Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (20)

Search Parameters:
Keywords = major latex proteins

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 1845 KiB  
Article
Serum Concentrations of Imidazole Dipeptides and Serum Amyloid A in a Bottlenose Dolphin (Tursiops truncatus) with Rhabdomyolysis: Potential Biomarkers for Muscular Damage
by Nanami Arakawa, Mika Otsuka, Takahisa Hamano, Momochika Kumagai, Sanae Kato, Takuya Hirai, Akira Yabuki and Osamu Yamato
Animals 2025, 15(13), 1950; https://doi.org/10.3390/ani15131950 - 2 Jul 2025
Viewed by 416
Abstract
Imidazole dipeptides (IDPs), including anserine, carnosine, and balenine, are predominantly found in the skeletal muscles of vertebrates. Balenine is the major IDP in cetaceans. Serum amyloid A (SAA) is an acute phase protein released in response to damage or injury in various tissues, [...] Read more.
Imidazole dipeptides (IDPs), including anserine, carnosine, and balenine, are predominantly found in the skeletal muscles of vertebrates. Balenine is the major IDP in cetaceans. Serum amyloid A (SAA) is an acute phase protein released in response to damage or injury in various tissues, including skeletal muscles. A captive bottlenose dolphin (Tursiops truncatus) died due to rhabdomyolysis and subsequent acute kidney injury that probably originated from accidental muscle trauma. In this study, concentrations of IDPs and SAA were measured using stored serum collected from the affected dolphin with intermittent continuous damage of skeletal muscles to demonstrate the pathological relevance of these parameters and their usefulness as biomarkers for muscle damage in dolphins. The IDP concentration was measured using the high-performance liquid chromatography-ultraviolet method. The SAA concentration was measured using an enzyme-linked immunosorbent assay (ELISA) specific to dolphin SAA and a latex turbidimetric immunoassay (LTI) specific to human SAA. Herein, the IDP concentration was altered similarly to serum muscular enzymes, including creatinine kinase (CK) and aspartate aminotransferase (AST). However, IDP concentrations were elevated one day earlier than CK and AST levels at disease onset. Furthermore, IDP concentrations were similarly altered when assessed using both ELISA- and LTI-SAAs, and the change in IDP concentration coincided with that in LTI-SAA based on the statistical analysis. These data suggest that IDP concentration could detect muscle damage and injury, including necrosis and inflammation, in dolphins. Full article
(This article belongs to the Special Issue Diseases of Marine Mammals: Prevention, Control and Beyond)
Show Figures

Figure 1

46 pages, 7000 KiB  
Review
Recent Advances in Combining Waterborne Acrylic Dispersions with Biopolymers
by Jordi Solera-Sendra, Nicholas Ballard, Luis J. del Valle and Lourdes Franco
Polymers 2025, 17(8), 1027; https://doi.org/10.3390/polym17081027 - 10 Apr 2025
Cited by 2 | Viewed by 1796
Abstract
Water-based (meth)acrylic (co)polymer dispersions are produced on a large scale for various applications including coatings, adhesives, paints, and construction materials. A major benefit of waterborne polymer dispersions as compared to more traditional solvent-based alternatives is the low volatile organic compound (VOC) content, which [...] Read more.
Water-based (meth)acrylic (co)polymer dispersions are produced on a large scale for various applications including coatings, adhesives, paints, and construction materials. A major benefit of waterborne polymer dispersions as compared to more traditional solvent-based alternatives is the low volatile organic compound (VOC) content, which results in an improved environmental profile. Following the trend of sustainability that has driven the growth of acrylic dispersions, recent research has focused on further enhancing the properties of these products by incorporating biobased materials such as polysaccharides (e.g., cellulose, starch, chitin, and chitosan), and proteins (e.g., casein, soy protein, and collagen). Amongst a large number of benefits, the incorporation of biomaterials can serve to decrease the amount of petroleum-based polymers in the formulation and can also contribute to enhance the physical properties of the resulting bio-composites. In this review, the beneficial role of these biopolymers when combined with waterborne acrylic systems is summarized. Recent advances in the use of these biobased and biodegradable materials are covered, aiming to provide guidance for the development of more sustainable, high-performance latex-based bio-composites with minimal environmental impact. Full article
(This article belongs to the Section Circular and Green Sustainable Polymer Science)
Show Figures

Graphical abstract

18 pages, 5384 KiB  
Article
A Major Latex Protein-Encoding Gene from Populus simonii × P. nigra (PsnMLP328) Contributes to Defense Responses to Salt and Cadmium Stress
by Xin Sun, Lei Wang, Shuang Liu, Yao Li, Yao Sun, Qiong Wu and Di Fu
Int. J. Mol. Sci. 2025, 26(7), 3350; https://doi.org/10.3390/ijms26073350 - 3 Apr 2025
Viewed by 490
Abstract
Heavy metal pollution and soil salinization harm human health and the environment. Phytoremediation is a widely accepted soil decontamination method, with woody plants being particularly effective due to their large biomass and extensive root systems. In this study, we identified and cloned PsnMLP328 [...] Read more.
Heavy metal pollution and soil salinization harm human health and the environment. Phytoremediation is a widely accepted soil decontamination method, with woody plants being particularly effective due to their large biomass and extensive root systems. In this study, we identified and cloned PsnMLP328 from Populus simonii × P. nigra and demonstrated its role in mitigating salt and cadmium stress. PsnMLP328 expression was up-regulated under both stress conditions, and its overexpression in tobacco enhanced resistance to these stresses, albeit through distinct mechanisms. Transgenic plants exhibited increased Cd2+ uptake and a higher biomass, alleviating Cd2+-induced growth inhibition. Additionally, PsnMLP328 boosted proline content, chlorophyll levels, and antioxidative enzyme activities (POD, SOD) under Cd2+ stress, likely by protecting cells from oxidative damage. Expression analysis revealed that PsnMLP328 down-regulated the cadmium transporter Nramp2 while up-regulating YSL2 (another cadmium transporter) and potassium channels (AKT1 and AKT2/3), suggesting its role in modulating K+ and Cd2+ homeostasis. These findings indicate that PsnMLP328 enhances tobacco resistance to salt and cadmium stress, particularly the latter. This study is the first to elucidate the function of poplar MLP family genes under salt and cadmium stress, advancing our understanding of MLP gene roles in heavy metal stress and offering new insights for remediating salinized and heavy metal-contaminated soils. Full article
(This article belongs to the Section Molecular Plant Sciences)
Show Figures

Figure 1

19 pages, 3228 KiB  
Article
Genome-Wide Characterization and Expression Analyses of Major Latex Protein Gene Family in Populus simonii × P. nigra
by Xin Sun, Yao Li, Yao Sun, Qiong Wu and Lei Wang
Int. J. Mol. Sci. 2024, 25(5), 2748; https://doi.org/10.3390/ijms25052748 - 27 Feb 2024
Cited by 2 | Viewed by 1737
Abstract
Major latex proteins, or MLPs, are crucial to plants’ capacity to grow, develop, and endure biotic and abiotic stresses. The MLP gene family has been found in numerous plants, but little is known about its role in Populus simonii × P. nigra. [...] Read more.
Major latex proteins, or MLPs, are crucial to plants’ capacity to grow, develop, and endure biotic and abiotic stresses. The MLP gene family has been found in numerous plants, but little is known about its role in Populus simonii × P. nigra. This study discovered and assessed 43 PtMLP genes that were unevenly dispersed throughout 12 chromosomes in terms of their physicochemical characteristics, gene structure, conserved motifs, and protein localization. Based on their phylogeny and protein structural characteristics, three separate subclasses of PtMLP family were identified. Segmental and tandem duplication were found to be essential variables in the expansion of the PtMLP genes. The involvement of the PtMLP genes in growth and development, as well as in the responses to different hormones and stresses, was demonstrated by cis-regulatory element prediction. The PtMLP genes showed varying expression patterns in various tissues and under different conditions (cold, salt, and drought stress), as demonstrated in RNA-Seq databases, suggesting that PsnMLP may have different functions. Following the further investigation of the genes demonstrating notable variations in expression before and after the application of three stresses, PsnMLP5 was identified as a candidate gene. Subsequent studies revealed that PsnMLP5 could be induced by ABA treatment. This study paves the way for further investigations into the MLP genes’ functional mechanisms in response to abiotic stressors, as well as the ways in which they can be utilized in poplar breeding for improved stress tolerance. Full article
(This article belongs to the Section Molecular Plant Sciences)
Show Figures

Figure 1

19 pages, 6727 KiB  
Article
Genome-Wide Evolutionary Characterization and Expression Analysis of Major Latex Protein (MLP) Family Genes in Tomato
by Zhengliang Sun, Liangzhe Meng, Yuhe Yao, Yanhong Zhang, Baohui Cheng and Yan Liang
Int. J. Mol. Sci. 2023, 24(19), 15005; https://doi.org/10.3390/ijms241915005 - 9 Oct 2023
Cited by 6 | Viewed by 2310
Abstract
Major latex proteins (MLPs) play a key role in plant response to abiotic and biotic stresses. However, little is known about this gene family in tomatoes (Solanum lycopersicum). In this paper, we perform a genome-wide evolutionary characterization and gene expression analysis [...] Read more.
Major latex proteins (MLPs) play a key role in plant response to abiotic and biotic stresses. However, little is known about this gene family in tomatoes (Solanum lycopersicum). In this paper, we perform a genome-wide evolutionary characterization and gene expression analysis of the MLP family in tomatoes. We found a total of 34 SlMLP members in the tomato genome, which are heterogeneously distributed on eight chromosomes. The phylogenetic analysis of the SlMLP family unveiled their evolutionary relationships and possible functions. Furthermore, the tissue-specific expression analysis revealed that the tomato MLP members possess distinct biological functions. Crucially, multiple cis-regulatory elements associated with stress, hormone, light, and growth responses were identified in the promoter regions of these SlMLP genes, suggesting that SlMLPs are potentially involved in plant growth, development, and various stress responses. Subcellular localization demonstrated that SlMLP1, SlMLP3, and SlMLP17 are localized in the cytoplasm. In conclusion, these findings lay a foundation for further dissecting the functions of tomato SlMLP genes and exploring the evolutionary relationships of MLP homologs in different plants. Full article
Show Figures

Figure 1

21 pages, 2488 KiB  
Article
A Capsid Protein Fragment of a Fusagra-like Virus Found in Carica papaya Latex Interacts with the 50S Ribosomal Protein L17
by Marlonni Maurastoni, Tathiana F. Sá Antunes, Emanuel F. M. Abreu, Simone G. Ribeiro, Angela Mehta, Marcio M. Sanches, Wagner Fontes, Elliot W. Kitajima, Fabiano T. Cruz, Alexandre M. C. Santos, Jose A. Ventura, Ana C. M. M. Gomes, F. Murilo Zerbini, Patricia Sosa-Acosta, Fábio C. S. Nogueira, Silas P. Rodrigues, Francisco J. L. Aragão, Anna E. Whitfield and Patricia M. B. Fernandes
Viruses 2023, 15(2), 541; https://doi.org/10.3390/v15020541 - 15 Feb 2023
Cited by 4 | Viewed by 3504
Abstract
Papaya sticky disease is caused by the association of a fusagra-like and an umbra-like virus, named papaya meleira virus (PMeV) and papaya meleira virus 2 (PMeV2), respectively. Both viral genomes are encapsidated in particles formed by the PMeV ORF1 product, which has the [...] Read more.
Papaya sticky disease is caused by the association of a fusagra-like and an umbra-like virus, named papaya meleira virus (PMeV) and papaya meleira virus 2 (PMeV2), respectively. Both viral genomes are encapsidated in particles formed by the PMeV ORF1 product, which has the potential to encode a protein with 1563 amino acids (aa). However, the structural components of the viral capsid are unknown. To characterize the structural proteins of PMeV and PMeV2, virions were purified from Carica papaya latex. SDS-PAGE analysis of purified virus revealed two major proteins of ~40 kDa and ~55 kDa. Amino-terminal sequencing of the ~55 kDa protein and LC-MS/MS of purified virions indicated that this protein starts at aa 263 of the deduced ORF1 product as a result of either degradation or proteolytic processing. A yeast two-hybrid assay was used to identify Arabidopsis proteins interacting with two PMeV ORF1 product fragments (aa 321–670 and 961–1200). The 50S ribosomal protein L17 (AtRPL17) was identified as potentially associated with modulated translation-related proteins. In plant cells, AtRPL17 co-localized and interacted with the PMeV ORF1 fragments. These findings support the hypothesis that the interaction between PMeV/PMeV2 structural proteins and RPL17 is important for virus–host interactions. Full article
(This article belongs to the Section Viruses of Plants, Fungi and Protozoa)
Show Figures

Figure 1

20 pages, 7717 KiB  
Article
NbMLP43 Ubiquitination and Proteasomal Degradation via the Light Responsive Factor NbBBX24 to Promote Viral Infection
by Liyun Song, Yubing Jiao, Hongping Song, Yuzun Shao, Daoshun Zhang, Chengying Ding, Dong An, Ming Ge, Ying Li, Lili Shen, Fenglong Wang and Jinguang Yang
Cells 2023, 12(4), 590; https://doi.org/10.3390/cells12040590 - 11 Feb 2023
Cited by 5 | Viewed by 2846
Abstract
The ubiquitin–proteasome system (UPS) plays an important role in virus–host interactions. However, the mechanism by which the UPS is involved in innate immunity remains unclear. In this study, we identified a novel major latex protein-like protein 43 (NbMLP43) that conferred resistance to Nicotiana [...] Read more.
The ubiquitin–proteasome system (UPS) plays an important role in virus–host interactions. However, the mechanism by which the UPS is involved in innate immunity remains unclear. In this study, we identified a novel major latex protein-like protein 43 (NbMLP43) that conferred resistance to Nicotiana benthamiana against potato virus Y (PVY) infection. PVY infection strongly induced NbMLP43 transcription but decreased NbMLP43 at the protein level. We verified that B-box zinc finger protein 24 (NbBBX24) interacted directly with NbMLP43 and that NbBBX24, a light responsive factor, acted as an essential intermediate component targeting NbMLP43 for its ubiquitination and degradation via the UPS. PVY, tobacco mosaic virus, (TMV) and cucumber mosaic virus (CMV) infections could promote NbMLP43 ubiquitination and proteasomal degradation to enhance viral infection. Ubiquitination occurred at lysine 38 (K38) within NbMLP43, and non-ubiquitinated NbMLP43(K38R) conferred stronger resistance to RNA viruses. Overall, our results indicate that the novel NbMLP43 protein is a target of the UPS in the competition between defense and viral anti-defense and enriches existing theoretical studies on the use of UPS by viruses to promote infection. Full article
Show Figures

Figure 1

15 pages, 2335 KiB  
Article
Enzymatic Investigation of Spongospora subterranea Zoospore Attachment to Roots of Potato Cultivars Resistant or Susceptible to Powdery Scab Disease
by Xian Yu, Richard Wilson, Alieta Eyles, Sadegh Balotf, Robert Stephen Tegg and Calum Rae Wilson
Proteomes 2023, 11(1), 7; https://doi.org/10.3390/proteomes11010007 - 9 Feb 2023
Cited by 3 | Viewed by 2815
Abstract
For potato crops, host resistance is currently the most effective and sustainable tool to manage diseases caused by the plasmodiophorid Spongospora subterranea. Arguably, zoospore root attachment is the most critical phase of infection; however, the underlying mechanisms remain unknown. This study investigated [...] Read more.
For potato crops, host resistance is currently the most effective and sustainable tool to manage diseases caused by the plasmodiophorid Spongospora subterranea. Arguably, zoospore root attachment is the most critical phase of infection; however, the underlying mechanisms remain unknown. This study investigated the potential role of root-surface cell-wall polysaccharides and proteins in cultivars resistant/susceptible to zoospore attachment. We first compared the effects of enzymatic removal of root cell-wall proteins, N-linked glycans and polysaccharides on S. subterranea attachment. Subsequent analysis of peptides released by trypsin shaving (TS) of root segments identified 262 proteins that were differentially abundant between cultivars. These were enriched in root-surface-derived peptides but also included intracellular proteins, e.g., proteins associated with glutathione metabolism and lignin biosynthesis, which were more abundant in the resistant cultivar. Comparison with whole-root proteomic analysis of the same cultivars identified 226 proteins specific to the TS dataset, of which 188 were significantly different. Among these, the pathogen-defence-related cell-wall protein stem 28 kDa glycoprotein and two major latex proteins were significantly less abundant in the resistant cultivar. A further major latex protein was reduced in the resistant cultivar in both the TS and whole-root datasets. In contrast, three glutathione S-transferase proteins were more abundant in the resistant cultivar (TS-specific), while the protein glucan endo-1,3-beta-glucosidase was increased in both datasets. These results imply a particular role for major latex proteins and glucan endo-1,3-beta-glucosidase in regulating zoospore binding to potato roots and susceptibility to S. subterranea. Full article
(This article belongs to the Section Plant Proteomics)
Show Figures

Figure 1

17 pages, 12601 KiB  
Article
Comprehensive Analysis of Major Latex-Like Protein Family Genes in Cucumber (Cucumis sativus L.) and Their Potential Roles in Phytophthora Blight Resistance
by Yunyan Kang, Jiale Tong, Wei Liu, Zhongli Jiang, Gengzheng Pan, Xianpeng Ning, Xian Yang and Min Zhong
Int. J. Mol. Sci. 2023, 24(1), 784; https://doi.org/10.3390/ijms24010784 - 2 Jan 2023
Cited by 10 | Viewed by 3411
Abstract
Major latex-like proteins (MLPs) play crucial roles in abiotic and biotic stresses. However, little was known about this gene family in cucumbers. In this study, a total of 37 putative cucumber MLP genes were identified on a genome-wide level and classified into three [...] Read more.
Major latex-like proteins (MLPs) play crucial roles in abiotic and biotic stresses. However, little was known about this gene family in cucumbers. In this study, a total of 37 putative cucumber MLP genes were identified on a genome-wide level and classified into three groups by sequence homologous comparison with Arabidopsis thaliana. Chromosome mapping suggested that only tandem duplication occurred in evolution. The multiple regulatory cis-elements related to stress, hormone, light and growth response were found in the promoter region of these CsMLP genes, indicating that CsMLPs might be widely involved in the process of plant growth, development and various stress conditions. Transcriptome analysis indicated a strong reprogramming of MLPs expression in response to Phytophthora melonis infection in cucumber. Knockdown of CsMLP1 reduced the P. melonis tolerance, while transient overexpression of CsMLP1 improved disease tolerance in cucumber. Conversely, the silence of CsMLP5 decreased the lesion area caused by P. melonis in the cotyledons, and overexpression of CsMLP5 promoted lesion expansion. Taken together, our results provide a comprehensive basis for further mining the function of CsMLP members and will also be significant for elucidating the evolutionary relationship in cucumber. Full article
(This article belongs to the Special Issue Plant Pathogen Interactions)
Show Figures

Figure 1

26 pages, 7307 KiB  
Article
Antibacterial, Antioxidant Activities, GC-Mass Characterization, and Cyto/Genotoxicity Effect of Green Synthesis of Silver Nanoparticles Using Latex of Cynanchum acutum L
by Magda I. Soliman, Nada S. Mohammed, Ghada EL-Sherbeny, Fatmah Ahmed Safhi, Salha Mesfer ALshamrani, Amal A. Alyamani, Badr Alharthi, Safa H. Qahl, Najla Amin T. Al Kashgry, Sawsan Abd-Ellatif and Amira A. Ibrahim
Plants 2023, 12(1), 172; https://doi.org/10.3390/plants12010172 - 30 Dec 2022
Cited by 20 | Viewed by 4151
Abstract
Green synthesis of nanoparticles is receiving more attention these days since it is simple to use and prepare, uses fewer harsh chemicals and chemical reactions, and is environmentally benign. A novel strategy aims to recycle poisonous plant chemicals and use them as natural [...] Read more.
Green synthesis of nanoparticles is receiving more attention these days since it is simple to use and prepare, uses fewer harsh chemicals and chemical reactions, and is environmentally benign. A novel strategy aims to recycle poisonous plant chemicals and use them as natural stabilizing capping agents for nanoparticles. In this investigation, silver nanoparticles loaded with latex from Cynanchum acutum L. (Cy-AgNPs) were examined using a transmission electron microscope, FT-IR spectroscopy, and UV-visible spectroscopy. Additionally, using Vicia faba as a model test plant, the genotoxicity and cytotoxicity effects of crude latex and various concentrations of Cy-AgNPs were studied. The majority of the particles were spherical in shape. The highest antioxidant activity using DPPH was illustrated for CAgNPs (25 mg/L) (70.26 ± 1.32%) and decreased with increased concentrations of Cy-AGNPs. Antibacterial activity for all treatments was determined showing that the highest antibacterial activity was for Cy-AgNPs (50 mg/L) with inhibition zone 24 ± 0.014 mm against Bacillus subtilis, 19 ± 0.12 mm against Escherichia coli, and 23 ± 0.015 against Staphylococcus aureus. For phytochemical analysis, the highest levels of secondary metabolites from phenolic content, flavonoids, tannins, and alkaloids, were found in Cy-AgNPs (25 mg/L). Vicia faba treated with Cy-AgNPs- (25 mg/L) displayed the highest mitotic index (MI%) value of 9.08% compared to other Cy-AgNP concentrations (50–100 mg/L) and C. acutum crude latex concentrations (3%). To detect cytotoxicity, a variety of chromosomal abnormalities were used, including micronuclei at interphase, disturbed at metaphase and anaphase, chromosomal stickiness, bridges, and laggards. The concentration of Cy-AgNPs (25 mg/L) had the lowest level of chromosomal aberrations, with a value of 23.41% versus 20.81% for the control. Proteins from seeds treated with V. faba produced sixteen bands on SDS-PAGE, comprising ten monomorphic bands and six polymorphic bands, for a total percentage of polymorphism of 37.5%. Eight ISSR primers were employed to generate a total of 79 bands, 56 of which were polymorphic and 23 of which were common. Primer ISSR 14 has the highest level of polymorphism (92.86%), according to the data. Using biochemical SDS-PAGE and ISSR molecular markers, Cy-AgNPs (25 mg/L) showed the highest percentage of genomic template stability (GTS%), with values of 80% and 51.28%, respectively. The findings of this work suggest employing CyAgNPs (25 mg/L) in pharmaceutical purposes due to its highest content of bioactive compounds and lowest concentration of chromosomal abnormalities. Full article
Show Figures

Figure 1

18 pages, 5067 KiB  
Article
Anticancer, Anticoagulant, Antioxidant and Antimicrobial Activities of Thevetia peruviana Latex with Molecular Docking of Antimicrobial and Anticancer Activities
by Aisha M. H. Al-Rajhi, Reham Yahya, Tarek M. Abdelghany, Mohamed A. Fareid, Alawlaqi M. Mohamed, Basma H. Amin and Abdurrahman S. Masrahi
Molecules 2022, 27(10), 3165; https://doi.org/10.3390/molecules27103165 - 16 May 2022
Cited by 50 | Viewed by 5012
Abstract
Natural origin molecules represent reliable and excellent sources to overcome some medicinal problems. The study of anticancer, anticoagulant, and antimicrobial activities of Thevetia peruviana latex were the aim of the current research. An investigation using high-performance liquid chromatography (HPLC) revealed that the major [...] Read more.
Natural origin molecules represent reliable and excellent sources to overcome some medicinal problems. The study of anticancer, anticoagulant, and antimicrobial activities of Thevetia peruviana latex were the aim of the current research. An investigation using high-performance liquid chromatography (HPLC) revealed that the major content of the flavonoids are rutin (11.45 µg/mL), quersestin (7.15 µg/mL), naringin (5.25 µg/mL), and hisperdin (6.07 µg/mL), while phenolic had chlorogenic (12.39 µg/mL), syringenic (7.45 µg/mL), and ferulic (5.07 µg/mL) acids in latex of T. peruviana. Via 1,1-diphenyl-2- picrylhydrazyl (DPPH) radical scavenging, the experiment demonstrated that latex had a potent antioxidant activity with the IC50 43.9 µg/mL for scavenging DPPH. Hemolysis inhibition was 58.5% at 1000 µg/mL of latex compared with 91.0% at 200 µg/mL of indomethacin as positive control. Negligible anticoagulant properties of latex were reported where the recorded time was 11.9 s of prothrombin time (PT) and 29.2 s of the activated partial thromboplastin time (APTT) at 25 µg/mL, compared with the same concentration of heparin (PT 94.6 s and APPT 117.7 s). The anticancer potential of latex was recorded against PC-3 (97.11% toxicity) and MCF-7 (96.23% toxicity) at 1000 μg/mL with IC50 48.26 μg/mL and 40.31 µg/mL, respectively. Disc diffusion assessment for antimicrobial activity recorded that the most sensitive tested microorganisms to latex were Bacillus subtilis followed by Escherichia coli, with an inhibition zone (IZ) of 31 mm with minimum inhibitory concentration (MIC) (10.2 μg/mL) and 30 mm (MIC, 12.51 μg/mL), respectively. Moreover, Candida albicans was sensitive (IZ, 28 mm) to latex, unlike black fungus (Mucor circinelloides). TEM examination exhibited ultrastructure changes in cell walls and cell membranes of Staphylococcus aureus and Pseudomonas aeruginosa treated with latex. Energy scores of the molecular docking of chlorogenic acid with E. coli DNA (7C7N), and Rutin with human prostate-specific antigen (3QUM) and breast cancer-associated protein (1JNX), result in excellent harmony with the experimental results. The outcome of research recommended that the latex is rich in constituents and considered a promising source that contributes to fighting cancer and pathogenic microorganisms. Full article
(This article belongs to the Special Issue Bioactive Compounds from Natural Sources II)
Show Figures

Figure 1

16 pages, 3902 KiB  
Article
Optimized Silica-Binding Peptide-Mediated Delivery of Bactericidal Lysin Efficiently Prevents Staphylococcus aureus from Adhering to Device Surfaces
by Wan Yang, Vijay Singh Gondil, Dehua Luo, Jin He, Hongping Wei and Hang Yang
Int. J. Mol. Sci. 2021, 22(22), 12544; https://doi.org/10.3390/ijms222212544 - 21 Nov 2021
Cited by 5 | Viewed by 2808
Abstract
Staphylococcal-associated device-related infections (DRIs) represent a significant clinical challenge causing major medical and economic sequelae. Bacterial colonization, proliferation, and biofilm formation after adherence to surfaces of the indwelling device are probably the primary cause of DRIs. To address this issue, we incorporated constructs [...] Read more.
Staphylococcal-associated device-related infections (DRIs) represent a significant clinical challenge causing major medical and economic sequelae. Bacterial colonization, proliferation, and biofilm formation after adherence to surfaces of the indwelling device are probably the primary cause of DRIs. To address this issue, we incorporated constructs of silica-binding peptide (SiBP) with ClyF, an anti-staphylococcal lysin, into functionalized coatings to impart bactericidal activity against planktonic and sessile Staphylococcus aureus. An optimized construct, SiBP1-ClyF, exhibited improved thermostability and staphylolytic activity compared to its parental lysin ClyF. SiBP1-ClyF-functionalized coatings were efficient in killing MRSA strain N315 (>99.999% within 1 h) and preventing the growth of static and dynamic S. aureus biofilms on various surfaces, including siliconized glass, silicone-coated latex catheter, and silicone catheter. Additionally, SiBP1-ClyF-immobilized surfaces supported normal attachment and growth of mammalian cells. Although the recycling potential and long-term stability of lysin-immobilized surfaces are still affected by the fragility of biological protein molecules, the present study provides a generic strategy for efficient delivery of bactericidal lysin to solid surfaces, which serves as a new approach to prevent the growth of antibiotic-resistant microorganisms on surfaces in hospital settings and could be adapted for other target pathogens as well. Full article
(This article belongs to the Special Issue Frontiers in Antimicrobial Biomaterials)
Show Figures

Figure 1

16 pages, 2046 KiB  
Article
Combined Protein and Alkaloid Research of Chelidonium majus Latex Reveals CmMLP1 Accompanied by Alkaloids with Cytotoxic Potential to Human Cervical Carcinoma Cells
by Robert Nawrot, Alicja Warowicka, Piotr Józef Rudzki, Oskar Musidlak, Katarzyna Magdalena Dolata, Jacek Musijowski, Elżbieta Urszula Stolarczyk and Anna Goździcka-Józefiak
Int. J. Mol. Sci. 2021, 22(21), 11838; https://doi.org/10.3390/ijms222111838 - 31 Oct 2021
Cited by 9 | Viewed by 3289
Abstract
Chelidonium majus L. is a latex-bearing plant used in traditional folk medicine to treat human papillomavirus (HPV)-caused warts, papillae, and condylomas. Its latex and extracts are rich in many low-molecular compounds and proteins, but there is little or no information on their potential [...] Read more.
Chelidonium majus L. is a latex-bearing plant used in traditional folk medicine to treat human papillomavirus (HPV)-caused warts, papillae, and condylomas. Its latex and extracts are rich in many low-molecular compounds and proteins, but there is little or no information on their potential interaction. We describe the isolation and identification of a novel major latex protein (CmMLP1) composed of 147 amino acids and present a model of its structure containing a conserved hydrophobic cavity with high affinity to berberine, 8-hydroxycheleritrine, and dihydroberberine. CmMLP1 and the accompanying three alkaloids were present in the eluted chromatographic fractions of latex. They decreased in vitro viability of human cervical cancer cells (HPV-negative and HPV-positive). We combined, for the first time, research on macromolecular and low-molecular-weight compounds of latex-bearing plants in contrast to other studies that investigated proteins and alkaloids separately. The observed interaction between latex protein and alkaloids may influence our knowledge on plant defense. The proposed toolbox may help in further understanding of plant disease resistance and in pharmacological research. Full article
Show Figures

Figure 1

34 pages, 66473 KiB  
Article
Rubber Degrading Strains: Microtetraspora and Dactylosporangium
by Ann Anni Basik, Jayaram Nanthini, Tiong Chia Yeo and Kumar Sudesh
Polymers 2021, 13(20), 3524; https://doi.org/10.3390/polym13203524 - 13 Oct 2021
Cited by 9 | Viewed by 4198
Abstract
Rubber composed of highly unsaturated hydrocarbons, modified through addition of chemicals and vulcanization are widely used to date. However, the usage of rubber, faces many obstacles. These elastomeric materials are difficult to be re-used and recovered, leading to high post-consumer waste and vast [...] Read more.
Rubber composed of highly unsaturated hydrocarbons, modified through addition of chemicals and vulcanization are widely used to date. However, the usage of rubber, faces many obstacles. These elastomeric materials are difficult to be re-used and recovered, leading to high post-consumer waste and vast environmental problems. Tyres, the major rubber waste source can take up to 80 years to naturally degrade. Experiments show that the latex clearing proteins (Lcp) found in Actinobacteria were reportedly critical for the initial oxidative cleavage of poly(cis-1,4-isoprene), the major polymeric unit of rubber. Although, more than 100 rubber degrading strains have been reported, only 8 Lcp proteins isolated from Nocardia (3), Gordonia (2), Streptomyces (1), Rhodococcus (1), and Solimonas (1) have been purified and biochemically characterized. Previous studies on rubber degrading strains and Lcp enzymes, implied that they are distinct. Following this, we aim to discover additional rubber degrading strains by randomly screening 940 Actinobacterial strains isolated from various locations in Sarawak on natural rubber (NR) latex agar. A total of 18 strains from 5 genera produced clearing zones on NR latex agar, and genes encoding Lcp were identified. We report here lcp genes from Microtetraspora sp. AC03309 (lcp1 and lcp2) and Dactylosporangium sp. AC04546 (lcp1, lcp2, lcp3), together with the predicted genes related to rubber degradation. In silico analysis suggested that Microtetraspora sp. AC03309 is a distinct species closely related to Microtetraspora glauca while Dactylosporangium sp. AC04546 is a species closely related to Dactylosporangium sucinum. Genome-based characterization allowed the establishment of the strains taxonomic position and provided insights into their metabolic potential especially in biodegradation of rubber. Morphological changes and the spectrophotometric detection of aldehyde and keto groups indicated the degradation of the original material in rubber samples incubated with the strains. This confirms the strains’ ability to utilize different rubber materials (fresh latex, NR product and vulcanized rubber) as the sole carbon source. Both strains exhibited different levels of biodegradation ability. Findings on tyre utilization capability by Dactylosporangium sp. AC04546 is of interest. The final aim is to find sustainable rubber treatment methods to treat rubber wastes. Full article
(This article belongs to the Special Issue Biopolymers: Structure-Function Relationship and Application)
Show Figures

Graphical abstract

20 pages, 2863 KiB  
Article
Major Latex Protein MdMLP423 Negatively Regulates Defense against Fungal Infections in Apple
by Shanshan He, Gaopeng Yuan, Shuxun Bian, Xiaolei Han, Kai Liu, Peihua Cong and Caixia Zhang
Int. J. Mol. Sci. 2020, 21(5), 1879; https://doi.org/10.3390/ijms21051879 - 10 Mar 2020
Cited by 33 | Viewed by 5021
Abstract
Major latex proteins (MLPs) play critical roles in plants defense and stress responses. However, the roles of MLPs from apple (Malus × domestica) have not been clearly identified. In this study, we focused on the biological role of MdMLP423, which [...] Read more.
Major latex proteins (MLPs) play critical roles in plants defense and stress responses. However, the roles of MLPs from apple (Malus × domestica) have not been clearly identified. In this study, we focused on the biological role of MdMLP423, which had been previously characterized as a potential pathogenesis-related gene. Phylogenetic analysis and conserved domain analysis indicated that MdMLP423 is a protein with a ‘Gly-rich loop’ (GXGGXG) domain belonging to the Bet v_1 subfamily. Gene expression profiles showed that MdMLP423 is mainly expressed in flowers. In addition, the expression of MdMLP423 was significantly inhibited by Botryosphaeria berengeriana f. sp. piricola (BB) and Alternaria alternata apple pathotype (AAAP) infections. Apple calli overexpressing MdMLP423 had lower expression of resistance-related genes, and were more sensitive to infection with BB and AAAP compared with non-transgenic calli. RNA-seq analysis of MdMLP423-overexpressing calli and non-transgenic calli indicated that MdMLP423 regulated the expression of a number of differentially expressed genes (DEGs) and transcription factors, including genes involved in phytohormone signaling pathways, cell wall reinforcement, and genes encoding the defense-related proteins, AP2-EREBP, WRKY, MYB, NAC, Zinc finger protein, and ABI3. Taken together, our results demonstrate that MdMLP423 negatively regulates apple resistance to BB and AAAP infections by inhibiting the expression of defense- and stress-related genes and transcription factors. Full article
(This article belongs to the Special Issue Plant Disease Resistance)
Show Figures

Figure 1

Back to TopTop