Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (379)

Search Parameters:
Keywords = manipulability index

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
45 pages, 5794 KiB  
Review
Nanophotonic Materials and Devices: Recent Advances and Emerging Applications
by Yuan-Fong Chou Chau
Micromachines 2025, 16(8), 933; https://doi.org/10.3390/mi16080933 - 13 Aug 2025
Viewed by 113
Abstract
Nanophotonics, the study of light–matter interactions at the nanometer scale, has emerged as a transformative field that bridges photonics and nanotechnology. Using engineered nanomaterials—including plasmonic metals, high-index dielectrics, two-dimensional (2D) materials, and hybrid systems—nanophotonics enables light manipulation beyond the diffraction limit, unlocking novel [...] Read more.
Nanophotonics, the study of light–matter interactions at the nanometer scale, has emerged as a transformative field that bridges photonics and nanotechnology. Using engineered nanomaterials—including plasmonic metals, high-index dielectrics, two-dimensional (2D) materials, and hybrid systems—nanophotonics enables light manipulation beyond the diffraction limit, unlocking novel applications in sensing, imaging, and quantum technologies. This review provides a comprehensive overview of recent advances (post-2020) in nanophotonic materials, fabrication methods, and their cutting-edge applications. We first discuss the fundamental principles governing nanophotonic phenomena, such as localized surface plasmon resonances (LSPRs), Mie resonances, and exciton–polariton coupling, highlighting their roles in enhancing light–matter interactions. Next, we examine state-of-the-art fabrication techniques, including top-down (e.g., electron beam lithography and nanoimprinting) and bottom-up (e.g., chemical vapor deposition and colloidal synthesis) approaches, as well as hybrid strategies that combine scalability with nanoscale precision. We then explore emerging applications across diverse domains: quantum photonics (single-photon sources, entangled light generation), biosensing (ultrasensitive detection of viruses and biomarkers), nonlinear optics (high-harmonic generation and wave mixing), and integrated photonic circuits. Special attention is given to active and tunable nanophotonic systems, such as reconfigurable metasurfaces and hybrid graphene–dielectric devices. Despite rapid progress, challenges remain, including optical losses, thermal management, and scalable integration. We conclude by outlining future directions, such as machine learning-assisted design, programmable photonics, and quantum-enhanced sensing, and offering insights into the next generation of nanophotonic technologies. This review serves as a timely resource for researchers in photonics, materials science, and nanotechnology. Full article
Show Figures

Figure 1

15 pages, 2137 KiB  
Article
Root-Exudate-Mediated Modulation of the Rhizosphere Microbiome in Brassica juncea var. tumida During Plasmodiophora brassicae Infection
by Diandong Wang, Jingjing Liao, Zhaoming Cai, Luyun Luo, Jiayu Shi, Xiaoyang Qin, Xinrui Xu, Ling Li and Xueliang Tian
Agronomy 2025, 15(8), 1944; https://doi.org/10.3390/agronomy15081944 - 12 Aug 2025
Viewed by 107
Abstract
Disease caused by Plasmodiophora brassicae severely disrupts cruciferous crops by altering root physiology and rhizosphere ecology. While pathogen-induced shifts in rhizosphere microbiomes are documented, the mechanisms linking root exudate reprogramming to microbial community remodeling remain poorly understood. Here, we integrated untargeted metabolomics and [...] Read more.
Disease caused by Plasmodiophora brassicae severely disrupts cruciferous crops by altering root physiology and rhizosphere ecology. While pathogen-induced shifts in rhizosphere microbiomes are documented, the mechanisms linking root exudate reprogramming to microbial community remodeling remain poorly understood. Here, we integrated untargeted metabolomics and 16S rRNA sequencing to investigate how root exudates reshape the rhizosphere microbiome of tumorous stem mustard (Brassica juncea var. tumida) through P. brassicae infection. Metabolomic profiling identified 1718 root exudate metabolites, with flavones (e.g., apigenin 7-O-β-D-rutinoside, VIP > 1.5) and phenolic derivatives (e.g., gastrodin) being selectively enriched in infected plants. P. brassicae infection significantly increased rhizobacterial richness (ACE index, p < 0.05) and restructured the community composition, marked by enrichment of Paenibacillus (LDA score > 3.0). Procrustes analysis revealed tight coupling between microbial community shifts and metabolic reprogramming (M2 = 0.446, p = 0.005), while Spearman correlations implicated pathogen-induced metabolites like geniposidic acid in recruiting beneficial Paenibacillus. Our results reveal that plant hosts dynamically secrete defense-related root metabolites to remodel the rhizosphere microbiome in response to P. brassicae infection. This dual-omics approach elucidates a chemical dialogue mediating plant–microbe–pathogen interactions, offering novel insights for engineering disease-suppressive microbiomes through root exudate manipulation. Full article
(This article belongs to the Section Pest and Disease Management)
Show Figures

Figure 1

20 pages, 394 KiB  
Article
Feedback Linearization for a Generalized Multivariable T-S Model
by Basil Mohammed Al-Hadithi, Javier Blanco Rico and Agustín Jiménez
Electronics 2025, 14(15), 3129; https://doi.org/10.3390/electronics14153129 - 6 Aug 2025
Viewed by 196
Abstract
This study presents a novel optimal fuzzy logic control (FLC) strategy based on feedback linearization for the regulation of multivariable nonlinear systems. Building upon an enhanced Takagi–Sugeno (T-S) model previously developed by the authors, the proposed method incorporates a refined parameter-weighting scheme to [...] Read more.
This study presents a novel optimal fuzzy logic control (FLC) strategy based on feedback linearization for the regulation of multivariable nonlinear systems. Building upon an enhanced Takagi–Sugeno (T-S) model previously developed by the authors, the proposed method incorporates a refined parameter-weighting scheme to optimize both local and global approximations within the T-S framework. This approach enables improved selection and minimization of the performance index. The effectiveness of the control strategy is validated through its application to a two-link serial robotic manipulator. The results demonstrate that the proposed FLC achieves robust performance, maintaining system stability and high accuracy even under the influence of noise and load disturbances, with well-damped system behavior and negligible steady-state error. Full article
(This article belongs to the Section Systems & Control Engineering)
Show Figures

Figure 1

20 pages, 12851 KiB  
Article
Evaluation of a Vision-Guided Shared-Control Robotic Arm System with Power Wheelchair Users
by Breelyn Kane Styler, Wei Deng, Cheng-Shiu Chung and Dan Ding
Sensors 2025, 25(15), 4768; https://doi.org/10.3390/s25154768 - 2 Aug 2025
Viewed by 342
Abstract
Wheelchair-mounted assistive robotic manipulators can provide reach and grasp functions for power wheelchair users. This in-lab study evaluated a vision-guided shared control (VGS) system with twelve users completing two multi-step kitchen tasks: a drinking task and a popcorn making task. Using a mixed [...] Read more.
Wheelchair-mounted assistive robotic manipulators can provide reach and grasp functions for power wheelchair users. This in-lab study evaluated a vision-guided shared control (VGS) system with twelve users completing two multi-step kitchen tasks: a drinking task and a popcorn making task. Using a mixed methods approach participants compared VGS and manual joystick control, providing performance metrics, qualitative insights, and lessons learned. Data collection included demographic questionnaires, the System Usability Scale (SUS), NASA Task Load Index (NASA-TLX), and exit interviews. No significant SUS differences were found between control modes, but NASA-TLX scores revealed VGS control significantly reduced workload during the drinking task and the popcorn task. VGS control reduced operation time and improved task success but was not universally preferred. Six participants preferred VGS, five preferred manual, and one had no preference. In addition, participants expressed interest in robotic arms for daily tasks and described two main operation challenges: distinguishing wrist orientation from rotation modes and managing depth perception. They also shared perspectives on how a personal robotic arm could complement caregiver support in their home. Full article
(This article belongs to the Special Issue Intelligent Sensors and Robots for Ambient Assisted Living)
Show Figures

Figure 1

23 pages, 5040 KiB  
Article
Population Density and Diversity of Millipedes in Four Habitat Classes: Comparison Concerning Vegetation Type and Soil Characteristics
by Carlos Suriel, Julián Bueno-Villegas and Ulises J. Jauregui-Haza
Ecologies 2025, 6(3), 55; https://doi.org/10.3390/ecologies6030055 - 1 Aug 2025
Viewed by 280
Abstract
Our study was conducted in the Valle Nuevo National Park and included four habitat classes: tussock grass (Sabapa), pine forest (Pinoc), broadleaf forest (Boslat), and agricultural ecosystem (Ecoag). We had two main objectives: to comparatively describe millipede communities and to determine the relationships [...] Read more.
Our study was conducted in the Valle Nuevo National Park and included four habitat classes: tussock grass (Sabapa), pine forest (Pinoc), broadleaf forest (Boslat), and agricultural ecosystem (Ecoag). We had two main objectives: to comparatively describe millipede communities and to determine the relationships between population density/diversity and soil physicochemical variables. The research was cross-sectional and non-manipulative, with a descriptive and correlational scope; sampling followed a stratified systematic design, with eight transects and 32 quadrats of 1 m2, covering 21.7 km. We found a sandy loam soil with an extremely acidic pH. The highest population density of millipedes was recorded in Sabapa, and the lowest in Ecoag. The highest alpha diversity was shared between Boslat (Margalef = 1.72) and Pinoc (Shannon = 2.53); Sabapa and Boslat showed the highest Jaccard similarity (0.56). The null hypothesis test using the weighted Shannon index revealed a statistically significant difference in diversity between the Boslat–Sabapa and Pinoc–Sabapa pairs. Two of the species recorded highly significant indicator values (IndVal) for two habitat classes. We found significant correlations (p < 0.05) between various soil physicochemical variables and millipede density and diversity. Full article
Show Figures

Figure 1

30 pages, 2389 KiB  
Communication
Beyond Expectations: Anomalies in Financial Statements and Their Application in Modelling
by Roman Blazek and Lucia Duricova
Stats 2025, 8(3), 63; https://doi.org/10.3390/stats8030063 - 15 Jul 2025
Cited by 1 | Viewed by 458
Abstract
The increasing complexity of financial reporting has enabled the implementation of innovative accounting practices that often obscure a company’s actual performance. This project seeks to uncover manipulative behaviours by constructing an anomaly detection model that utilises unsupervised machine learning techniques. We examined a [...] Read more.
The increasing complexity of financial reporting has enabled the implementation of innovative accounting practices that often obscure a company’s actual performance. This project seeks to uncover manipulative behaviours by constructing an anomaly detection model that utilises unsupervised machine learning techniques. We examined a dataset of 149,566 Slovak firms from 2016 to 2023, which included 12 financial parameters. Utilising TwoSteps and K-means clustering in IBM SPSS, we discerned patterns of normative financial activity and computed an abnormality index for each firm. Entities with the most significant deviation from cluster centroids were identified as suspicious. The model attained a silhouette score of 1.0, signifying outstanding clustering quality. We discovered a total of 231 anomalous firms, predominantly concentrated in sectors C (32.47%), G (13.42%), and L (7.36%). Our research indicates that anomaly-based models can markedly enhance the precision of fraud detection, especially in scenarios with scarce labelled data. The model integrates intricate data processing and delivers an exhaustive study of the regional and sectoral distribution of anomalies, thereby increasing its relevance in practical applications. Full article
(This article belongs to the Section Applied Statistics and Machine Learning Methods)
Show Figures

Figure 1

27 pages, 6183 KiB  
Article
A Cartesian Parallel Mechanism for Initial Sonography Training
by Mykhailo Riabtsev, Jean-Michel Guilhem, Victor Petuya, Mónica Urizar and Med Amine Laribi
Robotics 2025, 14(7), 95; https://doi.org/10.3390/robotics14070095 - 10 Jul 2025
Viewed by 372
Abstract
This paper presents the development and analysis of a novel 6-DOF Cartesian parallel mechanism intended for use as a haptic device for initial sonography training. The system integrates a manipulator designed for delivering force feedback in five degrees of freedom; however, in the [...] Read more.
This paper presents the development and analysis of a novel 6-DOF Cartesian parallel mechanism intended for use as a haptic device for initial sonography training. The system integrates a manipulator designed for delivering force feedback in five degrees of freedom; however, in the current stage, only mechanical architecture and kinematic validation have been conducted. Future enhancements will focus on implementing and evaluating closed-loop force control to enable complete haptic feedback. To assess the kinematic performance of the mechanism, a detailed kinematic model was developed, and both the Kinematic Conditioning Index (KCI) and Global Conditioning Index (GCI) were computed to evaluate the system’s dexterity. A trajectory simulation was conducted to validate the mechanism’s movement, using motion patterns typical in sonography procedures. Quasi-static analysis was performed to study the transmission of force and torque for generating realistic haptic feedback, critical for simulating real-life sonography. The simulation results showed consistent performance, with dexterity and torque distribution confirming the suitability of the mechanism for haptic applications in sonography training. Additionally, structural analysis verified the robustness of key components under expected loads. In order to validate the proposed design, the prototype was constructed using a combination of aluminum components and 3D-printed ABS parts, with Igus® linear guides for precise motion. The outcomes of this study provide a foundation for the further development of a low-cost, effective sonography training system. Full article
(This article belongs to the Section Medical Robotics and Service Robotics)
Show Figures

Figure 1

15 pages, 544 KiB  
Article
Gender Diverse Boardrooms and Earnings Manipulation: Does Democracy Matter?
by Evangelos G. Varouchas, Stavros E. Arvanitis and Christos Floros
Risks 2025, 13(7), 126; https://doi.org/10.3390/risks13070126 - 30 Jun 2025
Viewed by 433
Abstract
We investigate the influence of boardroom gender diversity on earnings management. Drawing on a sample of European firms over the 2010–2023 period, we document an inverted U-shaped nexus between boardroom gender heterogeneity and earnings manipulation. Moreover, we also find that the Democracy Index [...] Read more.
We investigate the influence of boardroom gender diversity on earnings management. Drawing on a sample of European firms over the 2010–2023 period, we document an inverted U-shaped nexus between boardroom gender heterogeneity and earnings manipulation. Moreover, we also find that the Democracy Index moderates the curvilinear nexus by flattening the inverted U-curve and shifting the inflection point leftward. Our findings are consistent across various measures of earnings management and different econometric approaches, offering valuable insights for European policymakers. Full article
(This article belongs to the Special Issue Sustainable Corporate Governance and Corporate Risks)
Show Figures

Figure 1

8 pages, 229 KiB  
Article
Predictive Factors for Recurrence of Choledocholithiasis After ERCP with Sphincterotomy in Benign Biliary Tract Disease: A Retrospective Study
by Mercedes Ibáñez-García, Juan Ramon Gómez-López, Jean Carlo Trujillo-Díaz, Pilar Concejo-Cutoli, Carlos Vaquero-Puerta and Juan Carlos Martín-del Olmo
Gastrointest. Disord. 2025, 7(3), 44; https://doi.org/10.3390/gidisord7030044 - 30 Jun 2025
Viewed by 488
Abstract
Objectives: To analyze the factors associated with recurrent choledocholithiasis following endoscopic retrograde cholangiopancreatography (ERCP) with biliary sphincterotomy (BS). Methods: A retrospective, observational, and analytical cohort study was conducted. Patients who underwent ERCP with BS for benign biliary pathology and were followed for a [...] Read more.
Objectives: To analyze the factors associated with recurrent choledocholithiasis following endoscopic retrograde cholangiopancreatography (ERCP) with biliary sphincterotomy (BS). Methods: A retrospective, observational, and analytical cohort study was conducted. Patients who underwent ERCP with BS for benign biliary pathology and were followed for a minimum of two years were included. Demographic and clinical data were collected, including the indication for the procedure, endoscopic findings, performance and timing of cholecystectomy (before or after ERCP), and the need for repeat procedures. Episodes of choledocholithiasis were defined as those occurring at least six months after the initial ERCP. Follow-up continued until patient death, loss of follow-up, or the conclusion of the study. Results: A total of 576 patients were included, with a mean age of 71 years and an average follow-up duration of 131 months. Sixty-nine cases of recurrent choledocholithiasis were documented (11.96%). Multivariate analysis identified the following predictive factors for recurrence: age over 50 years, bile duct dilation upon initial evaluation, history of biliary surgery, cytology sampling, placement of biliary stents, repeated ERCP, biliary diversion procedures, and cholecystectomy prior to the index ERCP. Conclusions: Biliary duct dilation, advanced age, and any previous manipulation of the biliary tree are associated with an increased risk of recurrent choledocholithiasis. Cholecystectomy performed after the initial ERCP was not associated with a reduced recurrence risk. Full article
18 pages, 3892 KiB  
Article
The Impact of Increasing Tree Cover on Landscape Metrics and Connectivity: A Cellular Automata Modelling Approach
by Andrew Speak, Claire Holt, Polyanna Bispo, Ewan McHenry and Matthew Dennis
Forests 2025, 16(7), 1081; https://doi.org/10.3390/f16071081 - 28 Jun 2025
Viewed by 277
Abstract
The United Kingdom has a low percentage cover of woodland, which exists in small, highly fragmented patches. Plans to increase the cover from 14.5% to 17.5% by 2050 will require guidance to help target the planting of new forests to maximise ecological connectivity. [...] Read more.
The United Kingdom has a low percentage cover of woodland, which exists in small, highly fragmented patches. Plans to increase the cover from 14.5% to 17.5% by 2050 will require guidance to help target the planting of new forests to maximise ecological connectivity. This study develops a novel approach to landscape simulation utilising real-world spatial boundary data. The Colne Valley river watershed is chosen as a study site. Three different future woodland creation goals (+10, 30, and 50%) are tested alongside manipulations of the mean new patch size and the mode in which new woodland is created in relation to existing woodland. Scenarios which expanded existing woodland and used riparian planting created larger, more connected patches with more core area. The model outputs are used to assess the impact of the UK woodland increase plans, and past woodland creation efforts are assessed. Increasing the percentage cover generally boosted connectivity, functional connectivity (species dispersals), and increased patch size and core area index. We suggest that proximal growth offers the greatest benefits in terms of biodiversity, but in terms of habitat connectivity smaller isolated woodland patches may also be needed as stepping stones to aid dispersal. Full article
(This article belongs to the Section Forest Inventory, Modeling and Remote Sensing)
Show Figures

Figure 1

19 pages, 4327 KiB  
Article
Research on a Two-Stage Human-like Trajectory-Planning Method Based on a DAC-MCLA Network
by Hao Xu, Guanyu Zhang and Huanyu Zhao
Vehicles 2025, 7(3), 63; https://doi.org/10.3390/vehicles7030063 - 24 Jun 2025
Viewed by 522
Abstract
Due to the complexity of the unstructured environment and the high-level requirement of smoothness when a tracked transportation vehicle is traveling, making the vehicle travel as safely and smoothly as when a skilled operator is maneuvering the vehicle is a critical issue worth [...] Read more.
Due to the complexity of the unstructured environment and the high-level requirement of smoothness when a tracked transportation vehicle is traveling, making the vehicle travel as safely and smoothly as when a skilled operator is maneuvering the vehicle is a critical issue worth studying. To this end, this study proposes a trajectory-planning method for human-like maneuvering. First, several field equipment operators are invited to manipulate the model vehicle for obstacle avoidance driving in an outdoor scene with densely distributed obstacles, and the manipulation data are collected. Then, in terms of the lateral displacement, by comparing the similarity between the data as well as the curvature change degree, the data with better smoothness are screened for processing, and a dataset of human manipulation behaviors is established for the training and testing of the trajectory-planning network. Then, using the dynamic parameters as constraints, a two-stage planning approach utilizes a modified deep network model to map trajectory points at multiple future time steps through the relationship between the spatial environment and the time series. Finally, after the experimental test and analysis with multiple methods, the root-mean-square-error and the mean-average-error indexes between the planned trajectory and the actual trajectory, as well as the trajectory-fitting situation, reveal that this study’s method is capable of planning long-step trajectory points in line with human manipulation habits, and the standard deviation of the angular acceleration and the curvature of the planned trajectory show that the trajectory planned using this study’s method has a satisfactory smoothness. Full article
Show Figures

Figure 1

9 pages, 452 KiB  
Systematic Review
The Impact of Sleep Deprivation on Hunger-Related Hormones: A Meta-Analysis and Systematic Review
by Delaney Gresser, Kelsey McLimans, Sheldon Lee and Maria Morgan-Bathke
Obesities 2025, 5(2), 48; https://doi.org/10.3390/obesities5020048 - 19 Jun 2025
Viewed by 2926
Abstract
Introduction: Short sleep duration has been implicated in an increased body mass index (BMI), potentially through disruptions in appetite-regulating hormones, such as leptin and ghrelin. Methods: This systematic review and meta-analysis aimed to examine the effects of sleep deprivation on circulating levels of [...] Read more.
Introduction: Short sleep duration has been implicated in an increased body mass index (BMI), potentially through disruptions in appetite-regulating hormones, such as leptin and ghrelin. Methods: This systematic review and meta-analysis aimed to examine the effects of sleep deprivation on circulating levels of these hunger hormones and their possible role in obesity. Six randomized controlled trials (RCTs) involving 141 participants were included in the analysis, with sleep deprivation typically manipulated through restricting sleep by 4–5 h or keeping participants awake for 24 h. Data on leptin and ghrelin levels were extracted from blood samples, and statistical analysis was conducted using a random-effects model. Results: The results revealed no significant changes in ghrelin (SMD: −0.27, 95% CI: −1.00, 0.46, p = 0.4712) or leptin (SMD: 0.10, 95% CI: −0.22, 0.42, p = 0.5266) levels following sleep deprivation, contrary to prior studies suggesting a link between sleep loss and altered appetite regulation. Significant heterogeneity was observed for ghrelin levels (I2 = 83.83%, p < 0.001), but not for leptin (I2 = 21.86%, p = 0.4049). Variations in study design, including differences in blood sampling timing and participant BMI, may explain this variability. Conclusions: These findings suggest that, at least in the short term, sleep deprivation does not consistently affect leptin and ghrelin levels. Given the complex relationship between sleep and appetite regulation, future research should focus on standardized study designs, participant characteristics, and more precise measurements to further explore these mechanisms. Full article
Show Figures

Figure 1

10 pages, 2060 KiB  
Article
Passive Frequency Tunability in Moiré-Inspired Frequency Selective Surfaces Based on Full-Wave Simulation
by Jieun Hwang and Sungcheol Hong
Micromachines 2025, 16(6), 702; https://doi.org/10.3390/mi16060702 - 12 Jun 2025
Viewed by 2856
Abstract
This paper presents a simulation-based investigation of passive frequency tunability in frequency-selective surfaces (FSSs) enabled by Moiré pattern interference. By overlapping two identical hexagonal FSS layers and introducing rotational misalignment between them, we demonstrate that the resulting Moiré patterns induce significant shifts in [...] Read more.
This paper presents a simulation-based investigation of passive frequency tunability in frequency-selective surfaces (FSSs) enabled by Moiré pattern interference. By overlapping two identical hexagonal FSS layers and introducing rotational misalignment between them, we demonstrate that the resulting Moiré patterns induce significant shifts in the resonance frequency without any external bias or active components. Using full-wave simulations in HFSS, we show that rotating the second layer from 0° to 30° can shift the resonant frequency from 4.4 GHz down to 1.2 GHz. This tunable behavior emerges solely from geometrical manipulation, offering a low-complexity alternative to active tuning methods that rely on varactors or micro-electromechanical systems (MEMSs). We discuss the theoretical basis for this tuning mechanism based on effective periodicity modulation via rotational interference and highlight potential applications in passive reconfigurable filters and refractive index sensors. The proposed approach provides a promising route for implementing tunable electromagnetic structures without compromising simplicity, power efficiency, or integration compatibility. Full article
(This article belongs to the Special Issue Novel Electromagnetic and Acoustic Devices)
Show Figures

Figure 1

13 pages, 1827 KiB  
Article
Response of the Invasive Cyanobacterium Raphidiopsis raciborskii to Iron and Phosphorus Concentrations in the Habitat: Effects on Growth and Cellular Phosphorus Distribution
by Wenting Shen, Han Yang, Gaibian Ding, Bo Li, Xin Gan, Zijie Yuan, Liqing Wang and Wei Zhang
Diversity 2025, 17(6), 386; https://doi.org/10.3390/d17060386 - 30 May 2025
Viewed by 355
Abstract
Harmful Raphidiopsis raciborskii blooms threaten aquatic ecosystems via toxin production, hypoxia induction, and biodiversity loss. To elucidate the synergistic regulatory mechanisms of Fe3+ and phosphorus (P) in cyanobacterial growth, we used a sterile pure culture system under laboratory conditions. We set different [...] Read more.
Harmful Raphidiopsis raciborskii blooms threaten aquatic ecosystems via toxin production, hypoxia induction, and biodiversity loss. To elucidate the synergistic regulatory mechanisms of Fe3+ and phosphorus (P) in cyanobacterial growth, we used a sterile pure culture system under laboratory conditions. We set different phosphorus sources (organic phosphorus and inorganic phosphorus) and low phosphorus concentration of R. raciborskii culture medium for culture, and set different Fe3+ addition amount to determine the basic growth index of cyanobacteria cells and the phosphorus content of different components. The results revealed that under conditions of sufficient inorganic phosphorus, there was a logarithmic relationship between ferric ammonium citrate (Fe3+) and the specific growth rate of R. raciborskii. Fe3+ > 2 mg/L enhanced IPS enrichment and biomass accumulation. However, in oligotrophic or mesotrophic environments with low inorganic phosphorus concentrations, the effect of Fe3+ on the growth of R. raciborskii contrasted with that observed in high-IP (eutrophic) environments, exhibiting a pattern of ‘low promotion and high inhibition’. Under organic phosphorus conditions, R. raciborskii converted phosphorus by increasing alkaline phosphatase activity (APA), but this metabolic compensation failed to restore physiological functions, resulting in growth suppression and enhanced cellular phosphorus reserves. Our results establish quantitative linkages between Fe3+-P co-limitation thresholds and algal adaptive responses, providing mechanistic insights for controlling bloom dynamics through targeted manipulation of Fe-P bioavailability. Full article
Show Figures

Figure 1

19 pages, 2154 KiB  
Article
A New Method for Inducing Mental Fatigue: A High Mental Workload Task Paradigm Based on Complex Cognitive Abilities and Time Pressure
by Lei Ren, Lin Wu, Tingwei Feng and Xufeng Liu
Brain Sci. 2025, 15(6), 541; https://doi.org/10.3390/brainsci15060541 - 22 May 2025
Cited by 2 | Viewed by 1197
Abstract
Objectives: With the advancement of modern society, people in cognitively demanding jobs are increasingly exposed to occupational stress. Prolonged and high-intensity cognitive activities are prone to inducing mental fatigue (MF), which adversely affects both psychological and physiological well-being, as well as task [...] Read more.
Objectives: With the advancement of modern society, people in cognitively demanding jobs are increasingly exposed to occupational stress. Prolonged and high-intensity cognitive activities are prone to inducing mental fatigue (MF), which adversely affects both psychological and physiological well-being, as well as task performance. Existing methods for inducing MF often demonstrate limited effectiveness due to insufficient cognitive load from overly simplistic tasks and the potential emotional disturbance caused by prolonged task duration. This study aims to explore a comprehensive cognitive task paradigm that integrates task complexity and time pressure, thereby developing a novel and effective method for inducing MF based on high mental workload (HMW) and the effects of time on task (ToT). Methods: Using convenience sampling, university students from a medical college were recruited as participants. The study was conducted in three steps. In the first step, we constructed a 1-back Stroop (BS) task paradigm by designing tasks with varying levels of complexity and incorporating time pressure through experimental manipulation. In the second step, the efficacy of the BS task paradigm was validated by comparing it with the traditional 2-back cognitive task in inducing HMW. In the third step, an MF induction protocol was established by combining the BS task paradigm with the ToT effect (i.e., a continuous 30 min task). Effectiveness was assessed using validated subjective measures (NASA Task Load Index [NASA-TLX] and Visual Analog Scale [VAS]) and objective behavioral metrics (reaction time and accuracy). Statistical analyses were performed using analysis of variance (ANOVA) and t-tests. Results: The BS task paradigm, which integrates complex cognitive abilities such as attention, working memory, inhibitory control, cognitive flexibility, and time pressure, demonstrated significantly higher NASA-TLX total scores, as well as elevated scores in mental demand, temporal demand, performance, and frustration scales, compared to the 2-back task. Additionally, the BS task paradigm resulted in longer reaction times and lower accuracy. As the BS task progressed, participants exhibited significant increases in mental fatigue (MF), mental effort (ME), mental stress (MS), and subjective feelings of fatigue, while the overall number of correct trials and accuracy showed a significant decline. Furthermore, reaction times in the psychomotor vigilance test (PVT) were significantly prolonged, and the number of lapses significantly increased between pre- and post-task assessments. Conclusions: The BS task paradigm based on complex cognitive abilities and time pressure could effectively induce an HMW state. Combined with the ToT effect, the BS paradigm demonstrated effective MF induction capabilities. This study provides a novel and reliable method for inducing HMW and MF, offering a valuable tool for future research in related fields. Full article
(This article belongs to the Section Cognitive, Social and Affective Neuroscience)
Show Figures

Figure 1

Back to TopTop