Chemical Composition and Nutritional Profile of Quinoa Sourdough Enriched with Quinoa Malts
Abstract
1. Introduction
2. Results and Discussion
3. Materials and Methods
3.1. Materials
3.1.1. Raw Material
3.1.2. Malting Procedure
3.1.3. Sourdough Preparation
3.2. Methods
3.2.1. Chemical Composition and Technological Parameters of Quinoa Flours and Malts
3.2.2. Determination of Elements in the Quinoa Flours, Malts and Sourdoughs
3.2.3. Determination of Physicochemical Properties and Nutritional Composition of Quinoa Sourdough
3.2.4. Adsorption of Volatile Compounds Using Solid-Phase Microextraction (SPME)
3.2.5. Gas Chromatography–Mass Spectrometry (GC-MS) Analysis
3.2.6. Carbohydrate Profile and Fermentation By-Products Analysis
3.2.7. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Almaguer, C.; Kollmannsberger, H.; Gastl, M.; Becker, T. Influence of the Malting Conditions on the Modification and Variation in the Physicochemical Properties and Volatile Composition of Barley (Hordeum Vulgare L.), Rye (Secale Cereale L.), and Quinoa (Chenopodium Quinoa Willd.) Malts. Food Res. Int. 2024, 196, 114965. [Google Scholar] [CrossRef] [PubMed]
- Angeli, V.; Silva, P.M.; Massuela, D.C.; Khan, M.W.; Hamar, A.; Khajehei, F.; Graeff-Hönninger, S.; Piatti, C. Quinoa (Chenopodium quinoa Willd.): An Overview of the Potentials of the “Golden Grain” and Socio-Economic and Environmental Aspects of Its Cultivation and Marketization. Foods 2020, 9, 216. [Google Scholar] [CrossRef]
- Pathan, S.; Ndunguru, G.; Clark, K.; Ayele, A.G. Yield and Nutritional Responses of Quinoa (Chenopodium quinoa Willd.) Genotypes to Irrigated, Rainfed, and Drought-Stress Environments. Front. Sustain. Food Syst. 2023, 7, 1242187. [Google Scholar] [CrossRef]
- Pereira, E.; Cadavez, V.; Barros, L.; Encina-Zelada, C.; Stojković, D.; Sokovic, M.; Calhelha, R.C.; Gonzales-Barron, U.; Ferreira, I.C.F.R. Chenopodium quinoa Willd. (Quinoa) Grains: A Good Source of Phenolic Compounds. Food Res. Int. 2020, 137, 109574. [Google Scholar] [CrossRef]
- Chen, X.; Zhang, Y.; Cao, B.; Wei, X.; Shen, Z.; Su, N. Assessment and Comparison of Nutritional Qualities of Thirty Quinoa (Chenopodium quinoa Willd.) Seed Varieties. Food Chem. X 2023, 19, 100808. [Google Scholar] [CrossRef]
- Agarwal, A.; Rizwana; Tripathi, A.D.; Kumar, T.; Sharma, K.P.; Patel, S.K.S. Nutritional and Functional New Perspectives and Potential Health Benefits of Quinoa and Chia Seeds. Antioxidants 2023, 12, 1413. [Google Scholar] [CrossRef]
- Irfan, M.; Ashiq Hussain, S.; Mubashir Ramzan, M.; Muzamil, M.; Aslam, S.; Fatima, E.; Bilal Haider, M.; Khaliq, B.; Murtaza, G.; Saeed, M. Chenopodium quinoa: Nutritional Benefits, Disease Remedies, and Product Development Applications with Emphasis on Protein Supplementation SEE PROFILE Chenopodium quinoa: Nutritional Benefits, Disease Remedies, and Product Development Applications with Emphasis on Protein Supplementation. J. Xi’an Shiyou Univ. 2024, 20, 361–385. [Google Scholar]
- Villa, P.M.; Cervilla, N.; Mufari, R.; Bergesse, A.; Calandri, E. Making Nutritious Gluten-Free Foods from Quinoa Seeds and Its Flours. Proceedings 2020, 53, 5. [Google Scholar] [CrossRef]
- Ruiqi, L.; He, Z. Effects of Quinoa on Cardiovascular Disease and Diabetes: A Review. Front. Nutr. 2024, 11, 1516854. [Google Scholar] [PubMed]
- Poonia, A.; Bhardwaj, A.; Sai, N.C.S. Quinoa. In Cereals and Nutraceuticals; Springer Nature: Berlin/Heidelberg, Germany, 2024; pp. 209–250. ISBN 9789819725427. [Google Scholar]
- Gobbetti, M.; De Angelis, M.; Di Cagno, R.; Calasso, M.; Archetti, G.; Rizzello, C.G. Novel Insights on the Functional/Nutritional Features of the Sourdough Fermentation. Int. J. Food Microbiol. 2019, 302, 103–113. [Google Scholar] [CrossRef] [PubMed]
- Cera, S.; Tuccillo, F.; Knaapila, A.; Sim, F.; Manngård, J.; Niklander, K.; Verni, M.; Rizzello, C.G.; Katina, K.; Coda, R. Role of Tailored Sourdough Fermentation in the Flavor of Wholegrain-Oat Bread. Curr. Res. Food Sci. 2024, 8, 100697. [Google Scholar] [CrossRef]
- Abbaspour, N. Fermentation’s Pivotal Role in Shaping the Future of Plant-Based Foods: An Integrative Review of Fermentation Processes and Their Impact on Sensory and Health Benefits. Appl. Food Res. 2024, 4, 100468. [Google Scholar] [CrossRef]
- Alkay, Z.; Falah, F.; Cankurt, H.; Dertli, E. Exploring the Nutritional Impact of Sourdough Fermentation: Its Mechanisms and Functional Potential. Foods 2024, 13, 1732. [Google Scholar] [CrossRef] [PubMed]
- Kunze, W. Brewing & Malting, 6th ed.; Kunze, W., Ed.; VLB: Berlin, Germany, 2019. [Google Scholar]
- Gasiński, A.; Kawa-Rygielska, J. Malting—A Method for Modifying Volatile Composition of Black, Brown and Green Lentil Seeds. PLoS ONE 2023, 18, e0290616. [Google Scholar] [CrossRef] [PubMed]
- Karaoğlu, M.M.; Reis, G.S.; Bedir, Y. The Effects of Malt Flours Obtained from Different Cereals on Flour and Bread Quality. Turk. J. Agric. For. 2023, 47, 497–509. [Google Scholar] [CrossRef]
- Sharma, P.; Chaturvedi, N. Malting Effect on Enzyme Activities of Quinoa and Lupine Seed. Int. J. Home Sci. 2022, 8, 131–135. [Google Scholar]
- Fox, G.P.; Bettenhausen, H.M. Variation in Quality of Grains Used in Malting and Brewing. Front. Plant. Sci. 2023, 14, 1172028. [Google Scholar] [CrossRef]
- Pd, W.; Vs, P.; Sg, D.; Gp, R. Studies on Standardization of Malting Process for Quinoa Seeds (Chenopodium Quinoa). Pharma Innov. J. 2022, 11, 423–427. [Google Scholar]
- Aguilar, J.; Miano, A.C.; Obregón, J.; Soriano-Colchado, J.; Barraza-Jáuregui, G. Malting Process as an Alternative to Obtain High Nutritional Quality Quinoa Flour. J. Cereal Sci. 2019, 90, 102858. [Google Scholar] [CrossRef]
- Vicente-Sánchez, M.L.; Castro-Alija, M.J.; Jiménez, J.M.; María, L.V.; María Jose, C.; Pastor, R.; Albertos, I. Influence of Salinity, Germination, Malting and Fermentation on Quinoa Nutritional and Bioactive Profile. Crit. Rev. Food Sci. Nutr. 2023, 64, 7632–7647. [Google Scholar] [CrossRef]
- Udeh, H.O.; Duodu, K.G.; Jideani, A.I.O. Effect of Malting Period on Physicochemical Properties, Minerals, and Phytic Acid of Finger Millet (Eleusine Coracana) Flour Varieties. Food Sci. Nutr. 2018, 6, 1858–1869. [Google Scholar] [CrossRef]
- Almaguer, C.; Kollmannsberger, H.; Gastl, M.; Becker, T. Comparative Study of the Impact of Malting on the Aroma Profiles of Barley (Hordeum Vulgare L.) and Rye (Secale Cereale L.). Food Chem. 2023, 427, 136694. [Google Scholar] [CrossRef] [PubMed]
- Almaguer, C.; Kollmannsberger, H.; Gastl, M.; Becker, T. Characterization of the Aroma Profile of Quinoa (Chenopodium quinoa Willd.) and Assessment of the Impact of Malting on the Odor-Active Volatile Composition. J. Sci. Food Agric. 2023, 103, 2283–2294. [Google Scholar] [CrossRef]
- Abugoch James, L. Quinoa (Chenopodium quinoa Willd.): Composition, Chemistry, Nutritional, and Functional Properties. Adv. Food Nutr. Res. 2009, 58, 1–31. [Google Scholar] [CrossRef] [PubMed]
- Nowak, V.; Du, J.; Charrondière, U.R. Assessment of the Nutritional Composition of Quinoa (Chenopodium quinoa Willd.). Food Chem. 2016, 193, 47–54. [Google Scholar] [CrossRef] [PubMed]
- Vega-Gálvez, A.; Miranda, M.; Vergara, J.; Uribe, E.; Puente, L.; Martínez, E.A. Nutrition Facts and Functional Potential of Quinoa (Chenopodium quinoa Willd.), an Ancient Andean Grain: A Review. J. Sci. Food Agric. 2010, 90, 2541–2547. [Google Scholar] [CrossRef]
- Gunathunga, C.; Senanayake, S.; Jayasinghe, M.A.; Brennan, C.S.; Truong, T.; Marapana, U.; Chandrapala, J. Germination Effects on Nutritional Quality: A Comprehensive Review of Selected Cereals and Pulses Changes. J. Food Compos. Anal. 2024, 128, 106024. [Google Scholar] [CrossRef]
- Zhang, G.; Xu, Z.; Gao, Y.; Huang, X.; Zou, Y.; Yang, T. Effects of Germination on the Nutritional Properties, Phenolic Profiles, and Antioxidant Activities of Buckwheat. J. Food Sci. 2015, 80, H1111–H1119. [Google Scholar] [CrossRef]
- Tang, Y.; Li, X.; Zhang, B.; Chen, P.X.; Liu, R.; Tsao, R. Characterisation of Phenolics, Betanins and Antioxidant Activities in Seeds of Three Chenopodium quinoa Willd. Genotypes. Food Chem. 2015, 166, 380–388. [Google Scholar] [CrossRef]
- Banu, I.; Vasilean, I.; Aprodu, I. Quality Evaluation of the Sourdough Rye Breads. Ann. Univ. Dunarea De Jos Galati Fascicle VI–Food Technol. 2011, 35, 94–105. [Google Scholar]
- Ma, S.; Wang, Z.; Guo, X.; Wang, F.; Huang, J.; Sun, B.; Wang, X. Sourdough Improves the Quality of Whole-Wheat Flour Products: Mechanisms and Challenges—A Review. Food Chem. 2021, 360, 130038. [Google Scholar] [CrossRef]
- Maldonado-Alvarado, P.; Pavón-Vargas, D.J.; Abarca-Robles, J.; Valencia-Chamorro, S.; Haros, C.M. Effect of Germination on the Nutritional Properties, Phytic Acid Content, and Phytase Activity of Quinoa (Chenopodium quinoa Willd). Foods 2023, 12, 389. [Google Scholar] [CrossRef] [PubMed]
- Ren, G.; Teng, C.; Fan, X.; Guo, S.; Zhao, G.; Zhang, L.; Liang, Z.; Qin, P. Nutrient Composition, Functional Activity and Industrial Applications of Quinoa (Chenopodium quinoa Willd.). Food Chem. 2023, 410, 389. [Google Scholar] [CrossRef]
- Hameed, I.; Al-Anbari, A.; Al-Taweel, S. Effect of Replacing Wheat Flour with White Quinoa Chenopodium quinoa Willd Flour for Manufacturing of Free Gluten-Biscuit. Fayoum J. Agric. Res. Dev. 2020, 34, 1–11. [Google Scholar]
- Chiş, M.S.; Păucean, A.; Man, S.M.; Vodnar, D.C.; Teleky, B.E.; Pop, C.R.; Stan, L.; Borsai, O.; Kadar, C.B.; Urcan, A.C.; et al. Quinoa Sourdough Fermented with Lactobacillus Plantarum ATCC 8014 Designed for Gluten-Free Muffins—A Powerful Tool to Enhance Bioactive Compounds. Appl. Sci. 2020, 10, 7140. [Google Scholar] [CrossRef]
- Katina, K.; Heiniö, R.L.; Autio, K.; Poutanen, K. Optimization of Sourdough Process for Improved Sensory Profile and Texture of Wheat Bread. LWT Food Sci. Technol. 2006, 39, 1189–1202. [Google Scholar] [CrossRef]
- Wang, Z.; Wang, L. Impact of Sourdough Fermentation on Nutrient Transformations in Cereal-Based Foods: Mechanisms, Practical Applications, and Health Implications. Grain Oil Sci. Technol. 2024, 7, 124–132. [Google Scholar] [CrossRef]
- Zhang, Z.; Liu, C.; Chen, T.; Liu, F.; Luo, S.; Ye, J. Microorganisms and Characteristic Volatile Flavor Compounds in Luocheng Fermented Rice Noodles. Food Chem. 2025, 490, 145133. [Google Scholar] [CrossRef]
- Rizzello, C.G.; Lorusso, A.; Montemurro, M.; Gobbetti, M. Use of Sourdough Made with Quinoa (Chenopodium quinoa) Flour and Autochthonous Selected Lactic Acid Bacteria for Enhancing the Nutritional, Textural and Sensory Features of White Bread. Food Microbiol. 2016, 56, 1–13. [Google Scholar] [CrossRef]
- De Luca, L.; Aiello, A.; Pizzolongo, F.; Blaiotta, G.; Aponte, M.; Romano, R. Volatile Organic Compounds in Breads Prepared with Different Sourdoughs. Appl. Sci. 2021, 11, 1330. [Google Scholar] [CrossRef]
- Mäkinen, O.E.; Arendt, E.K. Oat Malt as a Baking Ingredient—A Comparative Study of the Impact of Oat, Barley and Wheat Malts on Bread and Dough Properties. J. Cereal Sci. 2012, 56, 747–753. [Google Scholar] [CrossRef]
- AACC (American Association of Cereal Chemists). AACC (2000) Approved Methods of the AACC; American Association of Cereal Chemists: St Paul, MN, USA, 2000; Volume 10. [Google Scholar]
- International Association for Cereal Science and Technology. ICC Standards: Standard Methods of the International Association for Cereal Science and Technology (ICC); ICC: Dubai, United Arab Emirates, 1999. [Google Scholar]
- AOAC (Association of Official Analytical Chemists). AOAC (2012) Official Methods of Analysis; AOAC International: Arlington, TX, USA, 2012; Volume 18. [Google Scholar]
- PN-EN 14082:2004; Food Products—Determination of Trace Elements—Determination of Lead, Cadmium, Zinc, Copper, Iron, and Chromium by Atomic Absorption Spectrometry (AAS) after Dry Mineralization. Polish Committee for Standardization: Warsaw, Poland, 2004.
- PN-EN ISO 6869:2002; Feed—Determination of Calcium, Copper, Iron, Magnesium, Manganese, Potassium, Sodium, and Zinc Content—Atomic Absorption Spectrometry Method. Polish Committee for Standardization: Warsaw, Poland, 2002.
- Gao, C.; Li, Y.; Pan, Q.; Fan, M.; Wang, L.; Qian, H. Analysis of the Key Aroma Volatile Compounds in Rice Bran during Storage and Processing via HS-SPME GC/MS. J. Cereal Sci. 2021, 99, 103178. [Google Scholar] [CrossRef]
- Saerens, S.M.; Delvaux, F.; Verstrepen, K.J.; Van Dijck, P.; Thevelein, J.M.; Delvaux, F.R. Parameters affecting ethyl ester production by Saccharomyces cerevisiae during fermentation. Appl. Environ. Microbiol. 2008, 74, 454–461. [Google Scholar] [CrossRef]
- Saliba, A.J.; Bullock, J.; Hardie, W.J. Consumer rejection threshold for 1, 8-cineole (eucalyptol) in Australian red wine. Food Qual. Prefer. 2009, 20, 500–504. [Google Scholar] [CrossRef]
- Jun, Y.; Lee, S.M.; Ju, H.K.; Lee, H.J.; Choi, H.K.; Jo, G.S.; Kim, Y.S. Comparison of the Profile and Composition of Volatiles in Coniferous Needles According to Extraction Methods. Molecules. 2016, 21(3), 363. [Google Scholar] [CrossRef]
- Cho, I.H.; Namgung, H.J.; Choi, H.K.; Kim, Y.S. Volatiles and key odorants in the pileus and stipe of pine-mushroom (Tricholoma matsutake Sing.). Food Chem. 2008, 106, 71–76. [Google Scholar] [CrossRef]
- Pino, J.A.; Mesa, J.; Muñoz, Y.; Martí, M.P.; Marbot, R. Volatile components from mango (Mangifera indica L.) cultivars. J. Agric. Food Chem. 2005, 53, 2213–2223. [Google Scholar] [CrossRef]
- Lalel, H.J.D.; Singh, Z.; Chye Tan, S. Glycosidically-bound aroma volatile compounds in the skin and pulp of “Kensington Pride” mango fruit at different stages of maturity. Postharvest Biol. Technol. 2003, 29, 205–218. [Google Scholar] [CrossRef]
- Hazzit, M.; Baaliouamer, A.; Faleiro, M.L.; Miguel, M.G. Composition of the Essential Oils of Thymus and Origanum Species from Algeria and Their Antioxidant and Antimicrobial Activities. J. Agric. Food Chem. 2006, 54, 6314–6321. [Google Scholar] [CrossRef]
- Roussis, V.; Tsoukatou, M.; Petrakis, P.V.; Chinou, I.; Skoula, M.; Harborne, J.B. Volatile constituents of four Helichrysum species growing in Greece. Biochem. Syst. Ecol. 2000, 28, 163–175. [Google Scholar] [CrossRef]
- Leffingwell, J.C.; Alford, E.D. Volatile constituents of Perique tobacco. Electron. J. Environ. Agric. Food Chem. 2005, 4, 899–915. [Google Scholar]
- Raffo, A.; Kelderer, M.; Paoletti, F.; Zanella, A. Impact of innovative controlled atmosphere storage technologies and postharvest treatment on volatile compound production in Cv. Pinova apples. J. Agric. Food Chem. 2009, 57, 915–923. [Google Scholar] [CrossRef]
- Klesk, K.; Qian, M.; Martin, R.R. Aroma extract dilution analysis of cv. meeker (Rubus idaeus L.) red raspberries from Oregon and Washington. J. Agric. Food Chem. 2004, 52, 5155–5161. [Google Scholar] [CrossRef]
- Karagül-Yüceer, Y.; Vlahovich, K.N.; Drake, M.A.; Cadwallader, K.R. Characteristic aroma components of rennet casein. J. Agric. Food Chem. 2003, 51, 6797–6801. [Google Scholar] [CrossRef]
- Kallio, M.; Jussila, M.; Rissanen, T.; Anttila, P.; Hartonen, K.; Reissell, A.; Vreuls, R.; Adahchour, M.; Hyotylainen, T. Comprehensive two-dimensional gas chromatography coupled to time-of-flight mass spectrometry in the identification of organic compounds in atmospheric aerosols from coniferous forest. J. Chromatogr. A 2006, 1125, 234–243. [Google Scholar] [CrossRef]
- Mondello, L.; Sciarrone, D.; Casilli, A.; Tranchida, P.Q.; Dugo, P.; Dugo, G. Fast gas chromatography-full scan quadrupole mass spectrometry for the determination of allergens in fragrances. J. Sep. Sci. 2007, 30, 1905–1911. [Google Scholar] [CrossRef]
- Whetstine, M.E.C.; Cadwallader, K.R.; Drake, M.A. Characterization of aroma compounds responsible for the rosy/floral flavor in cheddar cheese. J. Agric. Food Chem. 2005, 53, 3126–3132. [Google Scholar] [CrossRef]
- Asuming, W.A.; Beauchamp, P.S.; Descalzo, J.T.; Dev, B.C.; Dev, V.; Frost, S.; Ma, C.W. Essential oil composition of four Lomatium Raf. species and their chemotaxonomy. Biochem. Syst. Ecol. 2005, 33, 17–26. [Google Scholar] [CrossRef]
- Alissandrakis, E.; Tarantilis, P.A.; Harizanis, P.C.; Polissiou, M. Comparison of the volatile composition in thyme honeys from several origins in Greece. J. Agric. Food Chem. 2007, 55, 8152–8157. [Google Scholar] [CrossRef]
- Lozano, P.R.; Miracle, E.R.; Krause, A.J.; Drake, M.; Cadwallader, K.R. Effect of cold storage and packaging material on the major aroma components of sweet cream butter. J. Agric. Food Chem. 2007, 55, 7840–7846. [Google Scholar] [CrossRef]
- Kundakovic, T.; Fokialakis, N.; Kovacevic, N.; Chinou, I. Essential oil composition of Achillea lingulata and A. umbellata. Flavour Fragr. J. 2007, 22, 184–187. [Google Scholar] [CrossRef]
- Shang, C.; Hu, Y.; Deng, C.; Hu, K. Rapid determination of volatile constituents of Michelia alba flowers by gas chromatography-mass spectrometry with solid-phase microextraction. J. Chromatogr. A 2002, 942, 283–288. [Google Scholar] [CrossRef]
- Srisajjalerwaja, S.; Apichartsrangkoon, A.; Chaikham, P.; Chakrabandhu, Y.; Pathomrungsiyounggul, P.; Leksawasdi, N.; Supraditareporn, W.; Hirun, S. Color, capsaicin and volatile components of baked thai green chili (Capsicum annuum Linn. var. Jak Ka Pat). J. Agricultural Sci. 2012, 4, 75–84. [Google Scholar] [CrossRef]
- de Souza, P.P.; Cardeal, Z.L.; Augusti, R.; Morrison, P.; Marriott, P.J. Determination of volatile compounds in Brazilian distilled cachaca by using comprehensive two-dimensional gas chromatography and effects of production pathways. J. Chromatogr. A. 2009, 1216, 2881–2890. [Google Scholar] [CrossRef] [PubMed]
- Saroglou, V.; Dorizas, N.; Kypriotakis, Z.; Skaltsa, H.D. Analysis of the essential oil composition of eight Anthemis species from Greece. J. Chromatogr. A 2006, 1104, 313–322. [Google Scholar] [CrossRef] [PubMed]
Sample | Falling Number [s] | Total Protein [%] | Moisture [%] | Ash [%] | Fat [%] | SDF [%] | IDF [%] | TDF [%] | L* | a* | b* |
---|---|---|---|---|---|---|---|---|---|---|---|
WQ | 1712 ± 86 b | 13.9 ± 0.1 e | 11.0 ± 0.0 a | 2.41 ± 0.04 d | 5.80 ± 0.14 e | 2.55 ± 0.01 a | 6.65 ± 0.06 c | 9.20 ± 0.21 d | 89.49 ± 0.22 a | −4.92 ± 0.05 e | 16.63 ± 0.24 c |
RQ | 467 ± 23 cd | 14.9 ± 0.1 c | 10.4 ± 0.1 c | 2.32 ± 0.02 e | 6.05 ± 0.07 d | 3.34 ± 0.03 a | 9.24 ± 0.12 bc | 12.58 ± 0.51 bc | 68.53 ± 0.30 e | 0.24 ± 0.09 a | 17.85 ± 0.08 b |
BQ | 2091 ± 105 a | 16.3 ± 0.1 a | 10.9 ± 0.0 b | 2.70 ± 0.01 a | 7.05 ± 0.07 b | 2.86 ± 0.03 a | 13.16 ± 0.31 a | 16.02 ± 0.63 a | 70.79 ± 0.19 d | −2.88 ± 0.04 d | 11.41 ± 0.07 f |
WQM | 584 ± 29 c | 14.4 ± 0.0 d | 3.9 ± 0.1 e | 2.51 ± 0.00 c | 6.15 ± 0.07 d | 1.74 ± 0.00 a | 7.28 ± 0.06 c | 9.01 ± 0.18 d | 88.68 ± 0.01 b | −5.22 ± 0.01 f | 19.67 ± 0.28 a |
RQM | 116 ± 6 d | 15.2 ± 0.0 c | 5.5 ± 0.1 d | 2.17 ± 0.03 f | 6.50 ± 0.14 c | 2.04 ± 0.01 a | 8.93 ± 0.09 bc | 10.97 ± 0.12 cd | 73.56 ± 0.04 c | −0.78 ± 0.01 b | 14.74 ± 0.07 d |
BQM | 322 ± 16 cd | 16.4 ± 0.2 a | 3.1 ± 0.0 f | 2.60 ± 0.00 b | 7.45 ± 0.07 a | 2.90 ± 0.02 a | 11.96 ± 0.22 ab | 14.86 ± 0.84 ab | 71.12 ± 0.03 d | −2.67 ± 0.07 c | 12.34 ± 0.09 e |
Sample | Na [mg/kg] | Ca [mg/kg] | K [mg/kg] | Mg [mg/kg] | Cu [mg/kg] | Mn [mg/kg] | Fe [mg/kg] | Zn [mg/kg] |
---|---|---|---|---|---|---|---|---|
WQ | 22.08 ± 0.25 d | 45.90 ± 3.98 b | 5090 ± 94 d | 4897 ± 80 a | 5.42 ± 0.11 b | 24.26 ± 0.60 d | 97.54 ± 5.36 a | 32.61 ± 0.52 c |
RQ | 8.25 ± 0.37 e | 46.32 ± 1.98 b | 6384 ± 20 b | 4193 ± 28 d | 4.50 ± 0.07 e | 31.23 ± 0.35 c | 103.62 ± 1.64 a | 34.79 ± 0.37 b |
BQ | 6.88 ± 0.21 e | 50.81 ± 3.20 b | 7477 ± 64 a | 4333 ± 43 c | 4.76 ± 0.02 cd | 52.64 ± 0.42 b | 83.41 ± 1.78 a | 29.22 ± 0.20 e |
WQM | 59.97 ± 0.99 a | 57.60 ± 2.99 a | 5024 ± 40 d | 4961 ± 19 a | 6.04 ± 0.38 a | 23.63 ± 0.23 d | 103.25 ± 8.35 a | 34.02 ± 0.86 b |
RQM | 50.53 ± 0.31 b | 48.56 ± 2.58 b | 5561 ± 77 c | 4294 ± 68 cd | 4.59 ± 0.06 de | 31.80 ± 0.20 c | 99.26 ± 2.31 a | 36.96 ± 0.69 a |
BQM | 43.16 ± 0.51 c | 48.13 ± 5.08 b | 6577 ± 76 b | 4673 ± 26 b | 4.92 ± 0.06 c | 53.87 ± 0.88 a | 97.90 ± 1.60 a | 30.33 ± 0.35 d |
Sample | pH | TTA | L* | a* | b* | Dynamic Viscosity [mPa·s] | Total Protein [%] | Ash [%] | SDF [%] | IDF [%] | TDF [%] |
---|---|---|---|---|---|---|---|---|---|---|---|
WQS | 4.30 ± 0.00 c | 20.2 ± 0.3 d | 89.5 ± 0.9 a | −6.09 ± 0.09 e | 18.85 ± 0.19 c | 595 ± 2.74 d | 14.9 ± 0.1 e | 2.58 ± 0.02 c | 2.28 ± 0.44 b | 5.55 ± 0.41 d | 7.82 ± 0.32 de |
WQS5%M | 4.33 ± 0.04 bc | 23.2 ± 0.3 a | 89.0 ± 0.6 a | −5.99 ± 0.07 e | 19.46 ± 0.17 c | 584 ± 1.78 d | 14.5 ± 0.2 f | 2.50 ± 0.02 d | 2.67 ± 0.19 b | 5.82 ± 0.17 d | 8.49 ± 0.87 d |
WQS10%M | 4.28 ± 0.01 c | 23.8 ± 0.2 a | 89.9 ± 0.4 a | −5.75 ± 0.02 d | 21.95 ± 0.18 a | 666 ± 7.29 b | 14.7 ± 0.0 ef | 2.60 ± 0.01 c | 2.56 ± 0.45 b | 4.16 ± 0.14 e | 6.73 ± 0.17 e |
RQS | 4.30 ± 0.00 c | 20.4 ± 0.3 cd | 69.0 ± 0.2 c | 0.91 ± 0.02 b | 18.90 ± 0.07 c | 611 ± 5.78 c | 16.0 ± 0.0 c | 2.48 ± 0.00 d | 4.01 ± 0.07 a | 7.60 ± 0.29 c | 11.62 ± 0.16 c |
RQS5%M | 4.30 ± 0.01 c | 20.0 ± 0.4 d | 72.7 ± 0.3 b | 1.36 ± 0.08 a | 20.25 ± 0.12 b | 596 ± 5.72 d | 15.8 ± 0.1 d | 2.50 ± 0.08 d | 3.91 ± 0.21 a | 11.88 ± 0.32 b | 15.79 ± 0.55 b |
RQS10%M | 4.30 ± 0.02 c | 20.4 ± 0.6 cd | 69.2 ± 0.2 c | 1.05 ± 0.07 b | 18.86 ± 0.03 c | 733 ± 5.59 a | 15.7 ± 0.0 d | 2.45 ± 0.02 d | 3.38 ± 0.34 ab | 11.12 ± 0.17 b | 14.50 ± 0.87 b |
BQS | 4.47 ± 0.00 a | 20.0 ± 0.7 d | 64.1 ± 0.4 d | −2.29 ± 0.03 c | 10.15 ± 0.14 d | 474 ± 5.59 f | 17.3 ± 0.1 a | 2.84 ± 0.03 a | 2.32 ± 0.14 b | 15.62 ± 0.18 a | 17.94 ± 0.14 a |
BQS5%M | 4.45 ± 0.07 ab | 21.6 ± 0.1 b | 61.6 ± 0.5 e | −2.26 ± 0.02 c | 9.78 ± 0.05 d | 544 ± 6.34 e | 17.0 ± 0.1 b | 2.78 ± 0.02 ab | 2.29 ± 0.01 b | 15.42 ± 0.56 a | 17.72 ± 0.15 a |
BQS10%M | 4.40 ± 0.14 abc | 21.2 ± 0.2 bc | 62.4 ± 0.1 e | −2.14 ± 0.04 c | 10.20 ± 0.09 d | 667 ± 6.20 b | 16.9 ± 0.1 b | 2.76 ± 0.02 b | 3.35 ± 0.18 ab | 15.07 ± 0.28 a | 18.42 ± 0.10 a |
Sample | Na [mg/kg] | Ca [mg/kg] | K [mg/kg] | Mg [mg/kg] | Cu [mg/kg] | Mn [mg/kg] | Fe [mg/kg] | Zn [mg/kg] |
---|---|---|---|---|---|---|---|---|
WQS | 77.06 ± 0.86 b | 41.91 ± 0.78 b | 6116 ± 104 c | 5371 ± 70 a | 5.84 ± 0.05 b | 26.53 ± 0.19 f | 102.37 ± 1.34 a | 34.49 ± 0.26 cd |
WQS5%M | 80.95 ± 2.16 a | 46.72 ± 0.65 a | 5851 ± 65 cd | 5204 ± 58 ab | 6.16 ± 0.11 a | 26.00 ± 0.16 fg | 95.64 ± 0.92 a | 35.43 ± 0.91 c |
WQS10%M | 74.82 ± 2.73 b | 40.58 ± 1.23 b | 5583 ± 127 d | 4967 ± 189 bc | 5.63 ± 0.07 c | 25.62 ± 0.86 g | 93.47 ± 1.53 a | 34.38 ± 0.64 d |
RQS | 64.53 ± 2.03 c | 41.76 ± 1.53 b | 7039 ± 194 b | 4522 ± 79 de | 4.99 ± 0.15 d | 34.45 ± 0.38 d | 90.76 ± 1.14 a | 37.83 ± 1.14 a |
RQS5%M | 61.92 ± 2.33 cd | 29.37 ± 1.29 c | 6890 ± 148 b | 4554 ± 114 de | 4.84 ± 0.09 e | 33.47 ± 0.33 e | 95.98 ± 1.71 a | 36.70 ± 0.26 b |
RQS10%M | 59.72 ± 0.41 de | 25.48 ± 1.53 cd | 6850 ± 104 b | 4485 ± 145 e | 4.87 ± 0.02 de | 33.87 ± 0.28 de | 95.42 ± 0.99 a | 38.08 ± 0.26 a |
BQS | 57.38 ± 1.36 e | 26.81 ± 1.54 cd | 7896 ± 176 a | 4850 ± 70 cd | 4.90 ± 0.08 de | 55.65 ± 0.47 b | 101.95 ± 1.44 a | 31.12 ± 0.57 e |
BQS5%M | 53.92 ± 1.10 f | 18.89 ± 1.53 e | 7663 ± 179 a | 4749 ± 109 cde | 4.79 ± 0.09 e | 53.90 ± 0.75 c | 102.55 ± 1.35 a | 30.97 ± 0.62 e |
BQS10%M | 56.65 ± 0.47 ef | 23.24 ± 1.63 d | 7572 ± 109 a | 4814 ± 24 cde | 4.89 ± 0.05 de | 57.62 ± 0.71 a | 106.17 ± 1.05 a | 31.36 ± 0.78 e |
Sample | Dextrins [g/kg] | Glucose [g/kg] | Lactic Acid [g/kg] | Acetic Acid [g/kg] | Ethanol [g/kg] |
---|---|---|---|---|---|
WQS | 7.86 ± 0.07 d | 32.61 ± 0.44 d | 7.56 ± 0.02 h | 4.07 ± 0.00 a | 3.28 ± 0.02 c |
WQS5%M | 8.66 ± 0.03 a | 20.96 ± 0.15 i | 12.70 ± 0.02 b | 2.56 ± 0.01 f | 5.63 ± 0.02 b |
WQS10%M | 8.48 ± 0.01 b | 21.55 ± 0.12 h | 12.70 ± 0.01 b | 2.42 ± 0.02 g | 5.74 ± 0.04 a |
RQS | 7.43 ± 0.01 f | 46.71 ± 0.01 b | 10.84 ± 0.00 f | n.d. | 3.24 ± 0.01 d |
RQS5%M | 6.21 ± 0.00 g | 39.35 ± 0.00 c | 10.68 ± 0.00 g | 2.96 ± 0.00 c | n.d. |
RQS10%M | 8.28 ± 0.00 c | 47.95 ± 0.38 a | 12.68 ± 0.01 b | 1.85 ± 0.01 h | n.d. |
BQS | 7.68 ± 0.00 d | 25.39 ± 0.00 g | 11.33 ± 0.01 e | 2.79 ± 0.01 e | 3.18 ± 0.00 e |
BQS5%M | 8.56 ± 0.00 b | 30.36 ± 0.00 f | 12.22 ± 0.01 c | 2.96 ± 0.00 c | n.d. |
BQS10%M | 8.67 ± 0.00 a | 31.22 ± 0.00 e | 12.92 ± 0.00 a | 3.06 ± 0.02 b | n.d. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wojciechowicz-Budzisz, A.; Gasiński, A.; Pietrzak, W.; Pejcz, E.; Styczyńska, M.; Harasym, J. Chemical Composition and Nutritional Profile of Quinoa Sourdough Enriched with Quinoa Malts. Molecules 2025, 30, 3653. https://doi.org/10.3390/molecules30173653
Wojciechowicz-Budzisz A, Gasiński A, Pietrzak W, Pejcz E, Styczyńska M, Harasym J. Chemical Composition and Nutritional Profile of Quinoa Sourdough Enriched with Quinoa Malts. Molecules. 2025; 30(17):3653. https://doi.org/10.3390/molecules30173653
Chicago/Turabian StyleWojciechowicz-Budzisz, Agata, Alan Gasiński, Witold Pietrzak, Ewa Pejcz, Marzena Styczyńska, and Joanna Harasym. 2025. "Chemical Composition and Nutritional Profile of Quinoa Sourdough Enriched with Quinoa Malts" Molecules 30, no. 17: 3653. https://doi.org/10.3390/molecules30173653
APA StyleWojciechowicz-Budzisz, A., Gasiński, A., Pietrzak, W., Pejcz, E., Styczyńska, M., & Harasym, J. (2025). Chemical Composition and Nutritional Profile of Quinoa Sourdough Enriched with Quinoa Malts. Molecules, 30(17), 3653. https://doi.org/10.3390/molecules30173653