 KiB  
Article
Research on Carbon Sink Effect of Marine Shellfish and Algae in China
by Peng Zheng, Tianrang Chu, Wei Zhao and Yongquan Liu
Fishes 2025, 10(6), 270; https://doi.org/10.3390/fishes10060270 - 4 Jun 2025
Viewed by 450
Abstract
Global warming has increasingly become a widespread concern of the international community, and one of the key approaches to achieving carbon neutrality goals lies in the carbon sequestration capacity of oceans. Therefore, scientifically and accurately measuring the carbon sink capacity of marine fisheries [...] Read more.
Global warming has increasingly become a widespread concern of the international community, and one of the key approaches to achieving carbon neutrality goals lies in the carbon sequestration capacity of oceans. Therefore, scientifically and accurately measuring the carbon sink capacity of marine fisheries and studying its spatial effects are particularly crucial for mitigating global climate change. Marine fisheries encompass categories such as fish, shellfish, algae, and crustaceans. Given that marine fisheries-based carbon sinks are non-feed fisheries, with cultivated shellfish and algae being highly representative, this paper primarily focuses on the carbon sink capacity of shellfish and algae as the main assessment criteria for marine fisheries carbon sinks, aiming to apply this research to other countries worldwide to assist in addressing global warming. Thus, based on panel data of shellfish and algae cultivation in nine coastal provinces of China from 2007 to 2021, this paper employs the “removable carbon sink” model to calculate the carbon sink capacity of Chinese marine shellfish and algae aquaculture industry and utilizes the spatial Durbin model to analyze its spatial effects. The research findings are as follows: (1) The spatial distribution of carbon sink capacity in China’s marine shellfish and algae is uneven. (2) Moran’s Index indicates that the carbon sink capacity of marine shellfish and algae exhibits positive spatial correlation, but the degree of spatial agglomeration is unstable. Fujian Province has the highest average carbon sink capacity at 446,451.21 tons, while regions such as Hainan, Hebei, and Jiangsu have relatively lower average carbon sink capacities, with Hainan Province’s being only 3627.57 tons, sufficiently demonstrating the characteristic of uneven spatial distribution. (3) Through decomposition using the spatial Durbin model, it is found that the direct effects of marine shellfish and algae aquaculture production, technological input, technological promotion, and fishery disaster situations are positive, with the result for marine shellfish and algae aquaculture production being 1.617, significantly positive at the 1% level. The result for labor input is −0.847, with a negative direct effect. From the perspective of indirect effects, the indirect effects of marine shellfish and algae aquaculture production, technological input, and technological promotion are positive, with aquaculture production at 1.185, still significantly positive at the 1% level. The result for labor input is −2.140, with a negative indirect effect. These research conclusions provide important references for the formulation of global marine carbon sink-related policies, helping countries optimize resource allocation, strengthen regional collaboration, and increase investment in science and technology. Consequently, they can promote the sustainable development of marine shellfish and algae aquaculture industries, and contribute to enhancing marine carbon sink capacity and achieving global carbon neutrality goals. Full article
(This article belongs to the Special Issue Fisheries Monitoring and Management)
Show Figures

Figure 1

21 pages, 2528 KiB  
Article
Long-Term Variability of Phytoplankton Size Classes in the Littoral Seas of Korea Using Deep Neural Networks and Satellite Data
by Hyo-Keun Jang, Changsin Kim, Seok-Hyun Youn, Jae-Joong Kang, Hwaeun Jung and Huitae Joo
J. Mar. Sci. Eng. 2025, 13(6), 1064; https://doi.org/10.3390/jmse13061064 - 28 May 2025
Viewed by 592
Abstract
Understanding the dynamics of phytoplankton size classes (PSCs), highly sensitive to environmental conditions in marine ecosystems, is crucial for comprehending variations in primary production and biogeochemical processes. Over the past decades, the littoral seas of Korea have undergone significant environmental shifts, yet long-term [...] Read more.
Understanding the dynamics of phytoplankton size classes (PSCs), highly sensitive to environmental conditions in marine ecosystems, is crucial for comprehending variations in primary production and biogeochemical processes. Over the past decades, the littoral seas of Korea have undergone significant environmental shifts, yet long-term studies on PSC distribution remain limited. Employing a regionally developed deep neural network model and 20 years (2003–2022) of satellite ocean color data, we assessed spatiotemporal variability in dominant PSCs in the Yellow Sea (YS), South Sea of Korea (SS), and East/Japan Sea (EJS). Micro-size phytoplankton dominated turbid nearshore waters of the YS and western SS year-round, while nano-size phytoplankton were seasonally prevalent in the central YS and EJS. Pico-size phytoplankton exhibited strong summer dominance under warm, stratified, nutrient-depleted conditions, showing a sustained long-term expansion across all regions, particularly in the southwestern EJS. This expansion was closely linked to rising sea surface temperatures and changes in nutrient stoichiometry. The increasing dominance of smaller phytoplankton may reduce primary production, alter food web structure, and ultimately diminish fishery productivity. These findings provide new insight into climate-driven ecological shifts in marginal seas and underscore the need for integrated long-term monitoring to anticipate future ecosystem responses in a rapidly warming ocean. Full article
(This article belongs to the Section Marine Ecology)
Show Figures

Figure 1

12 pages, 1250 KiB  
Article
Social Media Reveals Potential Threat of Crayfish Trap to Birds
by Chao Gong, Wei Hu, Taiyu Chen, Zhenqi Wang and Changhu Lu
Diversity 2025, 17(6), 374; https://doi.org/10.3390/d17060374 - 24 May 2025
Viewed by 320
Abstract
Fishery bycatch is a significant threat to biodiversity, with birds being frequent casualties. Current research mainly focuses on seabird bycatch in large-scale marine fisheries, while bird bycatch in inland freshwater areas remains poorly understood. Crayfish traps are extensively used in China’s freshwater environments, [...] Read more.
Fishery bycatch is a significant threat to biodiversity, with birds being frequent casualties. Current research mainly focuses on seabird bycatch in large-scale marine fisheries, while bird bycatch in inland freshwater areas remains poorly understood. Crayfish traps are extensively used in China’s freshwater environments, but their ecological impacts on birds are overlooked due to monitoring difficulties. Through iEcology approaches, we collected and analyzed 146 bird bycatch incidents in crayfish traps from Chinese social media platforms between September 2010 and December 2023. The results revealed 420 identified birds from 62 species (11 orders, 24 families), predominantly omnivorous and carnivorous, while 106 individuals could not be identified. Cases were concentrated in the middle and lower reaches of the Yangtze River, showing significant positive correlations with water area ratio and aquaculture production (p < 0.001). During fishing seasons, the number of cases, species, and individuals were significantly higher (p < 0.001), though mortality rates increased in off seasons. The middle and lower reaches of the Yangtze River are main production areas of red swamp crayfish (Procambarus clarkii) and Chinese mitten crab (Eriocheir sinensis), where intensive use of crayfish traps may increase bird bycatch risk. Despite existing regulations, systematic supervision is needed to minimize ecosystem impacts. Full article
(This article belongs to the Section Biodiversity Conservation)
Show Figures

Figure 1

19 pages, 3848 KiB  
Article
Assessment of Exploited Stock and Management Implications of Tiger Tooth Croaker (Otolithes ruber) in Coastal Waters of Makran, Pakistan
by Samroz Majeed, S M Nurul Amin, Asad Ullah Ali Muhammad and Sudheer Ahmed
Fishes 2025, 10(5), 238; https://doi.org/10.3390/fishes10050238 - 20 May 2025
Viewed by 1627
Abstract
Pakistan’s marine fishing industry is crucial to the country’s economy, generating employment opportunities and foreign revenue. It produces 80% of the country’s total fish production. Otolithes ruber is a commercially important fish on the Makran coast of Pakistan, contributing significantly to the region’s [...] Read more.
Pakistan’s marine fishing industry is crucial to the country’s economy, generating employment opportunities and foreign revenue. It produces 80% of the country’s total fish production. Otolithes ruber is a commercially important fish on the Makran coast of Pakistan, contributing significantly to the region’s croaker fisheries. This study is the first to apply three length-based approaches for assessing the stock status of O. ruber in the Makran coast: (1) TropFishR to estimate the mortality, growth parameters, and current exploitation status, reference points based on the yield per recruitment model, (2) the length-based Bayesian biomass method (LBB) to calculate stock biomass, and (3) the length-based spawning potential ratio (LBSPR) to estimate the spawning potential ratio. The length–weight relationship of Otolithes ruber was a positive allometric pattern (b = 3.28; R2 = 0.94). Growth parameters for Otolithes ruber were L = 55.47 cm, K = 0.50 year−1. The calculated total mortality rate (Z), natural mortality (M), and fishing mortality (F) were 2.27 year−1, 0.67 year−1, and 1.6 year−1, respectively. The exploitation rate (E) was 0.70, indicating severe overexploitation. The current length at first capture (Lc50) = 27.37 cm was lower than that at first maturity (Lm50) = 30.75 cm, indicating growth overfishing. The current spawning potential ratio (8%) was lower than the optimal value (40%), indicating recruitment overfishing. The current biomass, concerning virgin biomass B/Bo, was also 8%, resulting in a 92% stock decline. We recommend reducing the exploitation pressure by limiting the commercial catch to an optimum length range of 34.5–42.2 cm and reducing fishing pressure by 40% to ensure sustainable fishery management. Full article
Show Figures

Figure 1

39 pages, 2337 KiB  
Review
Overview of Patagonian Red Octopus (Enteroctopus megalocyathus) Fisheries in Chilean Regions and Their Food Safety Aspects
by Alessandro Truant, Federica Giacometti, Jorge Hernández, Viviana Espinoza, Ana Farías, Iker Uriarte, Cecilia Godoy, Riccardo Miotti Scapin, Leonardo Alberghini, Paolo Catellani and Valerio Giaccone
Animals 2025, 15(10), 1464; https://doi.org/10.3390/ani15101464 - 19 May 2025
Viewed by 780
Abstract
Artisanal fisheries in southern Chile rely heavily on the Patagonian red octopus (Enteroctopus megalocyathus) as a valuable resource, contributing significantly to local economies. This octopus species accounts for 25–40% of Chilean octopus landings. It is a merobenthic species, characterized by a [...] Read more.
Artisanal fisheries in southern Chile rely heavily on the Patagonian red octopus (Enteroctopus megalocyathus) as a valuable resource, contributing significantly to local economies. This octopus species accounts for 25–40% of Chilean octopus landings. It is a merobenthic species, characterized by a semelparous life cycle and a long brooding period, and it is distributed along the Pacific and Atlantic coasts of the southern tip of South America, inhabiting holes and crevices in rocky substrates. However, this fishery faces critical challenges to both its ecological sustainability and the food safety of octopus products. The primary fishing method, using hooks, poses a risk to reproductive capacity as it can capture brooding females. Food safety concerns arise from microbial contamination during pre- and post-harvest handling, bioaccumulation of toxins from algal blooms, and the presence of heavy metals in the marine environment. While evisceration effectively reduces the risk of consuming toxins and heavy metals, inadequate hygiene practices and insufficient ice usage throughout the production chain represent significant food safety risks. Chilean fishing Law No. 18892/1989 defines artisanal fishing and establishes territorial use rights in fisheries (TURFs) to promote sustainable extraction of benthic resources. Integrating training programs on post-harvest handling, hygiene practices, and food safety measures into the TURFs framework, along with targeted investments in infrastructure and technical assistance, is crucial to ensure the long-term sustainability of the E. megalocyathus fishery, protect consumer health, and maintain the economic viability and environmental sustainability of this vital resource for local communities. Full article
(This article belongs to the Section Veterinary Clinical Studies)
Show Figures

Figure 1

14 pages, 2308 KiB  
Brief Report
Pilot-Scale Cultivation of Seaweed (Undaria pinnatifida) Along an Offshore Wind Farm in Southwestern Korea
by Dongmun Choi, Hyung-Gon Lee, Yun-Hwan Jung, Dae-Won Lee, Jeonghoon Han, Ji-Yeon Hyeon and Young-Ung Choi
J. Mar. Sci. Eng. 2025, 13(5), 882; https://doi.org/10.3390/jmse13050882 - 29 Apr 2025
Viewed by 728
Abstract
Marine environments provide a unique opportunity to blend offshore wind energy production and marine fishery activities as complementary technologies. This study investigated the morphological characteristics (length and weight) and biomass yield of seaweed (Undaria pinnatifida) in a model marine environment with [...] Read more.
Marine environments provide a unique opportunity to blend offshore wind energy production and marine fishery activities as complementary technologies. This study investigated the morphological characteristics (length and weight) and biomass yield of seaweed (Undaria pinnatifida) in a model marine environment with mariculture within an offshore wind farm in southwestern Korea. The mean lengths in the first cultivation trials of U. pinnatifida sporophytes increased from 1.8 ± 0.1 cm in November 2021 to 120–170 cm in March 2022 (density, 39.8 plants m−1; final wet weight, 98.6–249.1 g (mean 146.8 ± 20.4 g, n = 20 ind.); yield 5842 g m−1). Further, for the second cultivation trial, the length of the sporophytes increased from 1.5 ± 0.1 cm in November 2021 to 120–150 cm in April 2022 (density, 49.3 plants m−1; final wet weight, 83.0–251.6 g (mean 155.7 ± 19.0 g; n = 20 ind.); yield, 7676 g m−1), and, owing to the increase in water temperature and light intensity due to seasonal changes around the offshore wind power farm, the second cultivation trials showed signs of chlorosis. Considering the environment, we judged seaweed growth to be normal. Therefore, when applying this model to grow U. pinnatifida, seasonal temperature changes, the purpose of the product, and the nutritional status of the open-sea area should be considered. These results may improve seaweed farming in offshore wind farms in the future. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

14 pages, 247 KiB  
Article
The Impact of Environmental Regulations on the Green Economic Development of China’s Marine Fisheries
by Chongxiu Jiang, Yunhang Du and Yao Wei
Water 2025, 17(9), 1300; https://doi.org/10.3390/w17091300 - 27 Apr 2025
Viewed by 449
Abstract
This study focuses on the green economic growth of marine fisheries and explores the relationship among environmental regulations (ERs), industrial structure (INS), and the green total factor productivity of marine fisheries (MGTFP). Against the backdrop of global climate change and increasing pressure on [...] Read more.
This study focuses on the green economic growth of marine fisheries and explores the relationship among environmental regulations (ERs), industrial structure (INS), and the green total factor productivity of marine fisheries (MGTFP). Against the backdrop of global climate change and increasing pressure on resources and the environment, a green fisheries economy has become key to achieving sustainable development. This study selects panel data from 11 coastal provinces and municipalities in China spanning from 2014 to 2023 and, through quantitative analysis, evaluates the implementation effects of ER policies on marine fisheries’ production methods, INS, and MGTFP. When measuring the MGTFP, this study innovatively incorporates fishery disaster economic losses as an undesirable output and employs the super-efficiency SBM-GML model for precise calculation. The results of the study showed that ERs was able to promote the increase in MGTFP, and the effect of REC was stronger. The mediating effect model suggests that industry structure mediates this process. The results of threshold effect analysis show that both ERC and ERM exhibit significant single-threshold effects. This study aims to provide empirical support and policy recommendations for the government to formulate more effective environmental protection policies and promote the transformation and upgrading of the marine fisheries sector, thereby fostering the green development of China’s marine fisheries. Full article
(This article belongs to the Special Issue Marine Bearing Capacity and Economic Growth)
23 pages, 1585 KiB  
Article
Effects of Climate Change on Korea’s Fisheries Production: An ARDL Approach
by Hoonseok Cho, Pilgyu Jung and Mingyeong Jeong
Fishes 2025, 10(4), 186; https://doi.org/10.3390/fishes10040186 - 18 Apr 2025
Viewed by 1039
Abstract
This study investigates the impact of rising sea surface temperature (SST), increasing carbon dioxide (CO2) emissions, and precipitation variability (PREC) on Korea’s coastal and offshore fisheries production (COFP) from 1993 to 2023 using an autoregressive distributed lag (ARDL) model. The results [...] Read more.
This study investigates the impact of rising sea surface temperature (SST), increasing carbon dioxide (CO2) emissions, and precipitation variability (PREC) on Korea’s coastal and offshore fisheries production (COFP) from 1993 to 2023 using an autoregressive distributed lag (ARDL) model. The results confirm a long-run cointegration relationship, where a 1% increase in SST, CO2, and PREC is associated with respective declines of 3.52%, 0.82%, and 0.34% in COFP, respectively, suggesting persistent negative effects of ocean warming, acidification, and hydrological variability on fisheries production. Robustness checks using Fully Modified Ordinary Least Squares (FMOLS) and Canonical Cointegrating Regression (CCR) validate the stability of the ARDL results. The short-run analysis reveals that past production levels significantly influence current COFP, while SST fluctuations exhibit delayed but economically meaningful effects. The error correction term (−0.75, p < 0.01) confirms a rapid adjustment toward equilibrium following short-term deviations. These findings underscore the necessity of climate-resilient fisheries management. Policy recommendations include adaptive harvest regulations, climate-integrated stock assessments, and enhanced international cooperation for transboundary fish stocks. Additionally, expanding Marine Protected Areas, promoting climate-resilient aquaculture, and strengthening stock enhancement programs through selective breeding and seed release of climate-adapted species are essential for sustaining fisheries under climate change. Full article
(This article belongs to the Special Issue Effects of Climate Change on Marine Fisheries)
Show Figures

Figure 1

26 pages, 14320 KiB  
Article
Bottom Temperature Effect on Growth of Multiple Demersal Fish Species in Flemish Cap, Northwest Atlantic
by Krerkkrai Songin, Fran Saborido-Rey and Graham J. Pierce
Animals 2025, 15(8), 1120; https://doi.org/10.3390/ani15081120 - 12 Apr 2025
Viewed by 453
Abstract
This study investigates the effects of warming water on growth in seven demersal fish species including Atlantic cod (Gadus morhua), American plaice (Hippoglossoides platessoides), Greenland halibut (Reinhardtius hippoglossoides), roughhead grenadier (Macrourus berglax) and three species [...] Read more.
This study investigates the effects of warming water on growth in seven demersal fish species including Atlantic cod (Gadus morhua), American plaice (Hippoglossoides platessoides), Greenland halibut (Reinhardtius hippoglossoides), roughhead grenadier (Macrourus berglax) and three species of redfish (Sebastes spp.) in the Northwest Atlantic and compares the changes in growth across species. Length-at-age data were collected from EU bottom trawl surveys from 1993 to 2018, and bottom temperature data were obtained from the Copernicus Marine Service. Generalised additive mixed models (GAMMs) were used to describe the temperature effects on growth. The analysis was carried out separately for males and females. Both sexes of all species except American plaice showed significant temperature effects on growth. To obtain the growth parameters, von Bertalanffy growth functions (VBGFs) were fitted to the predictions from best-fit GAMMs for all species and both sexes under five different bottom temperature scenarios (3, 3.5, 4, 4.5 and 5 °C). The predictions from all best-fit GAMMs were broadly similar in form to the fitted von Bertalanffy growth functions (R2 > 90%). Increased bottom temperature generally resulted in a decrease in the asymptotic length (L) and an increase in the growth rate (k). The species with the most dramatic increase in k over the temperature range of 3 °C to 5 °C was Atlantic cod, for which k increased from 0.05 to 0.13 year−1 in females and from 0.08 to 0.14 year−1 in males. The maximum length (Lmax), predicted by the VBGF at maximum age generally declined from 3 °C to 5 °C. The species with the most pronounced decline in Lmax was beaked redfish (S. mentella). An increase in the proportion of smaller individuals could impact population productivity and result in lower biomass available to fisheries. Uneven changes in fish growth in the warming ocean could also have wider ecological implications and alter the trophic landscape. Full article
(This article belongs to the Section Ecology and Conservation)
Show Figures

Figure 1

22 pages, 2056 KiB  
Article
The Impact of the Digital Economy on Sustainable Fisheries: Insights from Green Total Factor Productivity in China’s Coastal Regions
by Lingchao Li, Shu Jiang and Yingtien Lin
Sustainability 2025, 17(6), 2673; https://doi.org/10.3390/su17062673 - 18 Mar 2025
Cited by 2 | Viewed by 731
Abstract
The digital economy has emerged as a transformative force, creating new opportunities for sustainable development, especially within the marine fisheries sector. This study examines the impact of the digital economy on the green total factor productivity (GTFP) of fisheries in China’s coastal regions [...] Read more.
The digital economy has emerged as a transformative force, creating new opportunities for sustainable development, especially within the marine fisheries sector. This study examines the impact of the digital economy on the green total factor productivity (GTFP) of fisheries in China’s coastal regions from 2011 to 2022. Using panel data from 11 coastal provinces, we employ the Slack-Based Measure (SBM) model and the Global Malmquist–Luenberger (GML) index to assess GTFP and analyze the effects of digital economic development. Our findings indicate the following: (1) the digital economy significantly enhances fishery GTFP, improving both resource efficiency and environmental sustainability; (2) the impact varies across regions, reflecting notable regional heterogeneity in digital infrastructure and adoption; and (3) a threshold effect exists, whereby the influence of the digital economy on GTFP varies depending on the level of digital economic development. This research underscores the dual role of digital technologies in boosting fisheries’ economic productivity while promoting greener, more sustainable practices. This study provides valuable insights for policymakers aiming to integrate digital transformation into the sustainable development of marine fisheries. Full article
(This article belongs to the Section Sustainable Oceans)
Show Figures

Figure 1

16 pages, 3866 KiB  
Article
Size-Selective Harvesting Effects on Reproductive Investment in Marine Medaka (Oryzias melastigma)
by Guochen Gan, Guankui Liu, Xinyao Sun, Wenbo Deng, Fengming Lv, Yongjun Tian and Peng Sun
Fishes 2025, 10(3), 112; https://doi.org/10.3390/fishes10030112 - 4 Mar 2025
Viewed by 885
Abstract
Long-term selective fishing pressure often leads to miniaturization, smaller size, and early sexual maturity in many commercial fish species. To adapt, these species increase energy allocations toward maturation and reproduction, which can reduce population productivity and recruitment. However, how different fishing pressures affect [...] Read more.
Long-term selective fishing pressure often leads to miniaturization, smaller size, and early sexual maturity in many commercial fish species. To adapt, these species increase energy allocations toward maturation and reproduction, which can reduce population productivity and recruitment. However, how different fishing pressures affect reproductive investment and energy allocation between growth and reproduction remains unclear. In this study, we designed three size-selective harvesting strategies—large, random, and small harvests—to examine their effects on the growth and reproductive investment of marine medaka (Oryzias melastigma). We analyzed changes in length, weight, and gonad weight across different harvest times. Results showed that the “large harvest” group allocated more energy to reproduction, leading to miniaturization and earlier maturation, while the “small harvest” group focused more on growth, resulting in larger fish at the same age. This study provides experimental evidence on how size-selective harvesting alters reproductive investment in fish populations, offering valuable insights for the sustainable exploitation of fishery resources. Full article
(This article belongs to the Section Biology and Ecology)
Show Figures

Figure 1

Back to TopTop