Root-Exudate-Mediated Modulation of the Rhizosphere Microbiome in Brassica juncea var. tumida During Plasmodiophora brassicae Infection
Abstract
1. Introduction
2. Materials and Methods
2.1. Collection of P. brassicae Resting Spores in Tumorous Stem Mustard
2.2. Treatment of Tumorous Stem Mustard by P. brassicae
2.3. Root Exudate Collection
2.4. Metabolomic Analysis of Root Exudates
2.5. DNA Extraction, Illumina Sequencing, and Analysis
2.6. Associations Between Root Exudates and Rhizosphere Bacterial Communities
3. Results
3.1. Effects of the P. brassicae Infection on Root Exudate Composition
3.2. Effects of the P. brassicae Infection on Rhizosphere Bacterial Communities
3.3. Congruence Between Rhizosphere Bacterial Communities and Root Exudates
4. Discussion
4.1. P. brassicae Infection Alters the Root Exudate Profiles
4.2. Rhizosphere Microbial Community Restructuring Under P. brassicae Infection Conditions
4.3. Root Exudates Regulate Rhizosphere Microbes
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- National Development and Reform Commission/Ministry of Agriculture. National vegetable industry development plan. China Veg. 2012, 3, 1–2. [Google Scholar]
- Zamani-Noor, N.; Brand, S.; Söchting, H.P. Effect of pathogen virulence on pathogenicity, host range and reproduction of Plasmodiophora brassicae, the causal agent of clubroot disease. Plant Dis. 2022, 106, 57–64. [Google Scholar] [CrossRef]
- Xu, X.; Wu, C.; Zhang, F.; Yao, J.; Fan, L.; Liu, Z.; Yao, Y. Comprehensive review of Plasmodiophora brassicae: Pathogenesis, pathotype diversity, and integrated control methods. Front. Microbiol. 2025, 16, 1531393. [Google Scholar] [CrossRef] [PubMed]
- Malinowski, R.; Truman, W.; Blicharz, S. Genius architect or clever thief-how Plasmodiophora brassicae reprograms host development to establish a pathogen-oriented physiological sink. Mol. Plant Microbe Interact. 2019, 32, 1259–1266. [Google Scholar] [CrossRef] [PubMed]
- Olszak, M.; Truman, W.; Stefanowicz, K.; Sliwinska, E.; Ito, M.; Walerowski, P. Transcriptional profiling identifies critical steps of cell cycle reprogramming necessary for Plasmodiophora brassicae-driven gall formation in arabidopsis. Plant J. 2019, 97, 715–729. [Google Scholar] [CrossRef]
- Irani, S.; Trost, B.; Waldner, M.; Nayidu, N.; Tu, J.; Kusalik, A.J.; Todd, C.D.; Wei, Y.; Bonham-Smith, P.C. Transcriptome analysis of response to Plasmodiophora brassicae infection in the arabidopsis shoot and root. BMC Genom. 2018, 19, 23. [Google Scholar] [CrossRef]
- Hwang, S.F.; Strelkov, S.E.; Feng, J.; Gossen, B.D.; Howard, R.J. Plasmodiophora brassicae: A review of an emerging pathogen of the canadian canola (Brassica napus) crop. Mol. Plant Pathol. 2012, 13, 105–113. [Google Scholar] [CrossRef] [PubMed]
- Schwelm, A.; Fogelqvist, J.; Knaust, A. The Plasmodiophora brassicae genome reveals insights in its life cycle and ancestry of chitin synthases. Sci. Rep. 2015, 5, 11153. [Google Scholar] [CrossRef]
- Rolfe, S.A.; Strelkov, S.E.; Links, M.G.; Clarke, W.E.; Robinson, S.J.; Djavaheri, M.; Malinowski, R.; Haddadi, P.; Kagale, S.; Parkin, I.A.; et al. The compact genome of the plant pathogen Plasmodiophora brassicae is adapted to intracellular interactions with host brassica spp. BMC Genom. 2016, 17, 272. [Google Scholar] [CrossRef]
- Liu, Y.; Lai, J.; Sun, X.; Huang, L.; Sheng, Y.; Zhang, Q. Comparative metagenomic analysis reveals rhizosphere microbiome assembly and functional adaptation changes caused by clubroot disease in chinese cabbage. Microorganisms 2024, 12, 1370. [Google Scholar] [CrossRef]
- Vives-Peris, V.; de Ollas, C.; Gómez-Cadenas, A.; Pérez-Clemente, R.M. Root exudates: From plant to rhizosphere and beyond. Plant Cell Rep. 2020, 39, 3–17. [Google Scholar] [CrossRef]
- Sun, H.; Jiang, S.; Jiang, C.; Wu, C.; Gao, M.; Wang, Q. A review of root exudates and rhizosphere microbiome for crop production. Environ. Sci. Pollut. Res. 2021, 28, 54497–54510. [Google Scholar] [CrossRef] [PubMed]
- Kang, H.J.; Chai, A.L.; Lin, Z.L.; Shi, Y.X.; Xie, X.W.; Li, L. Deciphering differences in microbial community diversity between clubroot-diseased and healthy soils. Microorganisms 2024, 12, 251. [Google Scholar] [CrossRef]
- Wu, W.X.; Huang, X.Q.; Zhang, L.; Yang, X.X.; Li, H.Z.; Liu, Y. Crucifer clubroot disease changes the microbial community structure of rhizosphere soil. Acta Ecol. Sin. 2020, 40, 1532–1541. [Google Scholar] [CrossRef]
- Lebreton, L.; Guillerm-Erckelboudt, A.Y.; Gazengel, K.; Linglin, J.; Ourry, M.; Glory, P. Temporal dynamics of bacterial and fungal communities during the infection of brassica rapa roots by the protist Plasmodiophora brassicae. PLoS ONE 2019, 14, e0204195. [Google Scholar] [CrossRef] [PubMed]
- Cordero-Elvia, J.; Galindo-González, L.; Fredua-Agyeman, R.; Hwang, S.F.; Strelkov, S.E. Clubroot-induced changes in the root and rhizosphere microbiome of susceptible and resistant canola. Plants 2024, 13, 1880. [Google Scholar] [CrossRef]
- Gazengel, K.; Aigu, Y.; Lariagon, C.; Humeau, M.; Gravot, A.; Manzanares-Dauleux, M.J. Nitrogen supply and host-plant genotype modulate the transcriptomic profile of Plasmodiophora brassicae. Front. Microbiol. 2021, 12, 701067. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Zheng, X.; Sarenqimuge, S.; von Tiedemann, A. The soil bacterial community regulates germination of Plasmodiophora brassicae resting spores rather than root exudates. PloS Pathog. 2023, 19, e1011175. [Google Scholar] [CrossRef]
- Tian, X.; Wang, D.; Mao, Z.; Pan, L.; Liao, J.; Cai, Z. Infection of Plasmodiophora brassicae changes the fungal endophyte community of tumourous stem mustard roots as revealed by high-throughput sequencing and culture-dependent methods. PLoS ONE 2019, 14, e0214975. [Google Scholar] [CrossRef]
- Wang, D.; Sun, T.; Zhao, S.; Pan, L.; Liu, H.; Tian, X. Physiological change alters endophytic bacterial community in clubroot of tumorous stem mustard infected by Plasmodiophora brassicae. BMC Microbiol. 2020, 20, 244. [Google Scholar] [CrossRef]
- Wang, H.; Zhang, J.; Wang, Y.; Fang, B.; Ge, W.; Wang, X.; Zou, J.; Ji, R. Transcriptome analysis of chinese cabbage infected with Plasmodiophora brassicae in the primary stage. Sci. Rep. 2024, 14, 26180. [Google Scholar] [CrossRef]
- Ji, R.; Zhao, L.; Xing, M.; Shen, X.; Bi, Q.; Peng, S. Infection of Plasmodiophora brassicae in chinese cabbage. Genet. Mol. Res. 2014, 13, 10976–10982. [Google Scholar] [CrossRef]
- de Vries, F.T.; Williams, A.; Stringer, F.; Willcocks, R.; McEwing, R.; Langridge, H.; Straathof, A.L. Changes in root-exudate-induced respiration reveal a novel mechanism through which drought affects ecosystem carbon cycling. New Phytol. 2019, 224, 132–145. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Huang, J. Untargeted metabolomic analysis of metabolites related to body dysmorphic disorder (bdd). Funct. Integr. Genom. 2023, 23, 70. [Google Scholar] [CrossRef]
- Gustavsson, E.K.; Zhang, D.; Reynolds, R.H.; Garcia-Ruiz, S.; Ryten, M. Ggtranscript: An r package for the visualization and interpretation of transcript isoforms using ggplot2. Bioinformatics 2022, 38, 3844–3846. [Google Scholar] [CrossRef]
- Peiffer, J.A.; Spor, A.; Koren, O.; Jin, Z.; Tringe, S.G.; Dangl, J.L. Diversity and heritability of the maize rhizosphere microbiome under field conditions. Proc. Natl. Acad. Sci. USA 2013, 110, 6548–6553. [Google Scholar] [CrossRef]
- Chen, S.; Zhou, Y.; Chen, Y.; Gu, J. Fastp: An ultra-fast all-in-one fastq preprocessor. Bioinformatics 2018, 34, i884–i890. [Google Scholar] [CrossRef]
- Magoč, T.; Salzberg, S.L. Flash: Fast length adjustment of short reads to improve genome assemblies. Bioinformatics 2011, 27, 2957–2963. [Google Scholar] [CrossRef] [PubMed]
- Edgar, R.C. Search and clustering orders of magnitude faster than blast. Bioinformatics 2010, 26, 2460–2461. [Google Scholar] [CrossRef] [PubMed]
- Balzerani, F.; Blasco, T.; Pérez-Burillo, S.; Francino, M.P.; Rufián-Henares, J.Á.; Valcarcel, L.V.; Planes, F.J. Q2-metnet: Qiime2 package to analyse 16s rrna data via high-quality metabolic reconstructions of the human gut microbiota. Bioinformatics 2024, 40, btae455. [Google Scholar] [CrossRef] [PubMed]
- Edgar, R.C. Uparse: Highly accurate otu sequences from microbial amplicon reads. Nat. Methods 2013, 10, 996–998. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Cole, J.R. Updated rdp taxonomy and rdp classifier for more accurate taxonomic classification. Microbiol. Resour. Announc. 2024, 13, e0106323. [Google Scholar] [CrossRef]
- Dixon, P. Vegan, a package of r functions for community ecology. J. Veg. Sci. 2003, 14, 927–930. [Google Scholar] [CrossRef]
- Segata, N.; Izard, J.; Waldron, L.; Gevers, D.; Miropolsky, L.; Garrett, W.S.; Huttenhower, C. Metagenomic biomarker discovery and explanation. Genome Biol. 2011, 12, R60. [Google Scholar] [CrossRef] [PubMed]
- Friendly, M. Corrgrams: Exploratory displays for correlation matrices. Am. Stat. 2002, 56, 316–324. [Google Scholar] [CrossRef]
- Malinowski, R.; Smith, J.A.; Fleming, A.J.; Scholes, J.D.; Rolfe, S.A. Gall formation in clubroot-infected arabidopsis results from an increase in existing meristematic activities of the host but is not essential for the completion of the pathogen life cycle. Plant J. 2012, 71, 226–238. [Google Scholar] [CrossRef]
- Nazaruk, J.; Gudej, J. Flavonoid compounds from the flowers of Cirsium rivulare (jacq.) all. Acta Pol. Pharm. 2003, 60, 87–89. [Google Scholar]
- Yang, K.; Fu, R.; Feng, H.; Jiang, G.; Finkel, O.; Sun, T.; Liu, M.; Huang, B.; Li, S.; Wang, X.; et al. Rin enhances plant disease resistance via root exudate-mediated assembly of disease-suppressive rhizosphere microbiota. Mol. Plant. 2023, 16, 1379–1395. [Google Scholar] [CrossRef]
- El Menyiy, N.; Elouafy, Y.; Moubachir, R.; Abdnim, R.; Benali, T.; Taha, D.; Khalid, A.; Abdalla, A.N.; Hamza, S.M.A.; El-Shazly, M.; et al. Chemistry, biological activities, and pharmacological properties of gastrodin: Mechanism insights. Chem. Biodivers. 2024, 21, e202400402. [Google Scholar] [CrossRef]
- Liu, S.; Yang, L.; Zheng, S.; Hou, A.; Man, W.; Zhang, J.; Wang, S.; Wang, X.; Yu, H.; Jiang, H. A review: The botany, ethnopharmacology, phytochemistry, pharmacology of Cinnamomi cortex. RSC Adv. 2021, 11, 27461–27497. [Google Scholar] [CrossRef] [PubMed]
- Marques, L.; Vale, N. Salbutamol in the management of asthma: A review. Int. J. Mol. Sci. 2022, 23, 14207. [Google Scholar] [CrossRef]
- Herklotz, P.A.; Gurung, P.; Vanden Heuvel, B.; Kinney, C.A. Uptake of human pharmaceuticals by plants grown under hydroponic conditions. Chemosphere 2010, 78, 1416–1421. [Google Scholar] [CrossRef]
- Cheng, S.; Jia, H.; Zhang, Y.; Zhou, J.; Chen, X.; Wu, L.; Wang, J. Geniposidic acid from Eucommia ulmoides oliver staminate flower tea mitigates cellular oxidative stress via activating akt/nrf2 signaling. Molecules 2022, 27, 8568. [Google Scholar] [CrossRef]
- Kudjordjie, E.N.; Santos, S.S.; Topalović, O.; Vestergård, M. Distinct changes in tomato-associated multi-kingdom microbiomes during meloidogyne incognita parasitism. Environ. Microbiome. 2024, 19, 53. [Google Scholar] [CrossRef] [PubMed]
- Deng, Y.; Wu, W.; Huang, X.; Yang, X.; Yu, Y.; Zhang, Z.; Hu, Z.; Zhou, X.; Zhou, K.; Liu, Y.L. Characterization of rhizosphere bacterial communities in oilseed rape cultivars with different susceptibility to Plasmodiophora brassicae infection. Front. Plant Sci. 2025, 15, 1496770. [Google Scholar] [CrossRef]
- Kudjordjie, E.N.; Sapkota, R.; Nicolaisen, M. Arabidopsis assemble distinct root-associated microbiomes through the synthesis of an array of defense metabolites. PLoS ONE 2021, 16, e0259171. [Google Scholar] [CrossRef] [PubMed]
- Sikder, M.M.; Vestergård, M.; Kyndt, T.; Topalović, O.; Kudjordjie, E.N.; Nicolaisen, M. Genetic disruption of arabidopsis secondary metabolite synthesis leads to microbiome-mediated modulation of nematode invasion. ISME J. 2022, 1, 12. [Google Scholar] [CrossRef] [PubMed]
- Dobrzyński, J.; Naziębło, A. Paenibacillus as a biocontrol agent for fungal phytopathogens: Is p. Polymyxa the only one worth attention? Microb. Ecol. 2024, 87, 134. [Google Scholar] [CrossRef] [PubMed]
- Fu, Y.; Wang, J.; Su, Z.; Chen, Q.; Li, J.; Zhao, J.; Xuan, W.; Miao, Y.; Zhang, J.; Zhang, R. Sinomonas gamaensis neau-hv1 remodels the iaa14-arf7/19 interaction to promote plant growth. New Phytol. 2025, 245, 2016–2037. [Google Scholar] [CrossRef]
- Olanrewaju, O.S.; Ayangbenro, A.S.; Glick, B.R.; Babalola, O.O. Plant health: Feedback effect of root exudates-rhizobiome interactions. Appl. Microbiol. Biotechnol. 2019, 103, 1155–1166. [Google Scholar] [CrossRef]
- Sasse, J.; Martinoia, E.; Northen, T. Feed your friends: Do plant exudates shape the root microbiome? Trends Plant Sci. 2018, 23, 25–41. [Google Scholar] [CrossRef]
- Afridi, M.S.; Kumar, A.; Javed, M.A.; Dubey, A.; de Medeiros, F.H.V.; Santoyo, G. Harnessing root exudates for plant microbiome engineering and stress resistance in plants. Microbiol. Res. 2024, 279, 127564. [Google Scholar] [CrossRef]
- Liang, X.; Zhou, K.; Li, P.; Wan, D.; Liu, J.; Yi, X.; Peng, Y. Characteristics of endophytic bacteria and active ingredients in the eucommiae cortex from different origins. Front. Microbiol. 2023, 14, 1164674. [Google Scholar] [CrossRef]
- Neal, A.L.; Ahmad, S.; Gordon-Weeks, R.; Ton, J. Benzoxazinoids in root exudates of maize attract Pseudomonas putida to the rhizosphere. PLoS ONE 2012, 7, e35498. [Google Scholar] [CrossRef]
- Su, H.; Sheng, X.; Liu, Y. Exploring the substrate specificity and catalytic mechanism of imidazolonepropionase (huti) from Bacillus subtilis. Phys. Chem. Chem. Phys. 2016, 18, 27928–27938. [Google Scholar] [CrossRef]
- Smith, P.; Schuster, M. Public goods and cheating in microbes. Curr Biol. 2019, 29, R442–R447. [Google Scholar] [CrossRef] [PubMed]
- Upadhyay, S.K.; Srivastava, A.K.; Rajput, V.D.; Chauhan, P.K.; Bhojiya, A.A.; Jain, D.; Chaubey, G.; Dwivedi, P.; Sharma, B.; Minkina, T. Root exudates: Mechanistic insight of plant growth promoting rhizobacteria for sustainable crop production. Front. Microbiol. 2022, 13, 916488. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Waghmode, T.R.; Sun, R.; Kuramae, E.E.; Hu, C.; Liu, B. Root-associated microbiomes of wheat under the combined effect of plant development and nitrogen fertilization. Microbiome 2019, 7, 136. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, D.; Liao, J.; Cai, Z.; Luo, L.; Shi, J.; Qin, X.; Xu, X.; Li, L.; Tian, X. Root-Exudate-Mediated Modulation of the Rhizosphere Microbiome in Brassica juncea var. tumida During Plasmodiophora brassicae Infection. Agronomy 2025, 15, 1944. https://doi.org/10.3390/agronomy15081944
Wang D, Liao J, Cai Z, Luo L, Shi J, Qin X, Xu X, Li L, Tian X. Root-Exudate-Mediated Modulation of the Rhizosphere Microbiome in Brassica juncea var. tumida During Plasmodiophora brassicae Infection. Agronomy. 2025; 15(8):1944. https://doi.org/10.3390/agronomy15081944
Chicago/Turabian StyleWang, Diandong, Jingjing Liao, Zhaoming Cai, Luyun Luo, Jiayu Shi, Xiaoyang Qin, Xinrui Xu, Ling Li, and Xueliang Tian. 2025. "Root-Exudate-Mediated Modulation of the Rhizosphere Microbiome in Brassica juncea var. tumida During Plasmodiophora brassicae Infection" Agronomy 15, no. 8: 1944. https://doi.org/10.3390/agronomy15081944
APA StyleWang, D., Liao, J., Cai, Z., Luo, L., Shi, J., Qin, X., Xu, X., Li, L., & Tian, X. (2025). Root-Exudate-Mediated Modulation of the Rhizosphere Microbiome in Brassica juncea var. tumida During Plasmodiophora brassicae Infection. Agronomy, 15(8), 1944. https://doi.org/10.3390/agronomy15081944