A Capillary-Based Micro Gas Flow Measurement Method Utilizing Laminar Flow Regime
Abstract
1. Introduction
2. Materials and Methods
2.1. The Operating Principle of a Traditional Laminar Flowmeter
- Positions 1 to 2: Localized pressure differential due to sudden flow path contraction.
- Positions 2 to 3: Frictional pressure differential during flow development toward fully developed laminar flow.
- Positions 3 to 4: Frictional pressure differential under fully developed laminar flow.
- Positions 4 to 5: Localized pressure differential due to sudden flow path expansion.
2.2. Structural Design of the Novel Capillary Laminar Flow Component
2.3. Processing Method for Nonlinear Errors
2.4. Experimental System Construction
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Suzuki, H.; Mochizuki, S.; Hasegawa, Y. Numerical-based Theoretical Analysis on Effects of Weak Fluid Acceleration of Free-stream Due to Wind-tunnel Blockage on Grid-generated Turbulence. Flow Meas. Instrum. 2018, 62, 1–8. [Google Scholar] [CrossRef]
- Zhou, J.; Wang, P.; Wang, R.; Niu, Z.; Zhang, K. Signal Processing Method of Ultrasonic Gas Flowmeter Based on Transit-time Mathematical Characteristics. Measurement 2025, 239, 115485. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, L.; Luo, Q.; Zhang, Y. A Novel Method of Coriolis Flowmeter Phase Difference Measurement Based on Improved Correlation Analysis Method. Flow Meas. Instrum. 2021, 80, 101970. [Google Scholar] [CrossRef]
- Nasirzadeh, Z.; Ghasemi, M.M.; Fathi, A.; Tavakkoli, H. A Dual-Region MEMS Thermal Flow Sensor with Obstacle-Enhanced Sensitivity and Linearity Across Wide Velocity Ranges. Electronics 2025, 14, 2128. [Google Scholar] [CrossRef]
- Martim, A.L.S.S.; Filho, J.G.D.; Lucca, Y.d.F.L.D.; Genovez, A.I.B. Electromagnetic Flowmeter Evaluation in Real Facilities: Velocity Profiles and Error Analysis. Flow Meas. Instrum. 2019, 66, 44–49. [Google Scholar] [CrossRef]
- Kolhe, V.A.; Edlabadkar, R.L. Performance Evaluation of Coriolis Mass Flow Meter in Laminar Flow Regime. Flow Meas. Instrum. 2021, 77, 101837. [Google Scholar] [CrossRef]
- Vemulapalli, S.; Venkata, S.K. Soft Sensor for an Orifice Flowmeter in Presence of Disturbances. Flow Meas. Instrum. 2022, 86, 102178. [Google Scholar] [CrossRef]
- Hesse, R.; Beeckmann, J.; Wantz, K.; Pitsch, H. Laminar Burning Velocity of Market Type Gasoline Surrogates as a Performance Indicator in Internal Combustion Engines; SAE Technical Paper 2018–01–1667; SAE International: Warrendale, PA, USA, 2018. [Google Scholar] [CrossRef]
- Chen, Y.; Liu, S.; Wang, T.; Zhu, Q.; Wei, M.; Zheng, F.; Ma, J.; Zhou, S. Structural Design and Optimization of a High—Precision Laminar Flow Meter. Flow Meas. Instrum. 2025, 104, 102872. [Google Scholar] [CrossRef]
- Pedro, A.; Morgado, T.; Navas, H. An Uncertainties Simulation Model Applied to an Automated Laminar Flowmeter. Appl. Sci. 2020, 10, 888. [Google Scholar] [CrossRef]
- Liu, J.; Cui, X.W.; Tian, T. Application of Least Squares Method in Flow Calculation. Electron. Meas. Technol. 2018, 41, 35–41. [Google Scholar] [CrossRef]
- Zhao, P.; Chen, H.; Huang, H.Q.; Zhang, H.J.; Shen, C. Design of Experimental Platform for Aerodynamic Performance Test of Micro-Cooling Fan Based on PPD Laminar Flowmeter. Exp. Technol. Manag. 2021, 38, 110–115. [Google Scholar] [CrossRef]
- Alsalaet, J.; Munahi, B.S.; Al-Sabur, R.; Al-Saad, M.; Ali, A.K.; B, A.S.; Fadhil, H.A.; Laftah, R.M.; Ismael, M. Laminar flowmeter for mechanical ventilator: Manufacturing challenge of COVID-19 pandemic. Flow Meas. Instrum. 2021, 82, 102058. [Google Scholar] [CrossRef]
- Boudaoud, A.W.; McGraw, J.D.; Lopez-Leon, T.; Ogheard, F. Traceability of the Primary Nano-Flow Measurement System: Measuring the Local Inner Diameter of a Glass Capillary. Measurement 2023, 218, 113141. [Google Scholar] [CrossRef]
- Wang, B. Academician Shi Shaoxi’s Contribution to Laminar Flow Meters and Internal Combustion Engine Air Flow Measurement. Trans. CSICE 2001, 6, 531–534. [Google Scholar] [CrossRef]
- Lopez Pena, F.; Deibe Diaz, A.; Rodriguez Lema, M.; Vazquez Rodriguez, S. A New Approach to Laminar Flowmeters. Sensors 2010, 10, 10560–10570. [Google Scholar] [CrossRef]
- Huang, H.; Li, G.; Zhao, P.; Zhang, G.J. Study on the PPD Type Laminar Flow Sensing Technique. Chin. J. Sci. Instrum. 2020, 41, 72–79. [Google Scholar] [CrossRef]
- Wang, X.; Chen, Y.; Jiang, Y.; Zhang, K. Design and Measurement Characteristics of Micro Gap-type Laminar Flow Meter. Chin. J. Sci. Instrum. 2019, 40, 48–54. [Google Scholar] [CrossRef]
- Zhang, L.; Lu, C.; Sun, G.J.; She, B.J.; Zhang, H.J. Application of Micro Gas Flow Measurement Technology. Instrum. Stand. Metrol. 2022, 50, 15–17. [Google Scholar] [CrossRef]
- Wang, B. On the Choice and Determination of Parameters for Gas Flow Calibration Facility by PVTt Technique. Chin. J. Sci. Instrum. 2001, 22, 143–145. [Google Scholar] [CrossRef]
- Wang, L.Q.; Gao, F.; Zhao, L.; Liu, L.; Zhang, Q.; Wu, B.; Jie, H. Study on the Calibration and Uncertainty Evaluation of Direct-Reading Atmospheric Samplers by Laminar Flow Differential Pressure Mass Flowmeter. In Proceedings of the 2022 International Conference on Flow Measurement, Hangzhou, China, 1–3 June 2022; Journal of Physics: Conference Series. IOP Publishing: Bristol, UK, 2022; Volume 2369, p. 012032. [Google Scholar] [CrossRef]
- Chen, C.; Ji, J.; Zhang, D.; Wang, L.; Tang, J. Development of Portable Tiny Gas Flow Calibration Device. Ind. Metrol. 2023, 33, 34–37. [Google Scholar] [CrossRef]
- Xu, K.; Feng, D.; Chen, W.; Yin, Z.J. Research on Control Characteristics of Double Piston Gas Flow Standard Device Driven by Servo. Metrol. Meas. Tech. 2024, 51, 43–44+49. [Google Scholar] [CrossRef]
- Mojarab, A.; Kamali, R. Design Optimization and Numerical Simulation of a Micro Flow Sensor in the Realistic Model of Human Aorta. Flow Meas. Instrum. 2020, 74, 101791. [Google Scholar] [CrossRef]
- Chen, Y.; Xie, D.; Cui, L.; Xu, Y.; Huang, Z.W. Design and Flow Characterization of Annular Gap Laminar Flow Elements. J. Electron. Meas. Instrum. 2024, 38, 195–201. [Google Scholar] [CrossRef]
Structured Name | Structured Data |
---|---|
capillary length | 100 mm |
external connection pipes diameter | 10.6 mm |
diameter of sealing chambers | 1 mm |
sealing chambers length | 2 mm |
diameter of pressure tap conduits | 6 mm |
Flow (cm3/min) | Reynolds Number Re | Le (mm) |
---|---|---|
1 | 9.89 | 0.11 |
4 | 39.6 | 0.45 |
10 | 99.0 | 1.11 |
40 | 396.0 | 4.45 |
100 | 990.0 | 11.13 |
Identification Number | Flow (cm3/min) | Nonlinear Differential Pressure/ Total Differential Pressure (%) | Local Differential Pressure/ Total Nonlinear Differential Pressure (%) |
---|---|---|---|
1 | 1 | 0.4% | 72.97% |
2 | 4 | 4.59% | 39.54% |
3 | 10 | 7.62% | 20.07% |
4 | 40 | 11.03% | 9.81% |
5 | 100 | 13.21% | 4.88% |
Identification Number | Measured Pressure Difference Δp (Pa) | Corrected Pressure Difference Δp′ (Pa) | Measured Flow qvs (cm3/min) | Theoretically Calculated Flow qv (cm3/min) | Repeatability RSD (%) | Relative Error After Correction δ (%) |
---|---|---|---|---|---|---|
1 | 11.5 | 11.4 | 1.007 | 1.012 | 0.88% | 0.53% |
11.4 | 11.3 | 0.998 | 1.003 | 0.55% | ||
11.3 | 11.2 | 0.989 | 0.994 | 0.56% | ||
2 | 22.8 | 22.6 | 1.999 | 2.007 | 0.68% | 0.39% |
22.6 | 22.4 | 1.982 | 1.989 | 0.36% | ||
22.5 | 22.3 | 1.973 | 1.980 | 0.37% | ||
3 | 46.7 | 44.6 | 3.951 | 3.960 | 0.34% | 0.24% |
46.9 | 44.7 | 3.961 | 3.969 | 0.21% | ||
47.01 | 44.9 | 3.978 | 3.987 | 0.23% | ||
4 | 96.4 | 90.1 | 8.017 | 8.001 | 0.39% | −0.20% |
96.8 | 90.5 | 8.055 | 8.036 | −0.23% | ||
96.1 | 89.8 | 7.994 | 7.974 | −0.25% | ||
5 | 121.6 | 112.5 | 9.976 | 9.990 | 0.35% | 0.14% |
122.1 | 112.8 | 10.002 | 10.017 | 0.15% | ||
121.6 | 112.3 | 10.044 | 10.061 | 0.17% |
Flow Rate/cm3/min | Type A Uncertainty uA/Pa | Type B Uncertainty uB/Pa | The Expanded Uncertainty uC/Pa | The Maximum Ratio of the Expanded Uncertainty uC to the Average Pressure Difference (%) |
---|---|---|---|---|
1 | 0.10 | 0.03 | 0.20 | 1.77% |
2 | 0.15 | 0.03 | 0.30 | 1.34% |
4 | 0.15 | 0.03 | 0.30 | 0.67% |
8 | 0.35 | 0.03 | 0.70 | 0.78% |
10 | 0.40 | 0.03 | 0.80 | 0.71% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zheng, Y.; Xie, D.; Qin, Z.; Huang, Z.; Xu, Y.; Wang, D.; Zheng, H. A Capillary-Based Micro Gas Flow Measurement Method Utilizing Laminar Flow Regime. Appl. Sci. 2025, 15, 8593. https://doi.org/10.3390/app15158593
Zheng Y, Xie D, Qin Z, Huang Z, Xu Y, Wang D, Zheng H. A Capillary-Based Micro Gas Flow Measurement Method Utilizing Laminar Flow Regime. Applied Sciences. 2025; 15(15):8593. https://doi.org/10.3390/app15158593
Chicago/Turabian StyleZheng, Yuheng, Dailiang Xie, Zhengcheng Qin, Zhengwei Huang, Ya Xu, Da Wang, and Hong Zheng. 2025. "A Capillary-Based Micro Gas Flow Measurement Method Utilizing Laminar Flow Regime" Applied Sciences 15, no. 15: 8593. https://doi.org/10.3390/app15158593
APA StyleZheng, Y., Xie, D., Qin, Z., Huang, Z., Xu, Y., Wang, D., & Zheng, H. (2025). A Capillary-Based Micro Gas Flow Measurement Method Utilizing Laminar Flow Regime. Applied Sciences, 15(15), 8593. https://doi.org/10.3390/app15158593