Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (20)

Search Parameters:
Keywords = maltene

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 2723 KiB  
Article
FTIR Characterization of Asphalt SARA Fractions in Response to Rubber Modification
by Mohyeldin Ragab, Eslam Deef-Allah and Magdy Abdelrahman
Appl. Sci. 2025, 15(14), 8062; https://doi.org/10.3390/app15148062 - 20 Jul 2025
Viewed by 335
Abstract
Asphalt–rubber binders (A-RBs) have a long and deep history of use; however, little is known regarding the interrelated chemical behaviors and miscibility of rubber with the asphalt fractions [saturates, aromatics, resins, and asphaltenes (SARA)]. This study comprehensively attempted to address this knowledge deficiency [...] Read more.
Asphalt–rubber binders (A-RBs) have a long and deep history of use; however, little is known regarding the interrelated chemical behaviors and miscibility of rubber with the asphalt fractions [saturates, aromatics, resins, and asphaltenes (SARA)]. This study comprehensively attempted to address this knowledge deficiency by employing Fourier transform infrared spectroscopy (FTIR) to investigate the chemical evolution of A-RBs. A-RB interacted at 190 °C and 3000 min−1 for 8 h was deemed to have the optimal rheological performance. FTIR of the liquid fractions of A-RB 190–3000 showed a prominent chemical shift in the SARA fractions, with new peaks that showed rubber polybutadiene (PB) and polystyrene migration into asphaltenes. Meanwhile, decreases in peaks with C–H aromatic bending and S=O stretching for the A-RB 190–3000 saturates showed that the rubber absorbed low-molecular-weight maltenes during swelling. Peaks associated with C=C aromatic appeared in saturates and aromatics, respectively, emphasizing that unsaturated components migrated from the rubber into the asphalt. Thermal analysis showed that rubber dissolution for this sample reached 82%. While a PB peak existed in asphaltenes of A-RB 220–3000, its intensity was diminished by depolymerization, thus compromising the integrity of the migrated rubber structure and generating less rheological enhancement. This study concludes that FTIR characterization of SARA fractions offers valuable insights into the interactions between asphalt and rubber, and that regulated processing conditions are essential for enhancing binder performance. Full article
(This article belongs to the Special Issue Infrastructure Resilience Analysis)
Show Figures

Figure 1

18 pages, 1588 KiB  
Article
Root Cause Analysis for Observed Increased Sedimentation in a Commercial Residue Hydrocracker
by Ivelina Shishkova, Dicho Stratiev, Petko Kirov, Rosen Dinkov, Sotir Sotirov, Evdokia Sotirova, Veselina Bureva, Krassimir Atanassov, Vesislava Toteva, Svetlin Vasilev, Dobromir Yordanov, Radoslava Nikolova and Anife Veli
Processes 2025, 13(3), 674; https://doi.org/10.3390/pr13030674 - 27 Feb 2025
Cited by 2 | Viewed by 794
Abstract
Ebullated bed vacuum residue hydrocracking is a well-established technology providing a high conversion level of low-value residue fractions in high-value light fuels. The main challenge in this technology when processing vacuum residues derived from different crude oils is the sediment formation rate that [...] Read more.
Ebullated bed vacuum residue hydrocracking is a well-established technology providing a high conversion level of low-value residue fractions in high-value light fuels. The main challenge in this technology when processing vacuum residues derived from different crude oils is the sediment formation rate that leads to equipment fouling and cycle length shortening. With the severity enhancement, the asphaltenes become more aromatic and less soluble which leads to sediment formation when the difference between solubility parameters of asphaltenes and maltenes goes beyond a threshold value. Although theoretical models have been developed to predict asphaltene precipitation, the great diversity of oils makes it impossible to embrace the full complexity of oil chemistry by any theoretical model making it impractical for using it in all applications. The evaluation of process data of a commercial ebullated bed vacuum residue hydrocracker, properties of different feeds, and product streams by intercriteria and regression analyses enabled us to decipher the reason for hydrocracked oil sediment content rising from 0.06 to 1.15 wt.%. The ICrA identified the presence of statistically meaningful relations between the single variables, while the regression analysis revealed the combination of variables having a statistically meaningful effect on sediment formation rate. In this study, vacuum residues derived from 16 crude oils have been hydrocracked as blends, which also contain fluid catalytic cracking heavy cycle oil and slurry oil (SLO), in a commercial H-Oil plant. It was found that the hydrocracked oil sediment content decreased exponentially with fluid catalytic cracking slurry oil augmentation. It was also established that it increased with the magnification of resin and asphaltene and the reduction in sulfur contents in the H-Oil feed. Full article
(This article belongs to the Special Issue Heat and Mass Transfer Phenomena in Energy Systems)
Show Figures

Figure 1

14 pages, 3053 KiB  
Article
Insights on In Situ Combustion Modeling Based on a Ramped Temperature Oxidation Experiment for Oil Sand Bitumen
by Lyudmila Khakimova, Evgeny Popov and Alexey Cheremisin
Energies 2023, 16(18), 6738; https://doi.org/10.3390/en16186738 - 21 Sep 2023
Cited by 4 | Viewed by 1397
Abstract
The ramped temperature oxidation (RTO) test is a screening method used to assess the stability of a reservoir for air-injection Enhanced Oil Recovery (EOR) and to evaluate the oxidation behavior of oil samples. It provides valuable kinetic data for specific cases. The RTO [...] Read more.
The ramped temperature oxidation (RTO) test is a screening method used to assess the stability of a reservoir for air-injection Enhanced Oil Recovery (EOR) and to evaluate the oxidation behavior of oil samples. It provides valuable kinetic data for specific cases. The RTO test allows for the analysis of various characteristics, such as temperature evolution, peak temperatures, oxygen uptake, carbon dioxide generation, oxidation and combustion front velocity, recovered and burned hydrocarbons, and residual coke. The adaptation of RTO experiments to in situ combustion (ISC) modeling involves validation and history matching based on numerical simulation of RTO tests, using 3D digital models of experimental setup. The objective is to estimate the kinetic parameters for a customized reaction model that accurately represents ISC. Within this research, the RTO test was provided for bitumen samples related to the Samara oil region. A 3D digital model of the RTO test is constructed using CMG STARS, a thermal hydrodynamic simulator. The model is designed with multiple layers and appropriate heating regimes to account for uncertainties in the experimental setup and to validate the numerical model. The insulation of the setup affects radial heat transfers and helps to control the observed temperature levels. The modified traditional reaction model incorporates thermal cracking of Asphaltenes, low-temperature oxidation (LTO) of Asphaltenes and Maltenes, and high-temperature combustion of coke. Additionally, the model incorporates high-temperature combustion of light oil in the vapor phase, which is generated through Asphaltenes cracking and LTO reactions. Full article
(This article belongs to the Special Issue Deep Oil and Gas Drilling and Production Technology)
Show Figures

Figure 1

18 pages, 2043 KiB  
Article
Persistent Free Radicals in Petroleum
by Lina M. Yañez Jaramillo, Joy H. Tannous and Arno de Klerk
Processes 2023, 11(7), 2067; https://doi.org/10.3390/pr11072067 - 11 Jul 2023
Cited by 10 | Viewed by 2460
Abstract
The persistent free radical content in petroleum is of the order 1018 spins/g (1 μmol/g), with higher and lower values found depending on origin and in different distillation fractions. The field of persistent free radicals in petroleum was reviewed with the aim [...] Read more.
The persistent free radical content in petroleum is of the order 1018 spins/g (1 μmol/g), with higher and lower values found depending on origin and in different distillation fractions. The field of persistent free radicals in petroleum was reviewed with the aim of addressing and explaining apparent inconsistencies between free radical persistence and reactivity. The macroscopic average free radical concentration in petroleum is persistent over geological time, but individual free radical species in petroleum are short-lived and reactive. The persistent free radical concentration in petroleum can be explained in terms of a dynamic reaction equilibrium of free radical dissociation and association that causes a finite number of species at any given time to be present as free radicals. Evidence to support this description are observed changes in free radical concentration related to change in Gibbs free energy when the bulk liquid properties are changed and responsiveness of free radical concentration to dynamic changes in temperature. Cage effects, solvent effects, steric protection, and radical stabilization affect free radical reaction rate but do not explain the persistent free radical concentration in petroleum. The difference between persistent free radicals in straight-run petroleum and converted petroleum is that straight-run petroleum is an equilibrated mixture, but converted petroleum is not at equilibrium and the free radical concentration can change over time. Based on the limited data available, free radicals in straight-run petroleum appear to be part of the compositional continuum proposed by Altgelt and Boduszynski. Persistent free radical species are partitioned during solvent classification of whole oil, with the asphaltenes (n-alkane insoluble) fraction having a higher concentration of persistent free radicals than maltenes (n-alkane soluble) fraction. Attempts to relate persistent free radical concentration to petroleum composition were inconclusive. Full article
Show Figures

Figure 1

15 pages, 1594 KiB  
Article
The Use of Vacuum Residue as a Potential Rejuvenator in Reclaimed Asphalt Pavement: Physical, Rheological, and Mechanical Traits Analysis
by Zaid Hazim Al-Saffar, Ahmed Eltwati, Ehab Essam Aziz, Haryati Yaacob, Halah Abdulsattar Dawood, Ramadhansyah Putra Jaya, Mohammed S. Al Jawahery and Ekarizan Shaffie
Recycling 2023, 8(3), 47; https://doi.org/10.3390/recycling8030047 - 4 May 2023
Cited by 6 | Viewed by 3296
Abstract
Asphalt recycling technology with a high content of reclaimed asphalt pavement (RAP) is becoming more important as the price of paving materials rises and sustainable development and environmental conservation rules become more rigorous. Nevertheless, road authorities in numerous countries still prohibit the utilisation [...] Read more.
Asphalt recycling technology with a high content of reclaimed asphalt pavement (RAP) is becoming more important as the price of paving materials rises and sustainable development and environmental conservation rules become more rigorous. Nevertheless, road authorities in numerous countries still prohibit the utilisation of RAP in asphalt mixes due to the negative impacts of RAP on the performance of asphalt mixtures. Consequently, different rejuvenators have been introduced to reinstate the original attributes of aged asphalt to resolve this issue. This study incorporated vacuum residue (VR) into mixtures with 40% RAP. The physical, rheological, and mechanical traits of the resultant samples were assessed. The results show that the 7.5% VR rejuvenator minimised the RAP asphalt ageing impact. Furthermore, the rejuvenating agent demonstrated physical and rheological rehabilitative benefits for the aged asphalt. The mechanical attributes of the rejuvenated samples were also enhanced compared to the virgin asphalt (VA) specimens. Full article
Show Figures

Figure 1

17 pages, 6021 KiB  
Article
Study on Physical Properties, Rheological Properties, and Self-Healing Properties of Epoxy Resin Modified Asphalt
by Jiasheng Li, Yaoyang Zhu and Jianying Yu
Sustainability 2023, 15(8), 6889; https://doi.org/10.3390/su15086889 - 19 Apr 2023
Cited by 6 | Viewed by 1952
Abstract
To investigate the effects of epoxy resin at low content on the physical properties, rheological properties, and self-healing properties of asphalt, epoxy asphalts with epoxy resin contents of 2%, 5%, 10%, and 20% were prepared. The distribution of epoxy asphalt (EA) in epoxy [...] Read more.
To investigate the effects of epoxy resin at low content on the physical properties, rheological properties, and self-healing properties of asphalt, epoxy asphalts with epoxy resin contents of 2%, 5%, 10%, and 20% were prepared. The distribution of epoxy asphalt (EA) in epoxy resin (ER) was quantitatively studied by fluorescence microscopy (FM) to investigate the feasibility of the preparation process. The glass transition temperature of epoxy asphalt was quantitatively analyzed by the differential thermal analyzer (DSC). The physical properties of epoxy asphalt were characterized by penetration test, ductility test, and softening point test. The rheological properties of epoxy asphalt were analyzed by the dynamic shear rheometer (DSR) to evaluate the self-healing properties of epoxy asphalt. The results show that the epoxy resin could be uniformly distributed in the asphalt, as verified by fluorescence microscopy (FM). With the increase in epoxy resin content, the glass transition temperature of epoxy asphalt gradually decreases, and the epoxy asphalt with 20% content shows the lowest glass transition temperature. At the same time, epoxy resin gives asphalt a higher modulus and high temperature performance, and the penetration and softening point of epoxy asphalt has also been greatly improved. On the contrary, the three-dimensional cross-linked grid structure, which is formed by epoxy resin and curing agent, reduces the rheological properties of epoxy asphalt and increases the elastic components of epoxy asphalt. Although the maltenes diagram still exhibits typical viscoelastic characteristic, the flow behavior index and flow activation energy of epoxy asphalt decreased. Full article
(This article belongs to the Special Issue Eco-Friendly Recycling of Solid Waste into Construction Materials)
Show Figures

Figure 1

16 pages, 2035 KiB  
Article
Extraction and Characterisation of Maltene from Virgin Asphalt as a Potential Rejuvenating Agent
by Zaid Hazim Al-Saffar, Haryati Yaacob, Mohammed S. Al Jawahery, Salim T. Yousif, Mohd Khairul Idham Mohd Satar, Ramadhansyah Putra Jaya, Hassanain Radhi Radeef, Ahmed Salama Eltwati and Ekarizan Shaffie
Sustainability 2023, 15(2), 909; https://doi.org/10.3390/su15020909 - 4 Jan 2023
Cited by 8 | Viewed by 2860
Abstract
The wide application of reclaimed asphalt pavement (RAP) is hindered due to the highly brittle nature of the material, which contributes a major factor towards cracking-related distresses. While the utilisation of rejuvenating agents has been shown to enhance the flexibility of RAP, they [...] Read more.
The wide application of reclaimed asphalt pavement (RAP) is hindered due to the highly brittle nature of the material, which contributes a major factor towards cracking-related distresses. While the utilisation of rejuvenating agents has been shown to enhance the flexibility of RAP, they also trigger certain negative effects on the performance of asphalt mixtures. In view of this, potential rejuvenators should be able to alter the rheological properties of asphalts to limit fatigue issues and enhance the potential of low-temperature cracking. Therefore, this study aimed to investigate the possibility of extraction and characterisation of maltene from virgin asphalt (VA) as a potential rejuvenating agent in RAP. Several physicochemical characteristics were examined, including density, viscosity, gas chromatography–mass spectrometry (GC–MS), Fourier-transform infrared (FTIR) spectroscopy, CHNS elemental analysis, and energy dispersive X-ray (EDX) analysis. Finally, the stiffness modulus characteristics of the different types of asphalt binders were evaluated at low and high temperatures. The results demonstrated that maltene was successfully extracted from VA using petroleum ether. In addition, the GC–MS showed that the extracted maltene contained polar and non-polar compounds with low molecular weights compared to VA. Furthermore, the spectra curve of maltene was very similar to that of asphalt, indicating its compatibility with asphalt binder and prospective use. Finally, adding maltene to aged asphalt decreased stiffness values to 0.0063, 0.0499, and 0.0108 MPa, which are equivalent to VA values (0.0061, 0.0481, and 0.0104 MPa) at loading times of 1.0, 0.1, and 0.55 s, respectively. Meanwhile, the stiffness modulus characteristics at low temperature were restored with the addition of maltene. Full article
Show Figures

Figure 1

14 pages, 4114 KiB  
Article
Factors Influencing the Low-Temperature Properties of Styrene-Butadiene-Styrene Modified Asphalt Based on Orthogonal Tests
by Suhua Chen, Enwei Jin, Gang Xu, Shangzhi Zhuo and Xianhua Chen
Polymers 2023, 15(1), 52; https://doi.org/10.3390/polym15010052 - 23 Dec 2022
Cited by 11 | Viewed by 2161
Abstract
Styrene-butadiene-styrene (SBS) is widely used in asphalt modification to obtain superior high-temperature performance. Nevertheless, studies on the low-temperature properties of SBS-modified asphalt are not satisfactory. Orthogonal tests are valid in analysing the results. In this paper, the main factors (SBS content, sulfur content, [...] Read more.
Styrene-butadiene-styrene (SBS) is widely used in asphalt modification to obtain superior high-temperature performance. Nevertheless, studies on the low-temperature properties of SBS-modified asphalt are not satisfactory. Orthogonal tests are valid in analysing the results. In this paper, the main factors (SBS content, sulfur content, and the addition of rubber processing oil) for improving the low-temperature performance of SBS-modified asphalt were analyzed base on the orthogonal tests. Firstly, the frequency sweep test, bending beam rheometer (BBR) test, and force-ductility test were conducted to evaluate the low-temperature properties of SBS-modified asphalt. Investigation of low-temperature parameters obtained through these tests was conducted base on the orthogonal analysis method. The G-R parameter was abandoned in the analysis of the orthogonal method for the result that the increase of SBS content was negative to the low-temperature properties by the Glover-Rowe (G-R) parameter, which were contrary to the results of BBR and force-ductility tests. Moreover, the other parameters (ΔTc and toughness) sorted according to the orthogonal analysis method indicated the effect on low-temperature performance of the SBS-modified asphalt as SBS content > rubber processing oil > sulfur. As shown above that both SBS and rubber processing oil play a critical role in improving the low-temperature properties of SBS-modified asphalt, for SBS could resist the generation and subsequent propagation of cracks while the rubber processing oil could supplement the maltene loss. Full article
Show Figures

Figure 1

17 pages, 5843 KiB  
Project Report
When Physical Chemistry Meets Circular Economy to Solve Environmental Issues: How the ReScA Project Aims at Using Waste Pyrolysis Products to Improve and Rejuvenate Bitumens
by Paolino Caputo, Pietro Calandra, Valeria Loise, Adolfo Le Pera, Ana-Maria Putz, Abraham A. Abe, Luigi Madeo, Bagdat Teltayev, Maria Laura Luprano, Michela Alfè, Valentina Gargiulo, Giovanna Ruoppolo and Cesare Oliviero Rossi
Sustainability 2022, 14(10), 5790; https://doi.org/10.3390/su14105790 - 10 May 2022
Cited by 11 | Viewed by 3175
Abstract
Urban waste management is a hard task: more than 30% of the world’s total production of Municipal Solid Wastes (MSW) is not adequately handled, with landfilling remaining as a common practice. Another source of wastes is the road pavement industry: with a service [...] Read more.
Urban waste management is a hard task: more than 30% of the world’s total production of Municipal Solid Wastes (MSW) is not adequately handled, with landfilling remaining as a common practice. Another source of wastes is the road pavement industry: with a service life of about 10–15 years, asphalts become stiff, susceptible to cracks, and therefore no longer adapted for road paving, so they become wastes. To simultaneously solve these problems, a circular economy-based approach is proposed by the ReScA project, suggesting the use of pyrolysis to treat MSW (or its fractions as Refuse Derived Fuels, RDFs), whose residues (oil and char) can be used as added-value ingredients for the asphalt cycle. Char can be used to prepare better performing and durable asphalts, and oil can be used to regenerate exhaust asphalts, avoiding their landfilling. The proposed approach provides a different and more useful pathway in the end-of-waste (EoW) cycle of urban wastes. This proof of concept is suggested by the following two observations: (i) char is made up by carbonaceous particles highly compatible with the organic nature of bitumens, so its addition can reinforce the overall bitumen structure, increasing its mechanical properties and slowing down the molecular kinetics of its aging process; (ii) oil is rich in hydrocarbons, so it can enrich the poor fraction of the maltene phase in exhaust asphalts. These hypotheses have been proved by testing the residues derived from the pyrolysis of RDFs for the improvement of mechanical characteristics of a representative bitumen sample and its regeneration after aging. The proposed approach is suggested by the physico-chemical study of the materials involved, and aims to show how the chemical knowledge of complex systems, like bituminous materials, can help in solving environmental issues. We hope that this approach will be considered as a model method for the future. Full article
Show Figures

Figure 1

35 pages, 1992 KiB  
Article
Non-Exponential 1H and 2H NMR Relaxation and Self-Diffusion in Asphaltene-Maltene Solutions
by Kevin Lindt, Bulat Gizatullin, Carlos Mattea and Siegfried Stapf
Molecules 2021, 26(17), 5218; https://doi.org/10.3390/molecules26175218 - 28 Aug 2021
Cited by 2 | Viewed by 2747
Abstract
The distribution of NMR relaxation times and diffusion coefficients in crude oils results from the vast number of different chemical species. In addition, the presence of asphaltenes provides different relaxation environments for the maltenes, generated by steric hindrance in the asphaltene aggregates and [...] Read more.
The distribution of NMR relaxation times and diffusion coefficients in crude oils results from the vast number of different chemical species. In addition, the presence of asphaltenes provides different relaxation environments for the maltenes, generated by steric hindrance in the asphaltene aggregates and possibly by the spatial distribution of radicals. Since the dynamics of the maltenes is further modified by the interactions between maltenes and asphaltenes, these interactions—either through steric hindrances or promoted by aromatic-aromatic interactions—are of particular interest. Here, we aim at investigating the interaction between individual protonic and deuterated maltene species of different molecular size and aromaticity and the asphaltene macroaggregates by comparing the maltenes’ NMR relaxation (T1 and T2) and translational diffusion (D) properties in the absence and presence of the asphaltene in model solutions. The ratio of the average transverse and longitudinal relaxation rates, describing the non-exponential relaxation of the maltenes in the presence of the asphaltene, and its variation with respect to the asphaltene-free solutions are discussed. The relaxation experiments reveal an apparent slowing down of the maltenes’ dynamics in the presence of asphaltenes, which differs between the individual maltenes. While for single-chained alkylbenzenes, a plateau of the relaxation rate ratio was found for long aliphatic chains, no impact of the maltenes’ aromaticity on the maltene–asphaltene interaction was unambiguously found. In contrast, the reduced diffusion coefficients of the maltenes in presence of the asphaltenes differ little and are attributed to the overall increased viscosity. Full article
(This article belongs to the Special Issue Advances in NMR and MRI of Materials)
Show Figures

Figure 1

24 pages, 42884 KiB  
Review
A Review on the Durability of Recycled Asphalt Mixtures Embraced with Rejuvenators
by Zaid Hazim Al-Saffar, Haryati Yaacob, Herda Yati Katman, Mohd Khairul Idham Mohd Satar, Munder Bilema, Ramadhansyah Putra Jaya, Ahmed Salama Eltwati and Hassanain Radhi Radeef
Sustainability 2021, 13(16), 8970; https://doi.org/10.3390/su13168970 - 11 Aug 2021
Cited by 49 | Viewed by 6333
Abstract
Reclaimed asphalt pavement (RAP) has received much attention recently due to its increased use in hot mix asphalt (HMA) pavements to enhance pavement sustainability. The use of aged asphalt in RAP, which is highly oxidised and has lost its properties due to exposure [...] Read more.
Reclaimed asphalt pavement (RAP) has received much attention recently due to its increased use in hot mix asphalt (HMA) pavements to enhance pavement sustainability. The use of aged asphalt in RAP, which is highly oxidised and has lost its properties due to exposure to traffic loads and climatic conditions throughout its lifespan, can cause asphalt mixtures to stiffen and embrittle, thus negatively affecting the behaviour of asphalt mixtures. This issue may be resolved by including rejuvenating agents that can restore both physical and rheological properties of aged asphalt by increasing maltene fractions and decreasing asphaltene. However, the high restoration capacity of any kind of rejuvenating agent does not assure the durability of restored aged asphalt. This study explored the performance and durability of rejuvenated asphalt mixtures embedded with several types of rejuvenators identified from the extensive literature review. The study serves as a significant reference to predict future challenges in rejuvenating aged asphalt. Full article
(This article belongs to the Special Issue Sustainable Pavement Materials and Technology)
Show Figures

Figure 1

15 pages, 5442 KiB  
Article
Rejuvenation Mechanism of Asphalt Mixtures Modified with Crumb Rubber
by Hossein Noorvand, Kamil Kaloush, Jose Medina and Shane Underwood
CivilEng 2021, 2(2), 370-384; https://doi.org/10.3390/civileng2020020 - 12 May 2021
Cited by 6 | Viewed by 3054
Abstract
Asphalt aging is one of the main factors causing asphalt pavements deterioration. Previous studies reported on some aging benefits of asphalt rubber mixtures through laboratory evaluation. A field observation of various pavement sections of crumb rubber modified asphalt friction courses (ARFC) in the [...] Read more.
Asphalt aging is one of the main factors causing asphalt pavements deterioration. Previous studies reported on some aging benefits of asphalt rubber mixtures through laboratory evaluation. A field observation of various pavement sections of crumb rubber modified asphalt friction courses (ARFC) in the Phoenix, Arizona area indicated an interesting pattern of transverse/reflective cracking. These ARFC courses were placed several years ago on existing jointed plain concrete pavements for highway noise mitigation. Over the years, the shoulders had very noticeable and extensive cracking over the joints; however, the driving lanes of the pavement showed less cracking formation in severity and extent. The issue with this phenomenon is that widely adopted theories that stem from continuum mechanics of materials and layered mechanics of pavement systems cannot directly explain this phenomenon. One hypothesis could be that traffic loads continually manipulate the pavement over time, which causes some maltenes (oils and resins) compounds absorbed in the crumb rubber particles to migrate out leading to rejuvenation of the mastic in the asphalt mixture. To investigate the validity of such a hypothesis, an experimental laboratory testing was undertaken to condition samples with and without dynamic loads at high temperatures. This was followed by creep compliance and indirect tensile strength testing. The results showed the higher creep for samples aged with dynamic loading compared to those aged without loading. Higher creep compliance was attributed to higher flexibility of samples due to the rejuvenation of the maltenes. This was also supported by the higher fracture energy results obtained for samples conditioned with dynamic loading from indirect tensile strength testing. Full article
(This article belongs to the Special Issue Advances in Civil Engineering)
Show Figures

Figure 1

14 pages, 2073 KiB  
Article
NMR Diffusiometry Spectroscopy, a Novel Technique for Monitoring the Micro-Modifications in Bitumen Ageing
by Paolino Caputo, Dlshad Shaikhah, Michele Porto, Valeria Loise, Maria Penelope De Santo and Cesare Oliviero Rossi
Appl. Sci. 2020, 10(16), 5409; https://doi.org/10.3390/app10165409 - 5 Aug 2020
Cited by 11 | Viewed by 2989
Abstract
In the past three decades, several conventional methods have been employed for characterizing the bitumen ageing phenomenon, such as rheological testing, ultraviolet testing, gel permeation chromatography (GPC), gas chromatography (GC), atomic force microscopy (AFM), X-ray scattering, and Fourier transform infrared spectroscopy (FTIR). Nevertheless, [...] Read more.
In the past three decades, several conventional methods have been employed for characterizing the bitumen ageing phenomenon, such as rheological testing, ultraviolet testing, gel permeation chromatography (GPC), gas chromatography (GC), atomic force microscopy (AFM), X-ray scattering, and Fourier transform infrared spectroscopy (FTIR). Nevertheless, these techniques can provide only limited observations of the structural micro-modifications occurring during bitumen ageing. In this study, Fourier transform nuclear magnetic resonance self-diffusion coefficient (FT-NMR-SDC) spectroscopy, as a novel method, was employed to investigate and compare the microstructural changes between virgin bitumen (pristine bitumen) and aged bitumen. The virgin bitumen was aged artificially using two standard ageing tests: Rolling Thin-Film Oven Test (RTFOT) and Pressure Ageing Vessel (PAV). For a comprehensive comparison and an assessment of the validity of this method, the generated samples were studied using various methods: rheological test, atomic force microscopy, and optical microscopy. Significant differences were obtained between the structure and ageing patterns of virgin and aged bitumen. The results indicate that the modification of maltenes to asphaltenes is responsible for the ageing character. When compared with the other methods’ findings, FT-NMR-SDC observations confirm that the asphaltene content increases during ageing processes. Full article
(This article belongs to the Special Issue Asphalt Materials II)
Show Figures

Graphical abstract

22 pages, 7617 KiB  
Article
Towards the Use of Waste Pig Fat as a Novel Potential Bio-Based Rejuvenator for Recycled Asphalt Pavement
by Nader Nciri, Taesub Shin, Namho Kim, Arnaud Caron, Hanen Ben Ismail and Namjun Cho
Materials 2020, 13(4), 1002; https://doi.org/10.3390/ma13041002 - 23 Feb 2020
Cited by 36 | Viewed by 4901
Abstract
This article presents a novel potential bio-based rejuvenator derived from waste pig fat (WPF) for use in recycled asphalt applications. To achieve this purpose, the impact of different doses waste pig fat (e.g., 0, 3, 6, and 9 wt.% WPF) on the reclaimed [...] Read more.
This article presents a novel potential bio-based rejuvenator derived from waste pig fat (WPF) for use in recycled asphalt applications. To achieve this purpose, the impact of different doses waste pig fat (e.g., 0, 3, 6, and 9 wt.% WPF) on the reclaimed asphalt pavement binder (RAP-B) performance is investigated. The unmodified and WPF-modified asphalts are characterized by means of Fourier-transform infrared spectroscopy (FT-IR), thin-layer chromatography–flame ionization detection (TLC-FID), scanning electron microscopy (SEM), atomic force microscopy (AFM), thermogravimetric analysis (TGA), and differential scanning calorimetry (DSC). Physico-rheological properties of asphalt blends are assessed through Brookfield viscometer, softening point, penetration, and dynamic shear rheometer (DSR) tests. TLC-FID data highlighted that incremental WPF addition into RAP-B restored its original balance maltenes-to-asphaltenes ratio; finding which was supported by FT-IR analysis. SEM disclosed that WPF has a great compatibility with the aged asphalt. AFM observations showed that grease treatment induced a decline in surface roughness (i.e., bee structures) and a rise in friction force (i.e., para-phase dimension) of RAP binder. TGA/DSC studies revealed that the bio-modifier not only possesses an excellent thermal stability but also can substantially enhance the binder low-temperature performance. Empirical and DSR tests demonstrated that WPF improved the low-temperature performance grade of RAP-B, reduced its mixing and compaction temperatures, and noticeably boosted its fatigue cracking resistance. The rejuvenation of aged asphalt employing WPF is feasible and can be an ideal approach to recycle both of RAP and waste pig fats. Full article
Show Figures

Graphical abstract

21 pages, 4030 KiB  
Article
Playing with Structural Parameters: Synthesis and Characterization of Two New Maltol-Based Ligands with Binding and Antineoplastic Properties
by Eleonora Macedi, Daniele Paderni, Mauro Formica, Luca Conti, Mirco Fanelli, Luca Giorgi, Stefano Amatori, Gianluca Ambrosi, Barbara Valtancoli and Vieri Fusi
Molecules 2020, 25(4), 943; https://doi.org/10.3390/molecules25040943 - 20 Feb 2020
Cited by 9 | Viewed by 3173
Abstract
Two maltol-based ligands, N,N′-bis((3-hydroxy-4-pyron-2-yl)methyl)-1,4-piperazine (L1) and N,N′,N′-tris((3-hydroxy-4-pyron-2-yl)methyl)-N-methylethylendiamine (L2), were synthesized and characterized. L1 and L2, containing, respectively, two and three maltol units spaced by a diamine fragment, were [...] Read more.
Two maltol-based ligands, N,N′-bis((3-hydroxy-4-pyron-2-yl)methyl)-1,4-piperazine (L1) and N,N′,N′-tris((3-hydroxy-4-pyron-2-yl)methyl)-N-methylethylendiamine (L2), were synthesized and characterized. L1 and L2, containing, respectively, two and three maltol units spaced by a diamine fragment, were designed to evaluate how biological and binding features are affected by structural modifications of the parent compound malten. The acid-base behavior and the binding properties towards transition, alkaline-earth (AE) and rare-earth (RE) cations in aqueous solution, studied by potentiometric, UV-Vis and NMR analysis, are reported along with biological studies on DNA and leukemia cells. Both ligands form stable complexes with Cu(II), Zn(II) and Co(II) that were studied as metallo-receptors for AE and RE at neutral pH. L1 complexes are more affected than L2 ones by hard cations, the L1-Cu(II) system being deeply affected by RE. The structural modifications altered the mechanism of action: L1 partially maintains the ability to induce structural alterations of DNA, while L2 provokes single strand (nicks) and to a lesser extent double strand breaks of DNA. Full article
(This article belongs to the Section Inorganic Chemistry)
Show Figures

Graphical abstract

Back to TopTop