Pilot-Scale Cultivation of Seaweed (Undaria pinnatifida) Along an Offshore Wind Farm in Southwestern Korea
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site and Environmental Conditions
2.2. Design of the Culture System, Cultivation and Sampling
3. Results and Discussion
3.1. Environmental Conditions
3.2. Morphological Characteristics (Length and Weight) and Biomass Yield
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kafas, A. Offshore Wind and Commercial Fisheries in the East Coast of Scotland. 2017. Available online: https://maritime-spatial-planning.ec.europa.eu/media/12372 (accessed on 20 May 2024).
- Letschert, J.; Stollberg, N.; Rambo, H.; Kempf, A.; Berkehagen, J.; Stelzenmüller, V. The uncertain future of the Norway lobster fisheries in the North Sea calls for new management strategies. ICES J. Mar. Sci. 2021, 78, 3639–3649. [Google Scholar] [CrossRef]
- Bonsu, P.O.; Letschert, J.; Yates, K.L.; Svendsen, J.C.; Berkenhagen, J.; Rozemeijer, M.J.C.; Kerkhove, T.R.H.; Rehren, J.; Stelzenmüller, V. Co-location of fishes and offshores wind farms: Current practies and enabling condition in the North Sea. Mar. Policy 2024, 159, 105941. [Google Scholar] [CrossRef]
- Michler-Cieluch, T.; Kodeih, S. Mussel and seaweed cultivation in offshore wind farms: An opinion survey. Coast Manag. 2008, 36, 392–411. [Google Scholar] [CrossRef]
- Banach, J.L.; van den Burg, S.W.K.; van der Fels-Klerx, H.J. Food safety during seaweed cultivation at offshore wind farms: An exploratory study in the North Sea. Mar. Policy 2020, 120, 104082. [Google Scholar] [CrossRef]
- Maar, M.; Holbach, A.; Boderskov, T.; Thomsen, M.; Buck, B.J.; Kotta, J.; Bruhn, A. Multi-use offshore wind farms with low-tropic aquaculture can help achieve global sustainability goals. Commun. Earth Environ. 2023, 4, 447. [Google Scholar] [CrossRef]
- Buck, B.H.; Buchholz, C.M. The offshore-ring: A new system design for the open ocean aquaculture of macroalgae. J. Appl. Phycol. 2004, 16, 355–368. [Google Scholar] [CrossRef]
- Buck, B.H.; Buchholz, C.M. Response of offshore cultivated Laminaria saccharina to hydrodynamic forcing in the North Sea. Aquaculture 2005, 250, 674–691. [Google Scholar] [CrossRef]
- Reynolds, B.D. Assessing the Feasibility of Seaweed Farm-Offshore Wind Co-Location in New Jersey. Master’s Thesis, Montclair State University, Montclair, NJ, USA, 2024. [Google Scholar]
- NARS-National Assembly Research Service (NARS). Issues and Perspectives. Available online: https://www.nars.go.kr/report/view.do?cmsCode=CM0043&brdSeq=40974 (accessed on 12 May 2024). (In Korean).
- Carbon Trust. Unlocking the Potential: Challenges and Opportunities for South Korean Offshore Wind Supply Chain. 2023. Available online: https://www.plan15.org/report/?bmode=view&idx=17300313 (accessed on 20 March 2024).
- Yamanaka, R.; Akiyama, K. Cultivation and utilization of Undaria pinnatifida (Wakame) as food. J. Appl. Phycol. 1993, 5, 249–253. [Google Scholar] [CrossRef]
- NIFS-National Institute of Fisheries Science (NIFS). The Guideline for Surveying the Suitability of Farm. 2016. Available online: https://nifs.go.kr/board/actionBoard0005View.do?MENU_ID=M0000092&BBS_ID=20211228042022718BBF& (accessed on 20 December 2024). (In Korean).
- Sato, Y.; Hirano, T.; Ichida, H.; Fukunishi, N.; Abe, T.; Kawano, S. Extending the Cultivation Period of Undaria pinnatifida by Using Regional Strains with Phenotypic Differentiation along the Sanriku Coast in Northern Japan. Phycology 2021, 1, 129–142. [Google Scholar] [CrossRef]
- FAO. Undaria pinnatifida Cultured Aquatic Species Information Programme. Text by Shao Jun Pang, Xia Li and Thierry Chopin. In Fisheries and Aquaculture; FAO: Rome, Italy, 2025; Available online: https://www.fao.org/fishery/en/culturedspecies/undaria_pinnatifida/en (accessed on 8 April 2025).
- Watanabe, T.; Nisixawa, K. The utilization of wakame (Undaria pinnatifida) in Japan and manufacture of ‘haiboshi wakame’ and some of its biochemical and physical properties. Hydrobiologia 1984, 116, 106–111. [Google Scholar] [CrossRef]
- Lee, K.Y.; Sohn, C.H. Morphological characteristics and growth of two forms of sea mustard, Undaria pinnatifida f. distans and of U. pinnatifida f. typica. J. Aquac. 1993, 6, 71–87. [Google Scholar]
- Oh, S.H.; Koh, C.H. Growth and photosynthesis of Undaria pinnatifida (Laminariales, Phaeophyta) on a cultivation ground in Korea. Bot. Mar. 1996, 59, 589–599. [Google Scholar] [CrossRef]
- KOSIS-Korean Statistical Information Service (KOSIS). Statistics by Fishery Species. 2023. Available online: https://kosis.kr/index/index.do (accessed on 20 March 2024). (In Korean).
- Brown, M.T.; Lamare, M.D. The distribution of Undaria pinnatifida (Harvey) Suringar within Timaru Habour, New Zealand. Jpn. J. Phycol. 1994, 42, 63–70. [Google Scholar]
- Hwang, E.K.; Baek, J.M.; Park, C.S. The mass cultivation of Ecklonia stolonifera Okamura as a summer feed for the abalone industry in Korea. J. Appl. Phycol. 2009, 21, 585–590. [Google Scholar] [CrossRef]
- Lee, D.W.; Oh, S.Y.; Pa, J.J.C.; Jung, Y.H.; Kim, H.J.; Choi, D.M.; Choi, Y.U.; Han, J. Offshore Wind Farms in South Korea: A Potential Site for Scallop Culture. J. Mar. Sci. Eng. 2023, 11, 1988. [Google Scholar] [CrossRef]
- Seo, J.; Maeng, J.; Lim, E.; Jin, S.; Kim, H.; Kim, T. Marine Environmental Characteristics around the Test Phase of Offshore Wind Farm in the Southwestern Coast of Yellow Sea. J. Environ. Impact Assess. 2019, 5, 457–470. (In Korean) [Google Scholar]
- Oh, S.H.; Jeong, W.M.; Kim, S.I. Analysis of the Observation Data for Winter-Season High Waves Occurred in the West Sea of Korea. J. Korean Soc. Coast. Ocean Eng. 2015, 3, 168–174. [Google Scholar] [CrossRef]
- Murphy, J.; Riley, J.P. A modified single solution method for the determination of phosphate in natural waters. Anal. Chim. Acta 1962, 27, 31–36. [Google Scholar] [CrossRef]
- Suzuki, Y.; Sugimura, Y.; Itoh, T. A catalytic oxidation method for the determination of total nitrogen dissolved in sea-water. Mar. Chem. 1985, 16, 83–97. [Google Scholar] [CrossRef]
- Boo, S.Y.; Shelley, S.A.; Shin, S.H.; Park, J.; Ha, Y.J. Design and Analysis of a Sub-Surface Longline Marine Aquaculture Farm for Co-Existence with Offshore Wind Farm. J. Mar. Sci. Eng. 2023, 11, 1034. [Google Scholar] [CrossRef]
- Yong, Y.S.; Yong, W.T.L.; Anton, A. Analysis of formulae for determination of seaweed growth rate. J. Appl. Phycol. 2013, 25, 1831–1834. [Google Scholar] [CrossRef]
- Luhan, M.R.J.; Sollesta, H. Growing the reproductive cells (carpospores) of the seaweed, Kappaphycus striatum, in the laboratory until outplanting in the field and maturation to tetrasporophyte. J. Appl. Phycol. 2010, 22, 579–585. [Google Scholar] [CrossRef]
- Peteiro, C.; Freire, Ó. Outplanting time and methodologies related to mariculture of the edible kelp Undaria pinnatifida in the Atlantic coast of Spain. J. Appl. Phycol. 2012, 24, 1361–1372. [Google Scholar] [CrossRef]
- Nanba, N.; Fujiwara, T.; Kuwano, K.; Ishikawa, Y.; Ogawa, H.; Kado, R. Effect of water flow velocity on growth and morphology of cultured Undaria pinnatifida sporophytes (Laminariales, Phaeophyceae) in Okirai Bay on the Sanriku coast, Northeast Japan. J. Appl. Phycol. 2011, 23, 1023–1030. [Google Scholar] [CrossRef]
- Peteiro, C.; Freire, Ó. Biomass yield and morphological features of the seaweed Saccharina latissima cultivated at two different sites in a coastal bay in the Atlantic coast of Spain. J. Appl. Phycol. 2013, 25, 205–213. [Google Scholar] [CrossRef]
- Gao, X.; Agatsuma, Y.; Taniguchi, K. Effect of nitrate fertilization of gametophytes of the kelp Undaria pinnatifida on growth and maturation of the sporophytes cultivated in Matsushima Bay, northern Honshu, Japan. Aquac. Int. 2013, 21, 53–64. [Google Scholar] [CrossRef]
- Kaga, S.; Kakehi, S.; Naiki, K.; Kodama, T.; Wagawa, T.; Segawa, S.; Watanabe, S.; Musashi, T.; Kuroda, H.; Ito, S.-I. Seasonal variations in nutrient concentrations in Sanriku coastal waters, Japan: Effects on Undaria pinnatifida (Laminariales; Phaeophyta) seaweed farms. Reg. Stud. Mar. Sci. 2022, 54, 102484. [Google Scholar] [CrossRef]
- Wheeler, W.N. Effect of boundary layer transport on the fixation of carbon by the giant kelp Macrocrytis pyrifera. Mar. Biol. 1980, 56, 103–110. [Google Scholar] [CrossRef]
- Gerard, V.A. In situ water motion and nutrient uptake by the giant kelp Macrocystis pyrifera. Mar. Biol. 1982, 69, 51–54. [Google Scholar] [CrossRef]
- Hurd, C.L.; Harrison, P.J.; Druehl, L.D. Effect of seawater velocity on inorganic nitrogen uptake by morphologically distinct forms of Macrocrystis integrifolia from wave-sheltered and exposed sites. Mar. Biol. 1996, 126, 205–214. [Google Scholar] [CrossRef]
- Peteiro, C.; Sánchez, N.; Martínez, B. Mariculture of the Asian kelp Undaria pinnatifida and the native kelp Saccharina latissima along the Atlnatic coast of Southern Europe: An overview. Algal Res. 2016, 15, 9–23. [Google Scholar] [CrossRef]
- Gerard, V.; Mann, K.H. Growth and production of Laminaria longicruris populations exposed to different intensities of water movement. J. Phycol. 1979, 15, 33–41. [Google Scholar] [CrossRef]
- Gao, X.; Endo, H.; Taniguchi, K.; Agatsuma, Y. Genetic differentiation of high-temperature tolerance in the kelp Undaria pinnatifida sporophytes from geographically separated populations along the Pacific coast of Japan. J. Appl. Phycol. 2013, 25, 567–574. [Google Scholar] [CrossRef]
- Sato, Y.; Fujiwara, T.; Endo, H. Density regulation of aquaculture production and its effects on commercial profit and quality as food in the cosmopolitan edible seaweed Undaria pinnatifida. Front. Mar. Sci. 2023, 10, 1085054. [Google Scholar] [CrossRef]
- Endo, H.; Okumura, Y.; Sato, Y.; Agatsuma, Y. Interactive effects of nutrient availability, temperature, and irradiance on photosynthetic pigments and color of the brown alga Undaria pinnatifida. J. Appl. Phycol. 2016, 29, 1683–1693. [Google Scholar] [CrossRef]
- Campbell, J.; Bite, J.; Burridge, T.R. Seasonal patterns in the photosynthetic capacity, tissue pigment and nutrient content of different developmental stages of undaria pinnatifida (Phaeophyta: Laminariales) in port Phillip Bay, south-eastern Australia. Bot. Mar. 1999, 42, 231–241. [Google Scholar] [CrossRef]
- Endo, H.; Suzuki, A.; Sato, Y.; Agatsuma, Y. Effects of nutrient enrichment, irradiance control, and boiling on the color of the brown alga Undaria pinnatifida. Fish. Sci. 2017, 83, 811–817. [Google Scholar] [CrossRef]
- Dean, P.R. The Nutrient and Photosynthetic Eco-Physiology of Undaria pinnatifida, with Applications to Aquaculture. Master’s Thesis, University of Otago, Dubedin, New Zealand, 1998. Available online: http://hdl.handle.net/10523/2920 (accessed on 3 November 2024).
- Gerasimenko, N.I.; Skriptsova, A.V.; Busarova, N.G.; Moiseenko, O.P. Effects of the season and growth stage on the contents of lipids and photosynthetic pigments in brown alga Undaria pinnatifida. Russ. J. Plant Physiol. 2011, 58, 885–891. [Google Scholar] [CrossRef]
- Arijón, M.; Raffo, M.P.; Sánchez, N.; Dellatorre, F.G. Photosynthetic pigments and color of wild Undaria pinnatifida for wakame production (Chubut, Patagonia Argentina). Algal Res. 2023, 69, 102918. [Google Scholar] [CrossRef]
- Kim, Y.S.; Kim, J.; Kim, Y.Y.; Choi, S.Y. Analysis of factors underlying Pyropia Chlorosis near Geumgang estuary. J. Korean Soc. Mar. Environ. Energy 2018, 21, 381–386. (In Korean) [Google Scholar] [CrossRef]
- Natoya, M. Production of biofuel by macroalgae with preservation of marine resources environment. In Seaweeds and Their Role in Globally Changing Environments; Seckbach, J., Einav, R., Israel, A., Eds.; Springer: Dordrecht, The Netherlands, 2010; pp. 217–228. [Google Scholar]
- Buschmann, A.H.; Camus, C.; Infante, J.; Neori, A.; Israel, Á.; Hernández-González, M.C.; Pereda, S.V.; Gomez-Pinchetti, J.L.; Goldberg, A.; Tadmor-Shalev, N.; et al. Seaweed Production: Overview of the Global State of Exploitation, Farming and Emerging Research Activity. Eur. J. Phycol. 2017, 52, 391–406. [Google Scholar] [CrossRef]
- Seung, Y.H.; Chung, J.H.; Park, Y.C. Oceanographic studies related to the tidal front in the mid Yellow Sea off Korea: Physical aspects. J. Oceanol. Soc. Korea 1990, 25, 84–95. (In Korean) [Google Scholar]
- Choi, H.Y.; Lee, S.H.; Oh, I.S. Quantitative analysis of the thermal front in the mid-eastern coastal area of the yellow sea. J. Korean Soc. Oceanogr. 1998, 3, 1–8. (In Korean) [Google Scholar]
- Lim, H.S. Growth of the manila clam (Ruditapes philippinarum) cultured in Gomso tidal flat. Korea. Korean J. Malacol. 2016, 32, 189–195. (In Korean) [Google Scholar] [CrossRef]
- Neushul, M.; Benson, J.; Harger, B.W.W.; Charters, A.C. Macroalgal farming in the sea: Water motion and nitrate uptake. J. Appl. Phycol. 1992, 4, 255–265. [Google Scholar] [CrossRef]
- Akiyama, K.; Kurogi, M. Cultivation of Undaria pinnatifida (Harvey) Suringar, the decrease in crops from natural plants following crops increase from cultivation. Bull. Tohoku Reg. Fish. Res. Lab. 1988, 44, 91–100. [Google Scholar]
- Tseng, C.K. Laminaria mariculture in China. In Case Studies of Seven Commercial Seaweed Resources; Doty, M.S., Caddy, J.F., Santelices, B., Eds.; FAO Fisheries Technical Paper No. 281, Electronic Edition; FAO: Rome, Italy, 1987; pp. 239–263. [Google Scholar]
- Druehl, L.D.; Kemp, L. Morphological and growth responses of geographically isolated Macrocystis integrifolia populations when grown in a common environment. Can. J. Bot. 1982, 60, 1409–1413. [Google Scholar] [CrossRef]
- Koehl, M.A.R.; Alberte, R.S. Flow, flapping, and photosynthesis of Nereocystis luetkeana: A functional comparison of undulate and flat blade morphologies. Mar. Biol. 1988, 99, 435–444. [Google Scholar] [CrossRef]
- Kawamata, S. Adaptive mechanical tolerance and dislodgement velocity of the kelp Laminaria japonica in wave-induced water motion. Mar. Ecol. Prog. Ser. 2001, 211, 89–104. [Google Scholar] [CrossRef]
- Roberson, L.M.; Coyer, J.A. Variation in blade morphology of the kelp Eisenia arborea: Incipient speciation due to local water motion? Mar. Ecol. Prog. Ser. 2004, 282, 115–128. [Google Scholar] [CrossRef]
- Choi, H.G.; Kim, Y.S.; Lee, S.J.; Nam, K.W. Growth and reproductive patterns of Undaria pinnatifida sporophytes in a cultivation farm in Busan, Korea. J. Appl. Phycol. 2007, 19, 131–138. [Google Scholar] [CrossRef] [PubMed]
- NIFS-National Institute of Fisheries Science (NIFS). Assessment Report on Fisheries Impacts in a Changing Climate; NIFS: Busan, Republic of Korea, 2019; p. 201. (In Korean)
- Takagi, S.; Murata, Y.; Inomata, E.; Agatsuma, Y. Sporophyll of Undaria pinnatifida: A potential feed for the production of high-quality gonads in the sea urchin Mesocentrotus nudus (A. Agassiz, 1864). J. Appl. Phycol. 2020, 32, 1467–1475. [Google Scholar] [CrossRef]
- Hurd, C.L.; Law, C.S.; Bach, L.T.; Britton, D.; Hovenden, M.; Paine, E.R. Forensic carbon accounting: Assessing the role of seaweeds for carbon sequestration. J. Phycol. 2022, 58, 347–363. [Google Scholar] [CrossRef]
- Lian, Y.; Boamah, S.O.; Pan, Z.; Zheng, J.; Chen, W.; Ma, G.; Yim, S.C. Engineering design and economic analysis of offshore seaweed farm. Front. Mar. Sci. 2024, 11, 1276552. [Google Scholar] [CrossRef]
Site (Year) in Figure 1 | Number of Cultivation | Characteristics | References | |||
---|---|---|---|---|---|---|
Total Length (cm) | Wet Weight (g) | Density (Plants m−1 Rope) | Yield g m−1 Rope) | |||
A (2022) | 1 | 141.1 ± 4.6 | 146.8 ± 20.4 | 39.8 | 5842 | In this study |
2 | 134.3 ± 3.5 | 155.7 ± 19.0 | 49.3 | 7676 | ||
B (2014) | 1 | 96.1 ± 10.5 | 65.4 ± 15.6 | 39 | 2490 | [13] |
2 | 116.5 ± 12.4 | 84.4 ± 20.8 | 45 | 4800 | ||
C (2014) | 1 | 263.3 ± 14.6 | 932.7 ± 113.5 | 48 | 49,950 | [13] |
2 | 303.8 ± 20.1 | 1010 ± 159.7 | 39 | 32,400 | ||
D (2014) | 1 | 201.9 ± 10.8 | 690.8 ± 79.0 | 30 | 21,510 | [13] |
2 | 198.5 ± 19.8 | 692.8 ± 102.9 | 21 | 14,079 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Choi, D.; Lee, H.-G.; Jung, Y.-H.; Lee, D.-W.; Han, J.; Hyeon, J.-Y.; Choi, Y.-U. Pilot-Scale Cultivation of Seaweed (Undaria pinnatifida) Along an Offshore Wind Farm in Southwestern Korea. J. Mar. Sci. Eng. 2025, 13, 882. https://doi.org/10.3390/jmse13050882
Choi D, Lee H-G, Jung Y-H, Lee D-W, Han J, Hyeon J-Y, Choi Y-U. Pilot-Scale Cultivation of Seaweed (Undaria pinnatifida) Along an Offshore Wind Farm in Southwestern Korea. Journal of Marine Science and Engineering. 2025; 13(5):882. https://doi.org/10.3390/jmse13050882
Chicago/Turabian StyleChoi, Dongmun, Hyung-Gon Lee, Yun-Hwan Jung, Dae-Won Lee, Jeonghoon Han, Ji-Yeon Hyeon, and Young-Ung Choi. 2025. "Pilot-Scale Cultivation of Seaweed (Undaria pinnatifida) Along an Offshore Wind Farm in Southwestern Korea" Journal of Marine Science and Engineering 13, no. 5: 882. https://doi.org/10.3390/jmse13050882
APA StyleChoi, D., Lee, H.-G., Jung, Y.-H., Lee, D.-W., Han, J., Hyeon, J.-Y., & Choi, Y.-U. (2025). Pilot-Scale Cultivation of Seaweed (Undaria pinnatifida) Along an Offshore Wind Farm in Southwestern Korea. Journal of Marine Science and Engineering, 13(5), 882. https://doi.org/10.3390/jmse13050882