Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,895)

Search Parameters:
Keywords = manufacturing networks

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 2779 KiB  
Article
Low-Cost Open-Source Biosensing System Prototype Based on a Love Wave Surface Acoustic Wave Resonator
by Martin Millicovsky, Luis Schierloh, Pablo Kler, Gabriel Muñoz, Juan Cerrudo, Albano Peñalva, Juan Reta and Martin Zalazar
Hardware 2025, 3(3), 9; https://doi.org/10.3390/hardware3030009 (registering DOI) - 7 Aug 2025
Abstract
Love wave surface acoustic wave (LSAW) sensors are crystal resonators known for their high potential for biosensing applications due to their high sensitivity, real-time detection, and compatibility with microfluidic systems. Commercial LSAW devices are costly, and manufacturing them is even more expensive, making [...] Read more.
Love wave surface acoustic wave (LSAW) sensors are crystal resonators known for their high potential for biosensing applications due to their high sensitivity, real-time detection, and compatibility with microfluidic systems. Commercial LSAW devices are costly, and manufacturing them is even more expensive, making accessibility a significant challenge. Additionally, their use requires specialized systems, and with only a few manufacturers dominating the market, most available solutions are proprietary, limiting customization and adaptability for specific research needs. In this work, a low-cost open-source LSAW biosensing system prototype was developed based on a commercially acquired resonator. The development integrates microfluidics through a polydimethylsiloxane (PDMS) chip, low-cost electronics, and both 3D printed ultraviolet (UV) resin and polylactic acid (PLA) parts. The instrument used for measurements was a vector network analyzer (VNA) that features open-source software. The code was customized for this study to enable real-time, label-free biosensing. Experimental validation consisted of evaluating the sensitivity and repeatability of the system, from the setup to its use with different fluids. Results demonstrated that the development is able to advance to more complex applications. Full article
Show Figures

Figure 1

18 pages, 4370 KiB  
Article
The Multi-Objective Optimization of a Dual C-Type Gold Ribbon Interconnect Structure Considering Its Geometrical Parameter Fluctuation
by Guangmi Li, Song Xue, Jinyang Mu, Shaoyi Liu, Qiongfang Zhang, Wenzhi Wu, Zhihai Wang, Zhen Ma, Dongchao Diwu and Congsi Wang
Micromachines 2025, 16(8), 914; https://doi.org/10.3390/mi16080914 - 7 Aug 2025
Abstract
With the increasing demand for high integration, low cost, and large capacities in satellite systems, integrating the antenna and microwave component into the same system has become appealing to the satellite engineer. The dual C-type gold ribbon, performing as the key electromagnetic signal [...] Read more.
With the increasing demand for high integration, low cost, and large capacities in satellite systems, integrating the antenna and microwave component into the same system has become appealing to the satellite engineer. The dual C-type gold ribbon, performing as the key electromagnetic signal bridge between the microwave component and the antenna, has a significant impact on the electrical performance of satellite antennas. However, during its manufacturing and operating, the interconnection geometry undergoes deformation due to mounting errors and environmental loads. Consequently, these parasitic geometry parameters can significantly increase energy loss during the signal transmission. To address this issue, this paper has proposed a method for determining the design range of the geometrical parameters of the dual C-type gold ribbon, and applied it to the performance prediction of the microstrip antennas and the parameter optimization of the gold ribbon. In this study, a mechanical response analysis of the antennas in the operating environment has been carried out and the manufacturing disturbance has been considered to calculate the geometry fluctuation range. Then, the significance ranking of the geometry parameters has been determined and the key parameters have been selected. Finally, the chaos feedback adaptive whale optimization algorithm–back propagation neural network has been used as a surrogate model to establish the relationship between the geometry parameters and the antenna electromagnetic performance, and the multi-objective red-billed blue magpie optimization algorithm has been combined with the surrogate model to optimize the configuration parameters. This paper provides theoretical guidance for the interconnection geometry design and the optimization of the integration module of the antennas and microwave components. Full article
Show Figures

Figure 1

21 pages, 3921 KiB  
Article
A Unified Transformer Model for Simultaneous Cotton Boll Detection, Pest Damage Segmentation, and Phenological Stage Classification from UAV Imagery
by Sabina Umirzakova, Shakhnoza Muksimova, Abror Shavkatovich Buriboev, Holida Primova and Andrew Jaeyong Choi
Drones 2025, 9(8), 555; https://doi.org/10.3390/drones9080555 - 7 Aug 2025
Abstract
The present-day issues related to the cotton-growing industry, namely yield estimation, pest effect, and growth phase diagnostics, call for integrated, scalable monitoring solutions. This write-up reveals Cotton Multitask Learning (CMTL), a transformer-driven multitask framework that launches three major agronomic tasks from UAV pictures [...] Read more.
The present-day issues related to the cotton-growing industry, namely yield estimation, pest effect, and growth phase diagnostics, call for integrated, scalable monitoring solutions. This write-up reveals Cotton Multitask Learning (CMTL), a transformer-driven multitask framework that launches three major agronomic tasks from UAV pictures at one go: boll detection, pest damage segmentation, and phenological stage classification. CMTL does not change separate pipelines, but rather merges these goals using a Cross-Level Multi-Granular Encoder (CLMGE) and a Multitask Self-Distilled Attention Fusion (MSDAF) module that both allow mutual learning across tasks and still keep their specific features. The biologically guided Stage Consistency Loss is the part of the architecture of the network that enables the system to carry out growth stage transitions that occur in reality. We executed CMTL on a tri-source UAV dataset that fused over 2100 labeled images from public and private collections, representing a variety of crop stages and conditions. The model showed its virtues state-of-the-art baselines in all the tasks: setting 0.913 mAP for boll detection, 0.832 IoU for pest segmentation, and 0.936 accuracy for growth stage classification. Additionally, it runs at the fastest speed of performance on edge devices such as NVIDIA Jetson Xavier NX (Manufactured in Shanghai, China), which makes it ideal for deployment. These outcomes evoke CMTL’s promise as a single and productive instrument of aerial crop intelligence in precision cotton agriculture. Full article
(This article belongs to the Special Issue Advances of UAV in Precision Agriculture—2nd Edition)
Show Figures

Figure 1

22 pages, 2003 KiB  
Article
ChipletQuake: On-Die Digital Impedance Sensing for Chiplet and Interposer Verification
by Saleh Khalaj Monfared, Maryam Saadat Safa and Shahin Tajik
Sensors 2025, 25(15), 4861; https://doi.org/10.3390/s25154861 - 7 Aug 2025
Abstract
The increasing complexity and cost of manufacturing monolithic chips have driven the semiconductor industry toward chiplet-based designs, where smaller, modular chiplets are integrated onto a single interposer. While chiplet architectures offer significant advantages, such as improved yields, design flexibility, and cost efficiency, they [...] Read more.
The increasing complexity and cost of manufacturing monolithic chips have driven the semiconductor industry toward chiplet-based designs, where smaller, modular chiplets are integrated onto a single interposer. While chiplet architectures offer significant advantages, such as improved yields, design flexibility, and cost efficiency, they introduce new security challenges in the horizontal hardware manufacturing supply chain. These challenges include risks of hardware Trojans, cross-die side-channel and fault injection attacks, probing of chiplet interfaces, and intellectual property theft. To address these concerns, this paper presents ChipletQuake, a novel on-chiplet framework for verifying the physical security and integrity of adjacent chiplets during the post-silicon stage. By sensing the impedance of the power delivery network (PDN) of the system, ChipletQuake detects tamper events in the interposer and neighboring chiplets without requiring any direct signal interface or additional hardware components. Fully compatible with the digital resources of FPGA-based chiplets, this framework demonstrates the ability to identify the insertion of passive and subtle malicious circuits, providing an effective solution to enhance the security of chiplet-based systems. To validate our claims, we showcase how our framework detects hardware Trojans and interposer tampering. Full article
(This article belongs to the Special Issue Sensors in Hardware Security)
Show Figures

Figure 1

27 pages, 19553 KiB  
Article
Fast Anomaly Detection for Vision-Based Industrial Inspection Using Cascades of Null Subspace PCA Detectors
by Muhammad Bilal and Muhammad Shehzad Hanif
Sensors 2025, 25(15), 4853; https://doi.org/10.3390/s25154853 - 7 Aug 2025
Abstract
Anomaly detection in industrial imaging is critical for ensuring quality and reliability in automated manufacturing processes. While recently several methods have been reported in the literature that have demonstrated impressive detection performance on standard benchmarks, they necessarily rely on computationally intensive CNN architectures [...] Read more.
Anomaly detection in industrial imaging is critical for ensuring quality and reliability in automated manufacturing processes. While recently several methods have been reported in the literature that have demonstrated impressive detection performance on standard benchmarks, they necessarily rely on computationally intensive CNN architectures and post-processing techniques, necessitating access to high-end GPU hardware and limiting practical deployment in resource-constrained settings. In this study, we introduce a novel anomaly detection framework that leverages feature maps from a lightweight convolutional neural network (CNN) backbone, MobileNetV2, and cascaded detection to achieve notable accuracy as well as computational efficiency. The core of our method consists of two main components. First is a PCA-based anomaly detection module that specifically exploits near-zero variance features. Contrary to traditional PCA methods, which tend to focus on the high-variance directions that encapsulate the dominant patterns in normal data, our approach demonstrates that the lower variance directions (which are typically ignored) form an approximate null space where normal samples project near zero. However, the anomalous samples, due to their inherent deviations from the norm, lead to projections with significantly higher magnitudes in this space. This insight not only enhances sensitivity to true anomalies but also reduces computational complexity by eliminating the need for operations such as matrix inversion or the calculation of Mahalanobis distances for correlated features otherwise needed when normal behavior is modeled as Gaussian distribution. Second, our framework consists of a cascaded multi-stage decision process. Instead of combining features across layers, we treat the local features extracted from each layer as independent stages within a cascade. This cascading mechanism not only simplifies the computations at each stage by quickly eliminating clear cases but also progressively refines the anomaly decision, leading to enhanced overall accuracy. Experimental evaluations on MVTec and VisA benchmark datasets demonstrate that our proposed approach achieves superior anomaly detection performance (99.4% and 91.7% AUROC respectively) while maintaining a lower computational overhead compared to other methods. This framework provides a compelling solution for practical anomaly detection challenges in diverse application domains where competitive accuracy is needed at the expense of minimal hardware resources. Full article
Show Figures

Figure 1

15 pages, 1241 KiB  
Article
Triplet Spatial Reconstruction Attention-Based Lightweight Ship Component Detection for Intelligent Manufacturing
by Bocheng Feng, Zhenqiu Yao and Chuanpu Feng
Appl. Sci. 2025, 15(15), 8676; https://doi.org/10.3390/app15158676 - 5 Aug 2025
Abstract
Automatic component recognition plays a crucial role in intelligent ship manufacturing, but existing methods suffer from low recognition accuracy and high computational cost in industrial scenarios involving small samples, component stacking, and diverse categories. To address the requirements of shipbuilding industrial applications, a [...] Read more.
Automatic component recognition plays a crucial role in intelligent ship manufacturing, but existing methods suffer from low recognition accuracy and high computational cost in industrial scenarios involving small samples, component stacking, and diverse categories. To address the requirements of shipbuilding industrial applications, a Triplet Spatial Reconstruction Attention (TSA) mechanism that combines threshold-based feature separation with triplet parallel processing is proposed, and a lightweight You Only Look Once Ship (YOLO-Ship) detection network is constructed. Unlike existing attention mechanisms that focus on either spatial reconstruction or channel attention independently, the proposed TSA integrates triplet parallel processing with spatial feature separation–reconstruction techniques to achieve enhanced target feature representation while significantly reducing parameter count and computational overhead. Experimental validation on a small-scale actual ship component dataset demonstrates that the improved network achieves 88.7% mean Average Precision (mAP), 84.2% precision, and 87.1% recall, representing improvements of 3.5%, 2.2%, and 3.8%, respectively, compared to the original YOLOv8n algorithm, requiring only 2.6 M parameters and 7.5 Giga Floating-point Operations per Second (GFLOPs) computational cost, achieving a good balance between detection accuracy and lightweight model design. Future research directions include developing adaptive threshold learning mechanisms for varying industrial conditions and integration with surface defect detection capabilities to enhance comprehensive quality control in intelligent manufacturing systems. Full article
(This article belongs to the Special Issue Artificial Intelligence on the Edge for Industry 4.0)
Show Figures

Figure 1

33 pages, 3561 KiB  
Article
A Robust Analytical Network Process for Biocomposites Supply Chain Design: Integrating Sustainability Dimensions into Feedstock Pre-Processing Decisions
by Niloofar Akbarian-Saravi, Taraneh Sowlati and Abbas S. Milani
Sustainability 2025, 17(15), 7004; https://doi.org/10.3390/su17157004 - 1 Aug 2025
Viewed by 250
Abstract
Natural fiber-based biocomposites are rapidly gaining traction in sustainable manufacturing. However, their supply chain (SC) designs at the feedstock pre-processing stage often lack robust multicriteria decision-making evaluations, which can impact downstream processes and final product quality. This case study proposes a sustainability-driven multicriteria [...] Read more.
Natural fiber-based biocomposites are rapidly gaining traction in sustainable manufacturing. However, their supply chain (SC) designs at the feedstock pre-processing stage often lack robust multicriteria decision-making evaluations, which can impact downstream processes and final product quality. This case study proposes a sustainability-driven multicriteria decision-making framework for selecting pre-processing equipment configurations within a hemp-based biocomposite SC. Using a cradle-to-gate system boundary, four alternative configurations combining balers (square vs. round) and hammer mills (full-screen vs. half-screen) are evaluated. The analytical network process (ANP) model is used to evaluate alternative SC configurations while capturing the interdependencies among environmental, economic, social, and technical sustainability criteria. These criteria are further refined with the inclusion of sub-criteria, resulting in a list of 11 key performance indicators (KPIs). To evaluate ranking robustness, a non-linear programming (NLP)-based sensitivity model is developed, which minimizes the weight perturbations required to trigger rank reversals, using an IPOPT solver. The results indicated that the Half-Round setup provides the most balanced sustainability performance, while Full-Square performs best in economic and environmental terms but ranks lower socially and technically. Also, the ranking was most sensitive to the weight of the system reliability and product quality criteria, with up to a 100% shift being required to change the top choice under the ANP model, indicating strong robustness. Overall, the proposed framework enables decision-makers to incorporate uncertainty, interdependencies, and sustainability-related KPIs into the early-stage SC design of bio-based composite materials. Full article
(This article belongs to the Special Issue Sustainable Enterprise Operation and Supply Chain Management)
Show Figures

Figure 1

19 pages, 4612 KiB  
Article
User-Centered Design of a Computer Vision System for Monitoring PPE Compliance in Manufacturing
by Luis Alberto Trujillo-Lopez, Rodrigo Alejandro Raymundo-Guevara and Juan Carlos Morales-Arevalo
Computers 2025, 14(8), 312; https://doi.org/10.3390/computers14080312 - 1 Aug 2025
Viewed by 170
Abstract
In manufacturing environments, the proper use of Personal Protective Equipment (PPE) is essential to prevent workplace accidents. Despite this need, existing PPE monitoring methods remain largely manual and suffer from limited coverage, significant errors, and inefficiencies. This article focuses on addressing this deficiency [...] Read more.
In manufacturing environments, the proper use of Personal Protective Equipment (PPE) is essential to prevent workplace accidents. Despite this need, existing PPE monitoring methods remain largely manual and suffer from limited coverage, significant errors, and inefficiencies. This article focuses on addressing this deficiency by designing a computer vision desktop application for automated monitoring of PPE use. This system uses lightweight YOLOv8 models, developed to run on the local system and operate even in industrial locations with limited network connectivity. Using a Lean UX approach, the development of the system involved creating empathy maps, assumptions, product backlog, followed by high-fidelity prototype interface components. C4 and physical diagrams helped define the system architecture to facilitate modifiability, scalability, and maintainability. Usability was verified using the System Usability Scale (SUS), with a score of 87.6/100 indicating “excellent” usability. The findings demonstrate that a user-centered design approach, considering user experience and technical flexibility, can significantly advance the utility and adoption of AI-based safety tools, especially in small- and medium-sized manufacturing operations. This article delivers a validated and user-centered design solution for implementing machine vision systems into manufacturing safety processes, simplifying the complexities of utilizing advanced AI technologies and their practical application in resource-limited environments. Full article
Show Figures

Figure 1

24 pages, 3328 KiB  
Review
Ergonomic and Psychosocial Risk Factors and Their Relationship with Productivity: A Bibliometric Analysis
by Gretchen Michelle Vuelvas-Robles, Julio César Cano-Gutiérrez, Jesús Everardo Olguín-Tiznado, Claudia Camargo-Wilson, Juan Andrés López-Barreras and Melissa Airem Cázares-Manríquez
Safety 2025, 11(3), 74; https://doi.org/10.3390/safety11030074 - 1 Aug 2025
Viewed by 173
Abstract
This study analyzes the relationship between ergonomic and psychosocial risk factors and labor productivity using a bibliometric approach through a general analysis and one that includes inclusion criteria such as English language, open access, and primary research publications to identify only those articles [...] Read more.
This study analyzes the relationship between ergonomic and psychosocial risk factors and labor productivity using a bibliometric approach through a general analysis and one that includes inclusion criteria such as English language, open access, and primary research publications to identify only those articles that explicitly address the relationship between ergonomic and psychosocial risk factors and labor productivity. It is recognized that both physical and psychosocial conditions of the work environment directly influence workers’ health and organizational performance. For this purpose, a bibliometric review was conducted in academic databases, including Scopus, Web of Science, ScienceDirect, and Taylor & Francis, resulting in the selection of 4794 relevant articles for general analysis. Additionally, 116 relevant articles were selected based on the inclusion criteria. Tools and methodologies, such as Rayyan, Excel, VOSviewer 1.6.20, and PRISMA, were used to classify the studies and identify trends, collaboration networks, and geographical distribution. The results reveal a sustained growth in scientific production, with clusters on occupational safety and health, work environment factors, and the characteristics of the population, approach, and methodologies used in the studies. Likewise, Procedia Manufacturing, International Journal of Occupational Safety and Ergonomics, and Ergonomics stand out as the main sources of publication, while countries such as Sweden, Poland, and the United States lead the scientific production in this field. In addition, the network of co-occurrence of keywords evidences a comprehensive approach that articulates physical or ergonomic and psychosocial risk factors with organizational performance, while the network of authors shows consolidated collaborations and studies focused on analyzing the relationship between physical demands and musculoskeletal disorders from advanced ergonomic approaches. Full article
Show Figures

Figure 1

21 pages, 2690 KiB  
Article
Research on the Cross-Efficiency Model of the Innovation Dynamic Network in China’s High-Tech Manufacturing Industry
by Danping Wang, Jian Ma and Zhiying Liu
Appl. Sci. 2025, 15(15), 8552; https://doi.org/10.3390/app15158552 - 1 Aug 2025
Viewed by 202
Abstract
To evaluate the efficiency of innovation development in China’s high-tech manufacturing industry, this paper constructs a two-stage dynamic network cross-efficiency model. This model divides innovation activities into two stages: technology research and development and achievement transformation and introduces a 2-year lag period in [...] Read more.
To evaluate the efficiency of innovation development in China’s high-tech manufacturing industry, this paper constructs a two-stage dynamic network cross-efficiency model. This model divides innovation activities into two stages: technology research and development and achievement transformation and introduces a 2-year lag period in the technology research and development stage and a 1-year lag period in the achievement transformation stage. It proposes the overall efficiency and efficiency models for each stage. The model was applied to 30 provinces in China, and the results showed that most provinces have achieved relatively ideal results in the overall efficiency and achievement transformation stage of high-tech manufacturing, while the efficiency in the technology research and development stage is generally lower than that in the achievement transformation stage. It is recommended that enterprises increase their R&D investments, break through technological barriers, and optimize the innovation chain. Full article
Show Figures

Figure 1

38 pages, 1465 KiB  
Article
Industry 4.0 and Collaborative Networks: A Goals- and Rules-Oriented Approach Using the 4EM Method
by Thales Botelho de Sousa, Fábio Müller Guerrini, Meire Ramalho de Oliveira and José Roberto Herrera Cantorani
Platforms 2025, 3(3), 14; https://doi.org/10.3390/platforms3030014 - 1 Aug 2025
Viewed by 286
Abstract
The rapid evolution of Industry 4.0 technologies has resulted in a scenario in which collaborative networks are essential to overcome the challenges related to their implementation. However, the frameworks to guide such collaborations remain underexplored. This study addresses this gap by proposing Business [...] Read more.
The rapid evolution of Industry 4.0 technologies has resulted in a scenario in which collaborative networks are essential to overcome the challenges related to their implementation. However, the frameworks to guide such collaborations remain underexplored. This study addresses this gap by proposing Business Rules and Goals Models to operationalize Industry 4.0 solutions through enterprise collaboration. Using the For Enterprise Modeling (4EM) method, the research integrates qualitative insights from expert opinions, including interviews with 12 professionals (academics, industry professionals, and consultants) from Brazilian manufacturing sectors. The Goals Model identifies five main objectives—competitiveness, efficiency, flexibility, interoperability, and real-time collaboration—while the Business Rules Model outlines 18 actionable recommendations, such as investing in digital infrastructure, upskilling employees, and standardizing information technology systems. The results reveal that cultural resistance, limited resources, and knowledge gaps are critical barriers, while interoperability and stakeholder integration emerge as enablers of digital transformation. The study concludes that successfully adopting Industry 4.0 requires technological investments, organizational alignment, structured governance, and collaborative ecosystems. These models provide a practical roadmap for companies navigating the complexities of Industry 4.0, emphasizing adaptability and cross-functional synergy. The research contributes to the literature on collaborative networks by connecting theoretical frameworks with actionable enterprise-level strategies. Full article
Show Figures

Figure 1

40 pages, 1548 KiB  
Article
Real-Time Service Migration in Edge Networks: A Survey
by Yutong Zhang, Ke Zhao, Yihong Yang and Zhangbing Zhou
J. Sens. Actuator Netw. 2025, 14(4), 79; https://doi.org/10.3390/jsan14040079 - 1 Aug 2025
Viewed by 333
Abstract
With the rapid proliferation of Internet of Things (IoT) devices and mobile applications and the growing demand for low-latency services, edge computing has emerged as a transformative paradigm that brings computation and storage closer to end users. However, [...] Read more.
With the rapid proliferation of Internet of Things (IoT) devices and mobile applications and the growing demand for low-latency services, edge computing has emerged as a transformative paradigm that brings computation and storage closer to end users. However, the dynamic nature and limited resources of edge networks bring challenges such as load imbalance and high latency while satisfying user requests. Service migration, the dynamic redeployment of service instances across distributed edge nodes, has become a key enabler for solving these challenges and optimizing edge network characteristics. Moreover, the low-latency nature of edge computing requires that service migration strategies must be in real time in order to ensure latency requirements. Thus, this paper presents a systematic survey of real-time service migration in edge networks. Specifically, we first introduce four network architectures and four basic models for real-time service migration. We then summarize four research motivations for real-time service migration and the real-time guarantee introduced during the implementation of migration strategies. To support these motivations, we present key techniques for solving the task of real-time service migration and how these algorithms and models facilitate the real-time performance of migration. We also explore latency-sensitive application scenarios, such as smart cities, smart homes, and smart manufacturing, where real-time service migration plays a critical role in sustaining performance and adaptability under dynamic conditions. Finally, we summarize the key challenges and outline promising future research directions for real-time service migration. This survey aims to provide a structured and in-depth theoretical foundation to guide future research on real-time service migration in edge networks. Full article
Show Figures

Figure 1

28 pages, 7946 KiB  
Article
Service Composition Optimization Method for Sewing Machine Cases Based on an Improved Multi-Objective Artificial Hummingbird Algorithm
by Gan Shi, Shanhui Liu, Keqiang Shi, Langze Zhu, Zhenjie Gao and Jiayue Zhang
Processes 2025, 13(8), 2433; https://doi.org/10.3390/pr13082433 - 31 Jul 2025
Viewed by 157
Abstract
In response to the low efficiency of collaborative processing of sewing machine cases at the part level in network collaborative manufacturing, this paper proposes a sewing machine cases manufacturing service composition optimization method based on an improved multi-objective artificial hummingbird algorithm. The structure [...] Read more.
In response to the low efficiency of collaborative processing of sewing machine cases at the part level in network collaborative manufacturing, this paper proposes a sewing machine cases manufacturing service composition optimization method based on an improved multi-objective artificial hummingbird algorithm. The structure and production process of sewing machine cases are analyzed; a framework for service composition optimization in the sewing machine cases manufacturing service platform is established; the required manufacturing resource service composition is determined; and a dual-objective service composition optimization mathematical model that considers Quality of Service (QoS) indicators and flexibility indicators is constructed. Opposition-based learning strategies, roulette wheel selection strategies, and improved differential evolution strategies are embedded in the multi-objective artificial hummingbird algorithm, and the improved artificial hummingbird algorithm (ORAHA_DE) is used to solve the sewing machine cases manufacturing service composition optimization model. The experimental results show the effectiveness and superiority of this composition optimization method in solving the sewing machine cases manufacturing composition optimization problem while avoiding entrapment in a local optimum during the solution process, thereby achieving the composition optimization of sewing machine cases collaborative manufacturing services. Full article
Show Figures

Figure 1

24 pages, 2982 KiB  
Review
Residual Stresses in Metal Manufacturing: A Bibliometric Review
by Diego Vergara, Pablo Fernández-Arias, Edwan Anderson Ariza-Echeverri and Antonio del Bosque
Materials 2025, 18(15), 3612; https://doi.org/10.3390/ma18153612 - 31 Jul 2025
Viewed by 159
Abstract
The growing complexity of modern manufacturing has intensified the need for precise control of residual stresses to ensure structural reliability, dimensional stability, and material performance. This study conducts a bibliometric review using data from Scopus and Web of Science, covering publications from 2019 [...] Read more.
The growing complexity of modern manufacturing has intensified the need for precise control of residual stresses to ensure structural reliability, dimensional stability, and material performance. This study conducts a bibliometric review using data from Scopus and Web of Science, covering publications from 2019 to 2024. Residual stress research in metal manufacturing has gained prominence, particularly in relation to welding, additive manufacturing, and machining—processes that induce significant stress gradients affecting mechanical behavior and service life. Emerging trends focus on simulation-based prediction methods, such as the finite element method, heat treatment optimization, and stress-induced defect prevention. Key thematic clusters include process-induced microstructural changes, mechanical property enhancement, and the integration of modeling with experimental validation. By analyzing the evolution of research output, global collaboration networks, and process-specific contributions, this review provides a comprehensive overview of current challenges and identifies strategic directions for future research in residual stress management in advanced metal manufacturing. Full article
Show Figures

Figure 1

15 pages, 2158 KiB  
Article
A Data-Driven Approach for Internal Crack Prediction in Continuous Casting of HSLA Steels Using CTGAN and CatBoost
by Mengying Geng, Haonan Ma, Shuangli Liu, Zhuosuo Zhou, Lei Xing, Yibo Ai and Weidong Zhang
Materials 2025, 18(15), 3599; https://doi.org/10.3390/ma18153599 - 31 Jul 2025
Viewed by 198
Abstract
Internal crack defects in high-strength low-alloy (HSLA) steels during continuous casting pose significant challenges to downstream processing and product reliability. However, due to the inherent class imbalance in industrial defect datasets, conventional machine learning models often suffer from poor sensitivity to minority class [...] Read more.
Internal crack defects in high-strength low-alloy (HSLA) steels during continuous casting pose significant challenges to downstream processing and product reliability. However, due to the inherent class imbalance in industrial defect datasets, conventional machine learning models often suffer from poor sensitivity to minority class instances. This study proposes a predictive framework that integrates conditional tabular generative adversarial network (CTGAN) for synthetic minority sample generation and CatBoost for classification. A dataset of 733 process records was collected from a continuous caster, and 25 informative features were selected using mutual information. CTGAN was employed to augment the minority class (crack) samples, achieving a balanced training set. Feature distribution analysis and principal component visualization indicated that the synthetic data effectively preserved the statistical structure of the original minority class. Compared with the other machine learning methods, including KNN, SVM, and MLP, CatBoost achieved the highest metrics, with an accuracy of 0.9239, precision of 0.9041, recall of 0.9018, and F1-score of 0.9022. Results show that CTGAN-based augmentation improves classification performance across all models. These findings highlight the effectiveness of GAN-based augmentation for imbalanced industrial data and validate the CTGAN–CatBoost model as a robust solution for online defect prediction in steel manufacturing. Full article
(This article belongs to the Special Issue Latest Developments in Advanced Machining Technologies for Materials)
Show Figures

Figure 1

Back to TopTop