Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (71)

Search Parameters:
Keywords = malting optimization

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 418 KB  
Review
Gastrointestinal Lymphomas: A Comprehensive Review of Epidemiology, Clinical Features, Diagnosis, Histopathology, and Management
by Vignesh Krishnan Nagesh, Ruchi Bhuju, Ahmed S. Mohammed, Emelyn Martinez, Marina Basta, Deepa Francis, Shraboni Dey, Maggie James, Damien Islek, Sanket Bhattarai, Mohammed A. Saafan, Shruthi Badam and Adam Atoot
Lymphatics 2025, 3(4), 31; https://doi.org/10.3390/lymphatics3040031 - 29 Sep 2025
Abstract
Gastrointestinal (GI) lymphomas are a diverse group of extranodal non-Hodgkin lymphomas primarily affecting the stomach, small intestine, and colon. They present with non-specific symptoms such as abdominal pain, weight loss, or GI bleeding, making early diagnosis challenging. Histologic subtypes vary, with mucosa-associated lymphoid [...] Read more.
Gastrointestinal (GI) lymphomas are a diverse group of extranodal non-Hodgkin lymphomas primarily affecting the stomach, small intestine, and colon. They present with non-specific symptoms such as abdominal pain, weight loss, or GI bleeding, making early diagnosis challenging. Histologic subtypes vary, with mucosa-associated lymphoid tissue (MALT) lymphoma and diffuse large B-cell lymphoma (DLBCL) being the most common. Diagnosis involves endoscopic evaluation with biopsy, cross-sectional imaging, and often PET-CT. Management is subtype-dependent, including antibiotics for H. pylori-associated MALT lymphoma, chemotherapy, immunotherapy, and occasionally surgery. A multidisciplinary approach is essential for optimal outcomes. Core Tip: Gastrointestinal lymphomas are rare but clinically significant malignancies with variable presentations. Accurate diagnosis and tailored treatment based on the histologic subtype and site are critical, requiring close collaboration among gastroenterologists, pathologists, oncologists, and radiologists. Full article
(This article belongs to the Collection Lymphomas)
Show Figures

Figure 1

21 pages, 3902 KB  
Article
Identification of Trichoderma spp., Their Biomanagement Against Fusarium proliferatum, and Growth Promotion of Zea mays
by Eman G. A. M. El-Dawy, Youssuf A. Gherbawy, Pet Ioan and Mohamed A. Hussein
J. Fungi 2025, 11(9), 683; https://doi.org/10.3390/jof11090683 - 19 Sep 2025
Viewed by 371
Abstract
Species of Trichoderma are currently in high demand as eco-friendly and commercial biocontrol agents due to the proliferation of organic farming methods. This study focused on the potential biocontrol agents of Trichoderma against plant-pathogenic fungi. Trichoderma strains were isolated from different sources (soil, [...] Read more.
Species of Trichoderma are currently in high demand as eco-friendly and commercial biocontrol agents due to the proliferation of organic farming methods. This study focused on the potential biocontrol agents of Trichoderma against plant-pathogenic fungi. Trichoderma strains were isolated from different sources (soil, grapevine tissues, lemon fruit, and maize seeds), and were characterized morphologically on two culture media, i.e., Potato Dextrose Agar and Malt Extract Agar, and molecularly using two gene regions: translation elongation factor 1 (TEF) and nuclear ribosomal internal transcribed spacer (ITS). Phylogenetic trees were constructed. As a result, two Trichoderma species were identified, i.e., T. afroharzianum and T. longibrachiatum. The biocontrol effects of all isolated strains of Trichoderma on Fusarium plant damping-off and the promotion of plant growth were evaluated. Additionally, the antagonistic efficiency of Trichoderma spp. against F. proliferatum using the dual-culture method was evaluated. Under greenhouse conditions, T. afroharzianum strains AEMCTa3 and AEMCTa6 were used to treat maize plants infected with Fusarium. The application of Trichoderma significantly reduced the disease index to 15.6% and 0%, respectively. Additionally, maize seedlings showed significant improvements in shoot and root lengths and fresh and dry weights and increased photosynthetic pigment contents compared to Fusarium-infected plants and the untreated control. The gas chromatography–mass spectrometry (GC-MS) analysis of T. afroharzianum extracts identified a variety of bioactive compounds. These compounds included antifungal substances like N-ethyl-1,3-dithioisoindoline, as well as plant growth-promoting hormones like 6-pentyl-α-pyrone and gibberellic acid. Interestingly, the analysis also revealed new phenylacetic acid derivatives that may play important roles in both plant health and disease resistance. From a practical perspective, developing diverse application methods for Trichoderma is essential to optimize its role as a biocontrol agent and a plant growth promoter, thereby supporting sustainable agriculture through improved adaptability and effectiveness across different farming systems. Full article
(This article belongs to the Section Fungi in Agriculture and Biotechnology)
Show Figures

Figure 1

19 pages, 995 KB  
Article
Application of HPSEC Technique and In Silico Analysis in the Evaluation of Bioactive Peptides and Polysaccharide Profile in Wort Supplemented with Malted and Unmalted Hemp Seeds
by Robert Duliński, Marek Zdaniewicz, Łukasz Byczyński, Krystyna Żuk-Gołaszewska and Bożena Bukowska
Molecules 2025, 30(18), 3676; https://doi.org/10.3390/molecules30183676 - 10 Sep 2025
Viewed by 309
Abstract
This study examined the profile of bioactive peptides and polysaccharides in beer wort enriched with malted and unmalted hemp seeds. The aim of this research was to evaluate the influence of different hemp processing methods (malted versus unmalted) on the concentration and characteristics [...] Read more.
This study examined the profile of bioactive peptides and polysaccharides in beer wort enriched with malted and unmalted hemp seeds. The aim of this research was to evaluate the influence of different hemp processing methods (malted versus unmalted) on the concentration and characteristics of bioactive compounds—specifically (1) peptides exhibiting antioxidant, anti-inflammatory, and antihypertensive activities and (2) soluble polysaccharide fractions that affect wort viscosity and prebiotic potential. The results indicated that supplementation with 10% malted hemp seeds was most favorable. This level of addition enhanced the peptide composition of the wort without adversely affecting fermentation efficiency. Moreover, it facilitated the generation of functional peptides with antioxidant and flavor-enhancing properties and introduced non-fermentable polysaccharides that improved wort viscosity and foam stability without the negative effects observed at higher hemp seed concentrations. In contrast, a 30% addition of hemp seeds, particularly in unmalted form, led to a reduction in fermentable sugar and peptide contents and increased the likelihood of fermentation slowdown. The incorporation of 10% malted hemp seeds has the potential to enhance the sensory and functional attributes of beer, primarily due to the presence of bioactive peptides and polysaccharides, while maintaining fermentation performance and clarity. Fermentation and brewing efficiency may decline at higher hemp seed inclusion rates, warranting further investigation. The use of unmalted hemp necessitates enzymatic treatment to improve fermentable sugar availability. Additionally, high-performance size-exclusion chromatography (HPSEC) proved to be a valuable analytical tool for optimizing wort composition in the development of hemp-enriched beers. Full article
Show Figures

Figure 1

24 pages, 477 KB  
Article
Chemical Composition and Nutritional Profile of Quinoa Sourdough Enriched with Quinoa Malts
by Agata Wojciechowicz-Budzisz, Alan Gasiński, Witold Pietrzak, Ewa Pejcz, Marzena Styczyńska and Joanna Harasym
Molecules 2025, 30(17), 3653; https://doi.org/10.3390/molecules30173653 - 8 Sep 2025
Viewed by 589
Abstract
This study investigated the combined effects of quinoa malt addition (0%, 5%, 10%) and grain variety (white, red, black) on the nutritional and sensory properties of quinoa sourdoughs. Quinoa malt supplementation significantly (p < 0.05) enhanced fermentation characteristics, increasing titratable acidity from [...] Read more.
This study investigated the combined effects of quinoa malt addition (0%, 5%, 10%) and grain variety (white, red, black) on the nutritional and sensory properties of quinoa sourdoughs. Quinoa malt supplementation significantly (p < 0.05) enhanced fermentation characteristics, increasing titratable acidity from 20.0–20.4 to 21.2–23.8 mL NaOH/10 g and dynamic viscosity up to 733 ± 5.59 mPa·s compared to 474–611 mPa·s in controls. Malt enrichment expanded the volatile profile from predominantly alcohols and acids to include 25 distinct compounds spanning esters, terpenes, aldehydes, phenols, and furans, creating more complex aromatic profiles. Lactic acid production increased significantly in all malted samples, reaching 12.92 ± 0.00 g/kg in black quinoa with 10% malt. Black quinoa sourdoughs exhibited superior nutritional density with the highest protein (17.3 ± 0.1%), total dietary fiber (17.94 ± 0.14%), potassium (7896 ± 176 mg/kg), and manganese (55.65 ± 0.47 mg/kg) contents (p < 0.05). White quinoa variants demonstrated the highest acidity (pH 4.28 ± 0.01) and mineral bioavailability (magnesium: 5371 ± 70 mg/kg), while red quinoa achieved maximum viscosity (733 ± 5.59 mPa·s) and zinc content (38.08 ± 0.26 mg/kg). Volatile compound distribution varied significantly by variety, with white quinoa favoring ester and terpene formation, red quinoa promoting aldehydes and terpenes, and black quinoa accumulating phenols and furans. These findings demonstrate that strategic combination of quinoa variety selection and malt optimization can produce functionally enhanced, gluten-free sourdoughs with targeted nutritional and sensory characteristics for specialty bakery applications. Full article
Show Figures

Graphical abstract

11 pages, 221 KB  
Article
The Influence of Malt Properties on Efficiency and Quality in a Large-Scale Beer Wort Production Process
by Krzysztof Kucharczyk, Miriam Solgajová, Jarosław Żyrek, Tomáš Krajčovič and Štefan Dráb
Processes 2025, 13(9), 2805; https://doi.org/10.3390/pr13092805 - 2 Sep 2025
Viewed by 563
Abstract
The aim of this study, as part of a collaboration between a malt house, a brewery, and a university, was to optimize the beer production process while simultaneously maintaining or even improving the quality of the beer and creating conditions for the optimization [...] Read more.
The aim of this study, as part of a collaboration between a malt house, a brewery, and a university, was to optimize the beer production process while simultaneously maintaining or even improving the quality of the beer and creating conditions for the optimization of the malting of barley grain. The Hurbanovo malt house provided 100 t of a specially prepared batch of malt for use in industrial-scale beer production at the Żywiec brewery (which produces 4.7 million hl annually). The malt, produced from barley variety Overture, was characterized by a higher extract and protein content and increased enzymatic activity. The test malt also demonstrated favorable properties such as higher friability, lower viscosity, and a two-fold shorter saccharification time. Four HGB worts were produced during production tests. Each brew used 21.5 tons of malt, yielding an average 1020 hl of wort, with an extract content of 15.5°Blg. The malt was milled in a two-roll wet mill with a capacity of 40 t per hour. Mash filtration took place in lauter tuns with a diameter of 12.4 m each. The produced worts were transferred into a fermentation tank with a capacity of 5500 hl, and then fermentation, maturation, and lagering processes were carried out. The tested batch of malt was examined in detail and compared with a standard malt blend from three different suppliers. The tests showed an increase in extract efficiency in the process, with a simultaneous reduction in extract losses (1.2%pt.). The filterability of the mash improved compared to the standard blend, and an improvement in wort quality was observed as a result of lower turbidity (by approximately 34%). The data obtained indicate an improvement in the process with the use of the specially prepared batch of malt. Full article
(This article belongs to the Special Issue Food Processing and Ingredient Analysis)
34 pages, 6768 KB  
Article
Functionalized Micellar Membranes from Medicinal Mushrooms as Promising Self-Growing Bioscaffolds
by Nika Kučuk, Mateja Primožič, Željko Knez and Maja Leitgeb
Polymers 2025, 17(17), 2334; https://doi.org/10.3390/polym17172334 - 28 Aug 2025
Viewed by 678
Abstract
Micellar or mycelial membranes from medicinal mushrooms are self-growing fibrous polymeric biocomposites that are biocompatible, biodegradable, cost-effective, and environmentally friendly. In this study, the cultivation process for the medicinal mushrooms Ganoderma lucidum and Pleurotus ostreatus has been optimized via submerged cultivation to maximize [...] Read more.
Micellar or mycelial membranes from medicinal mushrooms are self-growing fibrous polymeric biocomposites that are biocompatible, biodegradable, cost-effective, and environmentally friendly. In this study, the cultivation process for the medicinal mushrooms Ganoderma lucidum and Pleurotus ostreatus has been optimized via submerged cultivation to maximize growth and promote the formation of micellar membranes with high water-absorption capacity. Optimal growth conditions were achieved at an alkaline pH in a medium containing malt extract for G. lucidum, while for P. ostreatus, these were in a glucose-enriched medium. The hydrophilic underside of the micellar membranes led to a high-water uptake capacity. These membranes exhibited a broad spectrum of functional groups, thermal stability with decomposition temperatures above 260 °C, and a fibrous and porous structure. The micellar membranes from both mushrooms were additionally functionalized with mango peel extract (MPE), resulting in a uniform and gradual release profile, which is an important novelty. They also showed successful antimicrobial activity against Escherichia coli and Staphylococcus aureus growth. MPE-functionalized micellar membranes are, therefore, innovative biocomposites suitable for various biomedical applications. As they mimic the extracellular matrix of the skin, they are a promising material for tissue engineering, wound healing, and advanced skin materials applications. Full article
(This article belongs to the Section Biobased and Biodegradable Polymers)
Show Figures

Graphical abstract

16 pages, 1918 KB  
Article
A Pilot Study of Clarifying (Fining) Agents and Their Effects on Beer Physicochemical Parameters
by Monika Sterczyńska, Marek Zdaniewicz and Marta Stachnik
Appl. Sci. 2025, 15(17), 9330; https://doi.org/10.3390/app15179330 - 25 Aug 2025
Viewed by 626
Abstract
The role of science and technology in enhancing beer quality is crucial amid growing market demands. This pilot study assessed the clarity and physicochemical stability of laboratory beers treated post fermentation with three clarifying (fining) agents: two chitosan-based and one collagen-based (fish bladder/isinglass). [...] Read more.
The role of science and technology in enhancing beer quality is crucial amid growing market demands. This pilot study assessed the clarity and physicochemical stability of laboratory beers treated post fermentation with three clarifying (fining) agents: two chitosan-based and one collagen-based (fish bladder/isinglass). The beers were brewed with Polish barley malt and hops (alpha acids 7.5% and 14.5%). The measured parameters included pH, colour, turbidity, viscosity, surface tension, and foam volume. Within this small-scale, low-power dataset, both the collagen- and chitosan-based agents improved clarity, with the collagen agent showing the lowest turbidity in this sample. The clarifying agents also influenced the colour and surface tension, while the pH was largely unchanged. The foam volume increased with fining. Shelf-life checks suggested improved stability in clarified beers, with no clear differences between agents under these conditions. These findings are preliminary. The results should be interpreted cautiously due to the limited number of replicates. Larger scale studies with adequate replication are required before translating these observations into brewing practice. Chitosan’s effectiveness as a clarifying agent aligns with its high charge density and ability to coagulate suspended particles. This study underscores the importance of selecting appropriate clarifying agents to optimize beer clarity and stability while maintaining essential physicochemical properties. These findings contribute to the brewing industry’s efforts to meet consumer expectations for high-quality, stable beer products. Full article
Show Figures

Figure 1

12 pages, 6157 KB  
Case Report
Primary Hepatic Mucosa-Associated B-Cell Lymphoma in a Patient with Primary Sclerosing Cholangitis—A Case Ultimately Requiring Liver Transplantation
by Jerica Novak, Mihajlo Đokić, Miha Petrič, Diana Vozlič, Milanka Živanović, Branislava Ranković and Blaž Trotovšek
Diagnostics 2025, 15(16), 2082; https://doi.org/10.3390/diagnostics15162082 - 19 Aug 2025
Viewed by 429
Abstract
Background: Primary hepatic extranodal marginal zone lymphoma of mucosa-associated type (MALT) is an extremely rare liver neoplasm. The lesions are often misdiagnosed for the most common primary hepatic malignancy, such as hepatocellular carcinoma and cholangiocarcinoma. As the diagnosis is most often made after [...] Read more.
Background: Primary hepatic extranodal marginal zone lymphoma of mucosa-associated type (MALT) is an extremely rare liver neoplasm. The lesions are often misdiagnosed for the most common primary hepatic malignancy, such as hepatocellular carcinoma and cholangiocarcinoma. As the diagnosis is most often made after the resection, there are still no clear guidelines for the optimal treatment of these patients. Case Presentation: A 30-year-old male patient with known primary sclerosing cholangitis (PSC) was treated at the Department of Abdominal Surgery Ljubljana due to a mass in the right liver, believed to be an intrahepatic cholangiocarcinoma. Due to the extent of the disease, extended right hepatectomy with the resection of the hepatocholedochus, lymphadenectomy, and hepaticojejunal anastomosis were performed. After the surgery, the patient developed a small-for-size syndrome and therefore necessitated a liver transplantation (LT) that was afterwards successfully performed. Discussion: This case highlights the diagnostic challenges of differentiating primary hepatic MALT lymphoma from cholangiocarcinoma on imaging, especially in patients with underlying liver disease. Preoperative confirmation of the malignant disease could potentially change treatment course in our patient. Therefore, a serious surgical complication with development of small-for-size syndrome after major hepatectomy could potentially be prevented. Regarding the underlying liver disease, the patient could probably be a candidate for LT with the bridging chemotherapy. Conclusions: Primary hepatic MALT lymphoma is an extremely rare liver lesion but remains a valid option in a differential diagnosis of liver lesions in patients with chronic viral infection or autoimmune disease, especially in settings of cirrhosis. Moreover, a high level of suspicion must be raised in young patients with solitary liver mass and autoimmune liver disease. Surgical resection is the best way to achieve elimination of the disease. Full article
Show Figures

Figure 1

12 pages, 249 KB  
Article
Optimization of Grist Composition for Mash Production from Unmalted Wheat and Wheat Malt of Red Winter Wheat with Hybrid Endosperm Type
by Kristina Habschied, Iztok Jože Košir, Miha Ocvirk, Krešimir Mastanjević and Vinko Krstanović
Beverages 2025, 11(4), 110; https://doi.org/10.3390/beverages11040110 - 4 Aug 2025
Viewed by 578
Abstract
Since wheats used for use in brewing mainly belong to the winter red hard hybrid endosperm type, this paper examined the influence of different proportions of wheat of this type (seven varieties) in the ratio of 0–100% in the grist, both unmalted and [...] Read more.
Since wheats used for use in brewing mainly belong to the winter red hard hybrid endosperm type, this paper examined the influence of different proportions of wheat of this type (seven varieties) in the ratio of 0–100% in the grist, both unmalted and as wheat malt. The quality of the starting wheats, the resulting malts and mashs with different added wheat proportions (100, 80, 60, 40, 20 and 0%) were examined. The obtained results show that the maximum shares of wheat/wheat malt in the infusion are significantly different between varieties of similar initial quality. However, they can differ considerably for the same variety when it is used as unmalted raw material and when it is used as wheat malt. Wheat malt can be added to the mixture in a significantly larger proportion compared to unmalted wheat. Furthermore, when an extended number of criteria (parameters) are applied, some varieties may be acceptable that otherwise would not be if the basic number of parameters were applied (total protein—TP, total soluble protein—TSP and viscosity—VIS) and vice versa. The inclusion of other parameters—filtration speed (FIL), saccharification time (SAC), color (COL), proportion of fine extract (EXT) and fermentability of pomace (FAL) (some of which have the character of so-called “cumulative parameters”)—complicates a clear classification into the aforementioned qualitative groups but also increases the number of varieties acceptable or conditionally acceptable for brewing. Full article
Show Figures

Graphical abstract

33 pages, 1657 KB  
Article
Efficient Assessment and Optimisation of Medium Components Influencing Extracellular Xylanase Production by Pediococcus pentosaceus G4 Using Statistical Approaches
by Noor Lutphy Ali, Hooi Ling Foo, Norhayati Ramli, Murni Halim and Karkaz M. Thalij
Int. J. Mol. Sci. 2025, 26(15), 7219; https://doi.org/10.3390/ijms26157219 - 25 Jul 2025
Viewed by 531
Abstract
Xylanase is an essential industrial enzyme for degrading plant biomass, pulp and paper, textiles, bio-scouring, food, animal feed, biorefinery, chemicals, and pharmaceutical industries. Despite its significant industrial importance, the extensive application of xylanase is hampered by high production costs and concerns regarding the [...] Read more.
Xylanase is an essential industrial enzyme for degrading plant biomass, pulp and paper, textiles, bio-scouring, food, animal feed, biorefinery, chemicals, and pharmaceutical industries. Despite its significant industrial importance, the extensive application of xylanase is hampered by high production costs and concerns regarding the safety of xylanase-producing microorganisms. The utilisation of renewable polymers for enzyme production is becoming a cost-effective alternative. Among the prospective candidates, non-pathogenic lactic acid bacteria (LAB) are promising for safe and eco-friendly applications. Our investigation revealed that Pediococcus pentosaceus G4, isolated from plant sources, is a notable producer of extracellular xylanase. Improving the production of extracellular xylanase is crucial for viable industrial applications. Therefore, the current study investigated the impact of various medium components and optimised the selected medium composition for extracellular xylanase production of P. pentosaceus G4 using Plackett–Burman Design (PBD) and Central Composite Design (CCD) statistical approaches. According to BPD analysis, 8 out of the 19 investigated factors (glucose, almond shell, peanut shell, walnut shell, malt extract, xylan, urea, and magnesium sulphate) demonstrated significant positive effects on extracellular xylanase production of P. pentosaceus G4. Among them, glucose, almond shells, peanut shells, urea, and magnesium sulphate were identified as the main medium components that significantly (p < 0.05) influenced the production of extracellular xylanase of P. pentosaceus G4. The optimal concentrations of glucose, almond shells, peanut shells, urea, and magnesium sulphate, as determined via CCD, were 26.87 g/L, 16 g/L, 30 g/L, 2.85 g/L, and 0.10 g/L, respectively. The optimised concentrations resulted in extracellular xylanase activity of 2.765 U/mg, which was similar to the predicted extracellular xylanase activity of 2.737 U/mg. The CCD-optimised medium yielded a 3.13-fold enhancement in specific extracellular xylanase activity and a 7.99-fold decrease in production costs compared to the commercial de Man, Rogosa and Sharpe medium, implying that the CCD-optimised medium is a cost-effective medium for extracellular xylanase production of P. pentosaceus G4. Moreover, this study demonstrated a positive correlation between extracellular xylanase production, growth, lactic acid production and the amount of sugar utilised, implying the multifaceted interactions of the physiological variables affecting extracellular xylanase production in P. pentosaceus G4. In conclusion, statistical methods are effective in rapidly assessing and optimising the medium composition to enhance extracellular xylanase production of P. pentosaceus G4. Furthermore, the findings of this study highlighted the potential of using LAB as a cost-effective producer of extracellular xylanase enzymes using optimised renewable polymers, offering insights into the future use of LAB in producing hemicellulolytic enzymes. Full article
(This article belongs to the Section Biochemistry)
Show Figures

Figure 1

16 pages, 2511 KB  
Article
Screening of High-Yield 2-Phenylethanol Producing Strain from Wild-Type Saccharomyces cerevisiae and Optimization of Fermentation Parameters
by Chenshuo Zhang, Tingwen Fan, Zhichun Wang, Jiamu Yu, Xiaoming Guo, Wei Jiang, Lili Miao and Huaiyi Yang
Foods 2025, 14(14), 2444; https://doi.org/10.3390/foods14142444 - 11 Jul 2025
Cited by 1 | Viewed by 633
Abstract
2-Phenylethanol (2-PE), an aromatic alcohol with a rose-like fragrance, is widely used in the food, pharmaceutical, and high-end cosmetic industries. In this study, a high-yield 2-PE-producing strain was isolated and identified as Saccharomyces cerevisiae based on morphological characterization and taxonomic identification. Fermentation medium [...] Read more.
2-Phenylethanol (2-PE), an aromatic alcohol with a rose-like fragrance, is widely used in the food, pharmaceutical, and high-end cosmetic industries. In this study, a high-yield 2-PE-producing strain was isolated and identified as Saccharomyces cerevisiae based on morphological characterization and taxonomic identification. Fermentation medium components (carbon and nitrogen sources) were optimized through single-factor experiments in shaking flasks, and fermentation medium with 40 g/L glucose, 5 g/L malt extract, 1.75 g/L corn steep liquor, 2.5 g/L yeast extract, 5 g/L malt extract, 1.75 g/L corn steep liquor was considered suitable for 2-PE production. RT-qPCR results indicated that corn steep liquor activates expression of genes related to the shikimate pathway and Ehrlich pathway (pha2, aro4, aro8, and aro9), thereby promoting the synthesis of 2-PE through these pathways. Excess yeast extract inhibited the expression of aro8 and aro9, while enhancing the expression of tdh3 and adh2, thus promoting the de novo synthesis of 2-PE. Furthermore, fermentation in a 5 L bioreactor was applied to investigate the effects of feeding strategies, inoculum proportion, and pH on 2-PE production. With a pH of 5.5 and10% inoculum proportion, the supplementation of the substrate L-Phe led to a 2-PE production of 4.81 g/L after 24 h of fermentation. Finally, in situ product recovery (ISPR) techniques was applied to alleviate 2-PE cytotoxicity, achieving a production of 6.41 g/L. This process offers a promising strategy for producing 2-PE efficiently and naturally, paving the way for further industrial applications in food, pharmaceutical, and cosmetic sectors. Full article
Show Figures

Figure 1

20 pages, 5045 KB  
Article
Sustainable Production and Antioxidant Activity of Bacterial Xanthan Gum
by Ilona Jonuškienė, Erika Davicijonaitė, Monika Vaškevičiūtė, Ihsan Kala, Rima Stankevičienė, Kristina Kantminienė and Ingrida Tumosienė
Molecules 2025, 30(13), 2734; https://doi.org/10.3390/molecules30132734 - 25 Jun 2025
Cited by 1 | Viewed by 1036
Abstract
One of the world’s most sustainable solutions is to replace fossil-based polymers with biopolymers. The production of xanthan gum can be optimized using various renewable and cost-effective raw materials, which is a key focus in industrial biotechnology. Xanthan gum is a bioengineered thickening, [...] Read more.
One of the world’s most sustainable solutions is to replace fossil-based polymers with biopolymers. The production of xanthan gum can be optimized using various renewable and cost-effective raw materials, which is a key focus in industrial biotechnology. Xanthan gum is a bioengineered thickening, stabilizing, and emulsifying agent. It has unique properties for use in many industries (food, biotechnology, petrochemicals, agricultural, cosmetics, wastewater treatment) and medical applications. It is tasteless, environmentally safe, non-toxic, and biodegradable. The biotechnological production of xanthan gum depends on several factors: bacterial strain development, culture medium preparation, carbon sources, fermentation parameters and modes, pH, temperature, recovery, purification, and quality control regulations. Bio-innovative strategies have been developed to optimize the production of xanthan gum. A variety of carbon and nitrogen sources, as well as alternative renewable sources, have been used in the production of xanthan gum. The aim of the present study was to optimize the xanthan gum yield using Xanthomonas campestris bacteria and different carbon (D-glucose, D-sorbitol, lactose, sucrose, D-mannitol, D-fructose, erythritol, coconut palm sugar, L-arabinose, unrefined cane sugar), various nitrogen (bacterial peptone, casein peptone, L-glutamic acid, L-arginine, L-methionine, L-tryptophan, malt extract, meat extract, L-phenylalanine, soy peptone) and alternative carbon (orange peels, tangerine peels, lemon peels, avocado peels, melon peels, apple peels, cellulose, xylose, xylitol) sources. The xanthan gum samples were analyzed using antioxidant methods. Our study showed that using L-glutamic acid as the carbon source for 72 h of bacterial fermentation of Xanthomonas campestris resulted in the highest xanthan gum yield: 32.34 g/L. However, using renewable resources, we achieved a very high concentration of xanthan gum in just 24 h of fermentation. According to the reducing power and DPPH methods, the highest antioxidant activities were measured for xanthan gum whose biosynthesis was based on renewable resources. Xanthan gum structures have been verified by FT-IR and 1H NMR analysis. The sustainable biotechnology study has the advantage of increasing the sustainable production of xanthan gum by using renewable alternative resources compared to other production processes. Xanthan gum continues to be a valuable biopolymer with a wide range of industrial applications while promoting environmentally friendly production practices. Full article
(This article belongs to the Special Issue Natural Products with Pharmaceutical Activities)
Show Figures

Figure 1

11 pages, 1698 KB  
Article
Quantifying Fermentable Sugars in Beer: Development and Validation of a Reliable HPLC-ELSD Method
by Pedro F. Lopes, Fábio T. Oliveira and Luis F. Guido
Appl. Sci. 2025, 15(12), 6412; https://doi.org/10.3390/app15126412 - 6 Jun 2025
Cited by 1 | Viewed by 1570
Abstract
A high-performance liquid chromatography with evaporative light scattering detection (HPLC-ELSD) method was developed and validated for analyzing fermentable and reducing sugars in brewing matrices. The method exhibited detection limits of 2.5–12.5 mg/L and quantification limits of 12.0–30.0 mg/L. Linearity was achieved for all [...] Read more.
A high-performance liquid chromatography with evaporative light scattering detection (HPLC-ELSD) method was developed and validated for analyzing fermentable and reducing sugars in brewing matrices. The method exhibited detection limits of 2.5–12.5 mg/L and quantification limits of 12.0–30.0 mg/L. Linearity was achieved for all sugars, fitted with a quadratic calibration model (R2 = 0.9998). Precision metrics revealed relative standard deviations (RSDs) below 2% for repeatability and below 6% for intermediate precision. Recovery rates between 86 and 119% confirmed robustness and minimal matrix interference. Application to brewing samples highlighted variability in sugar profiles, with sucrose concentrations in wort ranging from 3.5 to 22.0 g/L and maltose and maltotriose in finished beers between 0.80 and 1.50 g/L and 1.10–2.50 g/L, respectively. Batch variability analysis showed that brewing conditions had a greater impact on sugar concentrations than malt batch origin, with maltose variation reaching 34.6%. This HPLC-ELSD method provides a robust and reliable tool for sugar analysis in brewing, offering valuable insights into fermentation dynamics and batch consistency. Its application to industrial contexts underscores its potential for improving quality control and optimizing brewing processes. Full article
Show Figures

Figure 1

22 pages, 2361 KB  
Article
Effect of Malthouse Size and Transportation on the Environmental Profile of Malt Production
by Mauro Moresi and Alessio Cimini
Sustainability 2025, 17(11), 5077; https://doi.org/10.3390/su17115077 - 1 Jun 2025
Viewed by 655
Abstract
Malting is one of the most energy-intensive stages in beer brewing, yet its environmental impacts remain under-characterized despite recent efficiency gains. Barley and malt transport drive significant greenhouse gas emissions in import-dependent countries, while local, small-scale production can offset those savings through lower [...] Read more.
Malting is one of the most energy-intensive stages in beer brewing, yet its environmental impacts remain under-characterized despite recent efficiency gains. Barley and malt transport drive significant greenhouse gas emissions in import-dependent countries, while local, small-scale production can offset those savings through lower process efficiencies or higher resource use. This study conducted a cradle-to-gate Life Cycle Assessment (LCA) of three Italian malthouses—small, medium, and large—using SimaPro 10.2.0.0 and a functional unit of 1 kg of malted barley delivered by bulk truck to local breweries. Primary data on barley, water, methane, and electricity consumption, as well as waste generation, were collected via questionnaires; secondary data were sourced from Ecoinvent and Agri-Footprint. Impact categories were evaluated using the Cumulative Energy Demand (CED) and Product Environmental Footprint (PEF) methodologies. Barley cultivation dominates the footprint (84–92% of total impacts when using local grain). Drying and transport contribute 3.7–4.4% and 0–8.4% of impacts, respectively, depending on facility scale and import share. Smaller malthouses exhibit higher per-kilogram impacts due to lower energy efficiency and transportation modes. Mitigation strategies —including sustainable agriculture, renewable energy adoption, logistics optimization, and process improvements—can substantially reduce impacts. Notably, sourcing barley from low-impact suppliers alone lowers the carbon footprint from 0.80 to 0.66 kg CO2e/kg, freshwater eutrophication from 227 to 32 CTUe/kg, land use from 196 to 136 Pt/kg, and overall PEF from 192 to 81 µPt/kg. These results underscore the critical role of feedstock sourcing and process efficiency in decarbonizing malt production and provide a quantitative baseline for targeted sustainability interventions. Full article
Show Figures

Figure 1

10 pages, 966 KB  
Article
Treatment of Non-Hodgkin Lymphoma Involving Head and Neck Sites with a 1.5 T MR-Linac: Preliminary Results from a Prospective Observational Study
by Andrea Emanuele Guerini, Stefania Nici, Stefano Riga, Ludovica Pegurri, Paolo Borghetti, Eneida Mataj, Jacopo Balduzzi, Mirsada Katica, Gianluca Cossali, Giorgio Facheris, Luca Triggiani, Albert Sakiri, Luigi Spiazzi, Stefano Maria Magrini and Michela Buglione
Hematol. Rep. 2025, 17(2), 16; https://doi.org/10.3390/hematolrep17020016 - 27 Mar 2025
Viewed by 897
Abstract
Purpose: Lymphomas are generally radiosensitive; therefore, disease volume tends to shrink during radiotherapy courses. As MRI-linac provides excellent soft tissue definition and allows daily re-contouring of gross tumor volume and clinical target volume, its adoption could be beneficial for the treatment of [...] Read more.
Purpose: Lymphomas are generally radiosensitive; therefore, disease volume tends to shrink during radiotherapy courses. As MRI-linac provides excellent soft tissue definition and allows daily re-contouring of gross tumor volume and clinical target volume, its adoption could be beneficial for the treatment of lymphomas. Nonetheless, at this time there is a lack of literature regarding the use of MR-linac in this context. Methods: A prospective observational study was conducted on patients affected by non-Hodgkin lymphoma (NHL) involving head and neck (H&N) sites and treated with Elekta Unity® MR-Linac. The clinical and dosimetric data of the first eight patients were collected and integrated with relevant data from medical records. Results: Seven patients had B-cell lymphoma (three DLBCL, two MALT, one follicular, and one mantle-cell) and one T-cell/NK lymphoma. The intent of RT was radical for four patients, salvage treatment for three, and CAR-T bridging for one. Two patients presented orbital localizations and six cervical lymphonodal sites. Median GTV was 5.74 cc, median CTV 127.01 cc, and median PTV 210.37 cc. The prescribed dose was 24–50 Gy in 2 Gy fractions for seven patients and 24 Gy in 3 Gy fractions for one patient. All the patients experienced acute toxicity, the maximum grade was G1 for five patients and G2 for three at the end of RT. One month after radiotherapy seven patients still experienced G1 toxicity, but no toxicity grade ≥ 2 was reported. First radiological assessment was performed for all the patients after a median of 101.5 days, reporting complete response in all the cases. After a median follow up of 330 days, no patient experienced local disease progression, while one patient developed distant progression. Conclusions: radiotherapy for NHL with H&N localization using a 1.5 T MR-linac was feasible, with no >G2 toxicity and optimal response rate and disease control. Full article
Show Figures

Figure 1

Back to TopTop