Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (634)

Search Parameters:
Keywords = manufacturer calibration

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 2466 KiB  
Article
A Capillary-Based Micro Gas Flow Measurement Method Utilizing Laminar Flow Regime
by Yuheng Zheng, Dailiang Xie, Zhengcheng Qin, Zhengwei Huang, Ya Xu, Da Wang and Hong Zheng
Appl. Sci. 2025, 15(15), 8593; https://doi.org/10.3390/app15158593 - 2 Aug 2025
Viewed by 153
Abstract
Accurate micro gas flow measurement is critical for medical ventilator calibration, environmental gas monitoring, and semiconductor manufacturing. Laminar flowmeters are widely employed in micro gas flow measurement applications owing to their inherent advantages of high linearity, the absence of moving components, and a [...] Read more.
Accurate micro gas flow measurement is critical for medical ventilator calibration, environmental gas monitoring, and semiconductor manufacturing. Laminar flowmeters are widely employed in micro gas flow measurement applications owing to their inherent advantages of high linearity, the absence of moving components, and a broad measurement range. Nevertheless, due to the low measurement accuracy under micro gas flow caused by nonlinear errors and a relatively complex structure, traditional laminar flow measurement devices exhibit limitations in micro gas flow measurement scenarios. This study proposes a novel micro gas flow measurement method based on a single capillary laminar flow element, which simplifies the structure and enhances applicability in the field of micro gas flow. Through structural optimization with precise control of the capillary length–diameter ratios and theoretical error correction based on computational analysis, nonlinear errors were effectively reduced while improving the measurement accuracy in the field of micro gas flow. The proposed methodology was systematically validated through computational fluid dynamics simulations (ANSYS Fluent 2021 R1) and experimental investigations using a dedicated test platform. The experimental results show that the relative error of the measurement system within the full measurement range is less than ±0.6% (1–10 cm3/min; cm3/min means cubic centimeter per minute), and its accuracy is superior to 1% of reading (1% Rd) or 1.5% of reading (1.5% Rd) of conventional laminar flowmeters. The fitting curve of the flow rate versus the pressure difference derived from the measurement results maintains an excellent linear correlation (R2 > 0.99), thus confirming that this method has practical application value in the field of micro gas flow measurement. Full article
Show Figures

Figure 1

18 pages, 6891 KiB  
Article
Physics-Based Data Augmentation Enables Accurate Machine Learning Prediction of Melt Pool Geometry
by Siqi Liu, Ruina Li, Jiayi Zhou, Chaoyuan Dai, Jingui Yu and Qiaoxin Zhang
Appl. Sci. 2025, 15(15), 8587; https://doi.org/10.3390/app15158587 - 2 Aug 2025
Viewed by 252
Abstract
Accurate melt pool geometry prediction is essential for ensuring quality and reliability in Laser Powder Bed Fusion (L-PBF). However, small experimental datasets and limited physical interpretability often restrict the effectiveness of traditional machine learning (ML) models. This study proposes a hybrid framework that [...] Read more.
Accurate melt pool geometry prediction is essential for ensuring quality and reliability in Laser Powder Bed Fusion (L-PBF). However, small experimental datasets and limited physical interpretability often restrict the effectiveness of traditional machine learning (ML) models. This study proposes a hybrid framework that integrates an explicit thermal model with ML algorithms to improve prediction under sparse data conditions. The explicit model—calibrated for variable penetration depth and absorptivity—generates synthetic melt pool data, augmenting 36 experimental samples across conduction, transition, and keyhole regimes for 316 L stainless steel. Three ML methods—Multilayer Perceptron (MLP), Random Forest, and XGBoost—are trained using fivefold cross-validation. The hybrid approach significantly improves prediction accuracy, especially in unstable transition regions (D/W ≈ 0.5–1.2), where morphological fluctuations hinder experimental sampling. The best-performing model (MLP) achieves R2 > 0.98, with notable reductions in MAE and RMSE. The results highlight the benefit of incorporating physically consistent, nonlinearly distributed synthetic data to enhance generalization and robustness. This physics-augmented learning strategy not only demonstrates scientific novelty by integrating mechanistic modeling into data-driven learning, but also provides a scalable solution for intelligent process optimization, in situ monitoring, and digital twin development in metal additive manufacturing. Full article
Show Figures

Figure 1

16 pages, 2734 KiB  
Article
A 13-Bit 100 kS/s Two-Step Single-Slope ADC for a 64 × 64 Infrared Image Sensor
by Qiaoying Gan, Wenli Liao, Weiyi Zheng, Enxu Yu, Zhifeng Chen and Chengying Chen
Eng 2025, 6(8), 180; https://doi.org/10.3390/eng6080180 - 1 Aug 2025
Viewed by 146
Abstract
An Analog-to-Digital Converter (ADC) is an indispensable part of image sensor systems. This paper presents a silicon-based 13-bit 100 kS/s two-step single-slope analog-to-digital converter (TS-SS ADC) for infrared image sensors with a frame rate of 100 Hz. For the charge leakage and offset [...] Read more.
An Analog-to-Digital Converter (ADC) is an indispensable part of image sensor systems. This paper presents a silicon-based 13-bit 100 kS/s two-step single-slope analog-to-digital converter (TS-SS ADC) for infrared image sensors with a frame rate of 100 Hz. For the charge leakage and offset voltage issues inherent in conventional TS-SS ADC, a four-terminal comparator was employed to resolve the fine ramp voltage offset caused by charge redistribution in storage and parasitic capacitors. In addition, a current-steering digital-to-analog converter (DAC) was adopted to calibrate the voltage reference of the dynamic comparator and mitigate differential nonlinearity (DNL)/integral nonlinearity (INL). To eliminate quantization dead zones, a 1-bit redundancy was incorporated into the fine quantization circuit. Finally, the quantization scheme consisted of 7-bit coarse quantization followed by 7-bit fine quantization. The ADC was implemented using an SMIC 55 nm processSemiconductor Manufacturing International Corporation, Shanghai, China. The post-simulation results show that when the power supply is 3.3 V, the ADC achieves a quantization range of 1.3 V–3 V. Operating at a 100 kS/s sampling rate, the proposed ADC exhibits an effective number of bits (ENOBs) of 11.86, a spurious-free dynamic range (SFDR) of 97.45 dB, and a signal-to-noise-and-distortion ratio (SNDR) of 73.13 dB. The power consumption of the ADC was 22.18 mW. Full article
Show Figures

Figure 1

27 pages, 2327 KiB  
Article
Experimental Study of Ambient Temperature Influence on Dimensional Measurement Using an Articulated Arm Coordinate Measuring Machine
by Vendula Samelova, Jana Pekarova, Frantisek Bradac, Jan Vetiska, Matej Samel and Robert Jankovych
Metrology 2025, 5(3), 45; https://doi.org/10.3390/metrology5030045 - 1 Aug 2025
Viewed by 163
Abstract
Articulated arm coordinate measuring machines are designed for in situ use directly in manufacturing environments, enabling efficient dimensional control outside of climate-controlled laboratories. This study investigates the influence of ambient temperature variation on the accuracy of length measurements performed with the Hexagon Absolute [...] Read more.
Articulated arm coordinate measuring machines are designed for in situ use directly in manufacturing environments, enabling efficient dimensional control outside of climate-controlled laboratories. This study investigates the influence of ambient temperature variation on the accuracy of length measurements performed with the Hexagon Absolute Arm 8312. The experiment was carried out in a laboratory setting simulating typical shop floor conditions through controlled temperature changes in the range of approximately 20–31 °C. A calibrated steel gauge block was used as a reference standard, allowing separation of the influence of the measuring system from that of the measured object. The results showed that the gauge block length changed in line with the expected thermal expansion, while the articulated arm coordinate measuring machine exhibited only a minor residual thermal drift and stable performance. The experiment also revealed a constant measurement offset of approximately 22 µm, likely due to calibration deviation. As part of the study, an uncertainty budget was developed, taking into account all relevant sources of influence and enabling a more realistic estimation of accuracy under operational conditions. The study confirms that modern carbon composite articulated arm coordinate measuring machines with integrated compensation can maintain stable measurement behavior even under fluctuating temperatures in controlled environments. Full article
Show Figures

Figure 1

24 pages, 11545 KiB  
Article
Workpiece Coordinate System Measurement for a Robotic Timber Joinery Workflow
by Francisco Quitral-Zapata, Rodrigo García-Alvarado, Alejandro Martínez-Rocamora and Luis Felipe González-Böhme
Buildings 2025, 15(15), 2712; https://doi.org/10.3390/buildings15152712 - 31 Jul 2025
Viewed by 143
Abstract
Robotic timber joinery demands integrated, adaptive methods to compensate for the inherent dimensional variability of wood. We introduce a seamless robotic workflow to enhance the measurement accuracy of the Workpiece Coordinate System (WCS). The approach leverages a Zivid 3D camera mounted in an [...] Read more.
Robotic timber joinery demands integrated, adaptive methods to compensate for the inherent dimensional variability of wood. We introduce a seamless robotic workflow to enhance the measurement accuracy of the Workpiece Coordinate System (WCS). The approach leverages a Zivid 3D camera mounted in an eye-in-hand configuration on a KUKA industrial robot. The proposed algorithm applies a geometric method that strategically crops the point cloud and fits planes to the workpiece surfaces to define a reference frame, calculate the corresponding transformation between coordinate systems, and measure the cross-section of the workpiece. This enables reliable toolpath generation by dynamically updating WCS and effectively accommodating real-world geometric deviations in timber components. The workflow includes camera-to-robot calibration, point cloud acquisition, robust detection of workpiece features, and precise alignment of the WCS. Experimental validation confirms that the proposed method is efficient and improves milling accuracy. By dynamically identifying the workpiece geometry, the system successfully addresses challenges posed by irregular timber shapes, resulting in higher accuracy for timber joints. This method contributes to advanced manufacturing strategies in robotic timber construction and supports the processing of diverse workpiece geometries, with potential applications in civil engineering for building construction through the precise fabrication of structural timber components. Full article
(This article belongs to the Special Issue Architectural Design Supported by Information Technology: 2nd Edition)
Show Figures

Figure 1

23 pages, 3075 KiB  
Article
Building an Agent-Based Simulation Framework of Smartphone Reuse and Recycling: Integrating Privacy Concern and Behavioral Norms
by Wenbang Hou, Dingjie Peng, Jianing Chu, Yuelin Jiang, Yu Chen and Feier Chen
Sustainability 2025, 17(15), 6885; https://doi.org/10.3390/su17156885 - 29 Jul 2025
Viewed by 210
Abstract
The rapid proliferation of electronic waste, driven by the short lifecycle of smartphones and planned obsolescence strategies, presents escalating global environmental challenges. To address these issues from a systems perspective, this study develops an agent-based modeling (ABM) framework that simulates consumer decisions and [...] Read more.
The rapid proliferation of electronic waste, driven by the short lifecycle of smartphones and planned obsolescence strategies, presents escalating global environmental challenges. To address these issues from a systems perspective, this study develops an agent-based modeling (ABM) framework that simulates consumer decisions and stakeholder interactions within the smartphone reuse and recycling ecosystem. The model incorporates key behavioral drivers—privacy concerns, moral norms, and financial incentives—to examine how social and economic factors shape consumer behavior. Four primary agent types—consumers, manufacturers, recyclers, and second-hand retailers—are modeled to capture complex feedback and market dynamics. Calibrated using empirical data from Jiangsu Province, China, the simulation reveals a dominant consumer tendency to store obsolete smartphones rather than engage in reuse or formal recycling. However, the introduction of government subsidies significantly shifts behavior, doubling participation in second-hand markets and markedly improving recycling rates. These results highlight the value of integrating behavioral insights into environmental modeling to inform circular economy strategies. By offering a flexible and behaviorally grounded simulation tool, this study supports the design of more effective policies for promoting responsible smartphone disposal and lifecycle extension. Full article
Show Figures

Graphical abstract

18 pages, 2725 KiB  
Article
Enhanced Calibration Method for Robotic Flexible 3D Scanning System
by Zhilong Zhou, Jinyong Shangguan, Xuemei Sun, Yunlong Liu, Xu Zhang, Dengbo Zhang and Haoran Liu
Sensors 2025, 25(15), 4661; https://doi.org/10.3390/s25154661 - 27 Jul 2025
Viewed by 349
Abstract
Large-sized components with numerous small key local features are essential in advanced manufacturing. Achieving high-precision quality control necessitates accurate and highly efficient three-dimensional (3D) measurement techniques. A flexible measurement system integrating a fringe-projection-based 3D scanner with an industrial robot is developed to enable [...] Read more.
Large-sized components with numerous small key local features are essential in advanced manufacturing. Achieving high-precision quality control necessitates accurate and highly efficient three-dimensional (3D) measurement techniques. A flexible measurement system integrating a fringe-projection-based 3D scanner with an industrial robot is developed to enable the rapid measurement of large object surfaces. To enhance overall measurement accuracy, we propose an enhanced calibration method utilizing a multidimensional ball-based calibrator to simultaneously calibrate for hand-eye transformation and robot kinematic parameters. Firstly, a preliminary hand-eye calibration method is introduced to compensate for measurement errors at observation points, leveraging geometric-constraint-based optimization and a virtual single point derived via the barycentric calculation method. Subsequently, a distance-constrained calibration method is proposed to jointly estimate the hand-eye transformation and robot kinematic parameters, wherein a distance error model is constructed to link parameter errors with the measured deviations of a virtual single point. Finally, calibration and validation experiments were carried out, and the results indicate that the maximum and average measurement errors were reduced from 1.053 mm and 0.814 mm to 0.421 mm and 0.373 mm, respectively, thereby confirming the effectiveness of the proposed method. Full article
(This article belongs to the Special Issue Applications of Manufacturing and Measurement Sensors: 2nd Edition)
Show Figures

Figure 1

26 pages, 3625 KiB  
Article
Deep-CNN-Based Layout-to-SEM Image Reconstruction with Conformal Uncertainty Calibration for Nanoimprint Lithography in Semiconductor Manufacturing
by Jean Chien and Eric Lee
Electronics 2025, 14(15), 2973; https://doi.org/10.3390/electronics14152973 - 25 Jul 2025
Viewed by 288
Abstract
Nanoimprint lithography (NIL) has emerged as a promising sub-10 nm patterning at low cost; yet, robust process control remains difficult because of time-consuming physics-based simulators and labeled SEM data scarcity. We propose a data-efficient, two-stage deep-learning framework here that directly reconstructs post-imprint SEM [...] Read more.
Nanoimprint lithography (NIL) has emerged as a promising sub-10 nm patterning at low cost; yet, robust process control remains difficult because of time-consuming physics-based simulators and labeled SEM data scarcity. We propose a data-efficient, two-stage deep-learning framework here that directly reconstructs post-imprint SEM images from binary design layouts and delivers calibrated pixel-by-pixel uncertainty simultaneously. First, a shallow U-Net is trained on conformalized quantile regression (CQR) to output 90% prediction intervals with statistically guaranteed coverage. Moreover, per-level errors on a small calibration dataset are designed to drive an outlier-weighted and encoder-frozen transfer fine-tuning phase that refines only the decoder, with its capacity explicitly focused on regions of spatial uncertainty. On independent test layouts, our proposed fine-tuned model significantly reduces the mean absolute error (MAE) from 0.0365 to 0.0255 and raises the coverage from 0.904 to 0.926, while cutting the labeled data and GPU time by 80% and 72%, respectively. The resultant uncertainty maps highlight spatial regions associated with error hotspots and support defect-aware optical proximity correction (OPC) with fewer guard-band iterations. Extending the current perspective beyond OPC, the innovatively model-agnostic and modular design of the pipeline here allows flexible integration into other critical stages of the semiconductor manufacturing workflow, such as imprinting, etching, and inspection. In these stages, such predictions are critical for achieving higher precision, efficiency, and overall process robustness in semiconductor manufacturing, which is the ultimate motivation of this study. Full article
Show Figures

Figure 1

20 pages, 21323 KiB  
Article
C Band 360° Triangular Phase Shift Detector for Precise Vertical Landing RF System
by Víctor Araña-Pulido, B. Pablo Dorta-Naranjo, Francisco Cabrera-Almeida and Eugenio Jiménez-Yguácel
Appl. Sci. 2025, 15(15), 8236; https://doi.org/10.3390/app15158236 - 24 Jul 2025
Viewed by 158
Abstract
This paper presents a novel design for precise vertical landing of drones based on the detection of three phase shifts in the range of ±180°. The design has three inputs to which the signal transmitted from an oscillator located at the landing point [...] Read more.
This paper presents a novel design for precise vertical landing of drones based on the detection of three phase shifts in the range of ±180°. The design has three inputs to which the signal transmitted from an oscillator located at the landing point arrives with different delays. The circuit increases the aerial tracking volume relative to that achieved by detectors with theoretical unambiguous detection ranges of ±90°. The phase shift measurement circuit uses an analog phase detector (mixer), detecting a maximum range of ±90°and a double multiplication of the input signals, in phase and phase-shifted, without the need to fulfill the quadrature condition. The calibration procedure, phase detector curve modeling, and calculation of the input signal phase shift are significantly simplified by the use of an automatic gain control on each branch, dwhich keeps input amplitudes to the analog phase detectors constant. A simple program to determine phase shifts and guidance instructions is proposed, which could be integrated into the same flight control platform, thus avoiding the need to add additional processing components. A prototype has been manufactured in C band to explain the details of the procedure design. The circuit uses commercial circuits and microstrip technology, avoiding the crossing of lines by means of switches, which allows the design topology to be extrapolated to much higher frequencies. Calibration and measurements at 5.3 GHz show a dynamic range greater than 50 dB and a non-ambiguous detection range of ±180°. These specifications would allow one to track the drone during the landing maneuver in an inverted cone formed by a surface with an 11 m radius at 10 m high and the landing point, when 4 cm between RF inputs is considered. The errors of the phase shifts used in the landing maneuver are less than ±3°, which translates into 1.7% losses over the detector theoretical range in the worst case. The circuit has a frequency bandwidth of 4.8 GHz to 5.6 GHz, considering a 3 dB variation in the input power when the AGC is limiting the output signal to 0 dBm at the circuit reference point of each branch. In addition, the evolution of phases in the landing maneuver is shown by means of a small simulation program in which the drone trajectory is inside and outside the tracking range of ±180°. Full article
(This article belongs to the Section Applied Physics General)
Show Figures

Figure 1

20 pages, 28281 KiB  
Article
Infrared-Guided Thermal Cycles in FEM Simulation of Laser Welding of Thin Aluminium Alloy Sheets
by Pasquale Russo Spena, Manuela De Maddis, Valentino Razza, Luca Santoro, Husniddin Mamarayimov and Dario Basile
Metals 2025, 15(8), 830; https://doi.org/10.3390/met15080830 - 24 Jul 2025
Viewed by 335
Abstract
Climate concerns are driving the automotive industry to adopt advanced manufacturing technologies that aim to improve energy efficiency and reduce vehicle weight. In this context, lightweight structural materials such as aluminium alloys have gained significant attention due to their favorable strength-to-weight ratio. Laser [...] Read more.
Climate concerns are driving the automotive industry to adopt advanced manufacturing technologies that aim to improve energy efficiency and reduce vehicle weight. In this context, lightweight structural materials such as aluminium alloys have gained significant attention due to their favorable strength-to-weight ratio. Laser welding plays a crucial role in assembling such materials, offering high flexibility and fast joining capabilities for thin aluminium sheets. However, welding these materials presents specific challenges, particularly in controlling heat input to minimize distortions and ensure consistent weld quality. As a result, numerical simulations based on the Finite Element Method (FEM) are essential for predicting weld-induced phenomena and optimizing process performance. This study investigates welding-induced distortions in laser butt welding of 1.5 mm-thick Al 6061 samples through FEM simulations performed in the SYSWELD 2024.0 environment. The methodology provided by the software is based on the Moving Heat Source (MHS) model, which simulates the physical movement of the heat source and typically requires extensive calibration through destructive metallographic testing. This transient approach enables the detailed prediction of thermal, metallurgical, and mechanical behavior, but it is computationally demanding. To improve efficiency, the Imposed Thermal Cycle (ITC) model is often used. In this technique, a thermal cycle, extracted from an MHS simulation or experimental data, is imposed on predefined subregions of the model, allowing only mechanical behavior to be simulated while reducing computation time. To avoid MHS-based calibration, this work proposes using thermal cycles acquired in-line during welding via infrared thermography as direct input for the ITC model. The method was validated experimentally and numerically, showing good agreement in the prediction of distortions and a significant reduction in workflow time. The distortion values from simulations differ from the real experiment by less than 0.3%. Our method exhibits a slight decrease in performance, resulting in an increase in estimation error of 0.03% compared to classic approaches, but more than 85% saving in computation time. The integration of real process data into the simulation enables a virtual representation of the process, supporting future developments toward Digital Twin applications. Full article
(This article belongs to the Special Issue Manufacturing Processes of Metallic Materials)
Show Figures

Figure 1

27 pages, 2034 KiB  
Article
LCFC-Laptop: A Benchmark Dataset for Detecting Surface Defects in Consumer Electronics
by Hua-Feng Dai, Jyun-Rong Wang, Quan Zhong, Dong Qin, Hao Liu and Fei Guo
Sensors 2025, 25(15), 4535; https://doi.org/10.3390/s25154535 - 22 Jul 2025
Viewed by 326
Abstract
As a high-market-value sector, the consumer electronics industry is particularly vulnerable to reputational damage from surface defects in shipped products. However, the high level of automation and the short product life cycles in this industry make defect sample collection both difficult and inefficient. [...] Read more.
As a high-market-value sector, the consumer electronics industry is particularly vulnerable to reputational damage from surface defects in shipped products. However, the high level of automation and the short product life cycles in this industry make defect sample collection both difficult and inefficient. This challenge has led to a severe shortage of publicly available, comprehensive datasets dedicated to surface defect detection, limiting the development of targeted methodologies in the academic community. Most existing datasets focus on general-purpose object categories, such as those in the COCO and PASCAL VOC datasets, or on industrial surfaces, such as those in the MvTec AD and ZJU-Leaper datasets. However, these datasets differ significantly in structure, defect types, and imaging conditions from those specific to consumer electronics. As a result, models trained on them often perform poorly when applied to surface defect detection tasks in this domain. To address this issue, the present study introduces a specialized optical sampling system with six distinct lighting configurations, each designed to highlight different surface defect types. These lighting conditions were calibrated by experienced optical engineers to maximize defect visibility and detectability. Using this system, 14,478 high-resolution defect images were collected from actual production environments. These images cover more than six defect types, such as scratches, plain particles, edge particles, dirt, collisions, and unknown defects. After data acquisition, senior quality control inspectors and manufacturing engineers established standardized annotation criteria based on real-world industrial acceptance standards. Annotations were then applied using bounding boxes for object detection and pixelwise masks for semantic segmentation. In addition to the dataset construction scheme, commonly used semantic segmentation methods were benchmarked using the provided mask annotations. The resulting dataset has been made publicly available to support the research community in developing, testing, and refining advanced surface defect detection algorithms under realistic conditions. To the best of our knowledge, this is the first comprehensive, multiclass, multi-defect dataset for surface defect detection in the consumer electronics domain that provides pixel-level ground-truth annotations and is explicitly designed for real-world applications. Full article
(This article belongs to the Section Electronic Sensors)
Show Figures

Figure 1

34 pages, 3579 KiB  
Review
A Comprehensive Review of Mathematical Error Characterization and Mitigation Strategies in Terrestrial Laser Scanning
by Mansoor Sabzali and Lloyd Pilgrim
Remote Sens. 2025, 17(14), 2528; https://doi.org/10.3390/rs17142528 - 20 Jul 2025
Viewed by 446
Abstract
In recent years, there has been an increasing transition from 1D point-based to 3D point-cloud-based data acquisition for monitoring applications and deformation analysis tasks. Previously, many studies relied on point-to-point measurements using total stations to assess structural deformation. However, the introduction of terrestrial [...] Read more.
In recent years, there has been an increasing transition from 1D point-based to 3D point-cloud-based data acquisition for monitoring applications and deformation analysis tasks. Previously, many studies relied on point-to-point measurements using total stations to assess structural deformation. However, the introduction of terrestrial laser scanning (TLS) has commenced a new era in data capture with a high level of efficiency and flexibility for data collection and post processing. Thus, a robust understanding of both data acquisition and processing techniques is required to guarantee high-quality deliverables to geometrically separate the measurement uncertainty and movements. TLS is highly demanding in capturing detailed 3D point coordinates of a scene within either short- or long-range scanning. Although various studies have examined scanner misalignments under controlled conditions within the short range of observation (scanner calibration), there remains a knowledge gap in understanding and characterizing errors related to long-range scanning (scanning calibration). Furthermore, limited information on manufacturer-oriented calibration tests highlights the motivation for designing a user-oriented calibration test. This research focused on investigating four primary sources of error in the generic error model of TLS. These were categorized into four geometries: instrumental imperfections related to the scanner itself, atmospheric effects that impact the laser beam, scanning geometry concerning the setup and varying incidence angles during scanning, and object and surface characteristics affecting the overall data accuracy. This study presents previous findings of TLS calibration relevant to the four error sources and mitigation strategies and identified current challenges that can be implemented as potential research directions. Full article
Show Figures

Figure 1

22 pages, 16125 KiB  
Article
Toward an Efficient and Robust Process–Structure Prediction Framework for Filigree L-PBF 316L Stainless Steel Structures
by Yu Qiao, Marius Grad and Aida Nonn
Metals 2025, 15(7), 812; https://doi.org/10.3390/met15070812 - 20 Jul 2025
Viewed by 585
Abstract
Additive manufacturing (AM), particularly laser powder bed fusion (L-PBF), provides unmatched design flexibility for creating intricate steel structures with minimal post-processing. However, adopting L-PBF for high-performance applications is difficult due to the challenge of predicting microstructure evolution. This is because the process is [...] Read more.
Additive manufacturing (AM), particularly laser powder bed fusion (L-PBF), provides unmatched design flexibility for creating intricate steel structures with minimal post-processing. However, adopting L-PBF for high-performance applications is difficult due to the challenge of predicting microstructure evolution. This is because the process is sensitive to many parameters and has a complex thermal history. Thin-walled geometries present an added challenge because their dimensions often approach the scale of individual grains. Thus, microstructure becomes a critical factor in the overall integrity of the component. This study focuses on applying cellular automata (CA) modeling to establish robust and efficient process–structure relationships in L-PBF of 316L stainless steel. The CA framework simulates solidification-driven grain evolution and texture development across various processing conditions. Model predictions are evaluated against experimental electron backscatter diffraction (EBSD) data, with additional quantitative comparisons based on texture and morphology metrics. The results demonstrate that CA simulations calibrated with relevant process parameters can effectively reproduce key microstructural features, including grain size distributions, aspect ratios, and texture components, observed in thin-walled L-PBF structures. This work highlights the strengths and limitations of CA-based modeling and supports its role in reliably designing and optimizing complex L-PBF components. Full article
Show Figures

Graphical abstract

20 pages, 23222 KiB  
Article
A Multi-View Three-Dimensional Scanning Method for a Dual-Arm Hand–Eye System with Global Calibration of Coded Marker Points
by Tenglong Zheng, Xiaoying Feng, Siyuan Wang, Haozhen Huang and Shoupeng Li
Micromachines 2025, 16(7), 809; https://doi.org/10.3390/mi16070809 - 13 Jul 2025
Viewed by 655
Abstract
To achieve robust and accurate collaborative 3D measurement under complex noise conditions, a global calibration method for dual-arm hand–eye systems and multi-view 3D imaging is proposed. A multi-view 3D scanning approach based on ICP (M3DHE-ICP) integrates a multi-frequency heterodyne coding phase solution with [...] Read more.
To achieve robust and accurate collaborative 3D measurement under complex noise conditions, a global calibration method for dual-arm hand–eye systems and multi-view 3D imaging is proposed. A multi-view 3D scanning approach based on ICP (M3DHE-ICP) integrates a multi-frequency heterodyne coding phase solution with ICP optimization, effectively correcting stitching errors caused by robotic arm attitude drift. After correction, the average 3D imaging error is 0.082 mm, reduced by 0.330 mm. A global calibration method based on encoded marker points (GCM-DHE) is also introduced. By leveraging spatial geometry constraints and a dynamic tracking model of marker points, the transformation between multi-coordinate systems of the dual arms is robustly solved. This reduces the average imaging error to 0.100 mm, 0.456 mm lower than that of traditional circular calibration plate methods. In actual engineering measurements, the average error for scanning a vehicle’s front mudguard is 0.085 mm, with a standard deviation of 0.018 mm. These methods demonstrate significant value for intelligent manufacturing and multi-robot collaborative measurement. Full article
Show Figures

Figure 1

25 pages, 8255 KiB  
Article
A Practical Methodology for Accuracy and Quality Evaluation of Structured Light Systems in Automotive Inspection
by Antonio Lagudi, Umberto Severino, Loris Barbieri and Fabio Bruno
Machines 2025, 13(7), 576; https://doi.org/10.3390/machines13070576 - 2 Jul 2025
Viewed by 323
Abstract
In the integration of structured light systems (SLSs) into automotive manufacturing pipelines, achieving reliable 3D reconstruction under industrial conditions remains a critical challenge. Factors such as environmental variability, surface reflectivity, and optical configuration often compromise dimensional accuracy and point cloud quality, limiting the [...] Read more.
In the integration of structured light systems (SLSs) into automotive manufacturing pipelines, achieving reliable 3D reconstruction under industrial conditions remains a critical challenge. Factors such as environmental variability, surface reflectivity, and optical configuration often compromise dimensional accuracy and point cloud quality, limiting the deployment of SLSs for inspection tasks. This paper presents a practical metric-based methodology for evaluating the dimensional accuracy and point cloud quality of SLSs targeted at automotive inspection applications. Unlike existing approaches focused primarily on theoretical or hardware-specific parameters, the proposed methodology considers all phases of the acquisition–reconstruction pipeline, including calibration, environmental variability, and image enhancement strategies, to practically guide engineers step-by-step in adapting SLSs to real-world operational constraints. The methodology was experimentally validated through a case study in an automotive production setting, where it enabled the detection of reconstruction biases caused by surface reflectivity and viewing angle. It also demonstrated the ability to quantify improvements obtained through image enhancement algorithms. These results confirm the methodology’s capacity to expose critical performance trade-offs and guide optimization choices in practical inspection scenarios. By offering a repeatable and application-oriented evaluation framework, the methodology supports the robust integration of digital vision systems in industrial workflows, facilitating more informed decisions for system designers, process engineers, and quality control professionals. Full article
Show Figures

Figure 1

Back to TopTop