Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (530)

Search Parameters:
Keywords = major air pollutant emissions

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
28 pages, 1145 KiB  
Article
Uncovering Hidden Risks: Non-Targeted Screening and Health Risk Assessment of Aromatic Compounds in Summer Metro Carriages
by Han Wang, Guangming Li, Cuifen Dong, Youyan Chi, Kwok Wai Tham, Mengsi Deng and Chunhui Li
Buildings 2025, 15(15), 2761; https://doi.org/10.3390/buildings15152761 - 5 Aug 2025
Abstract
Metro carriages, as enclosed transport microenvironments, have been understudied regarding pollution characteristics and health risks from ACs, especially during high-temperature summers that amplify exposure. This study applied NTS techniques for the first time across three major Chengdu metro lines, systematically identifying sixteen ACs, [...] Read more.
Metro carriages, as enclosed transport microenvironments, have been understudied regarding pollution characteristics and health risks from ACs, especially during high-temperature summers that amplify exposure. This study applied NTS techniques for the first time across three major Chengdu metro lines, systematically identifying sixteen ACs, including hazardous species such as acetophenone, benzonitrile, and benzoic acid that are often overlooked in conventional BTEX-focused monitoring. The TAC concentration reached 41.40 ± 5.20 µg/m3, with half of the compounds exhibiting significant increases during peak commuting periods. Source apportionment using diagnostic ratios and PMF identified five major contributors: carriage material emissions (36.62%), human sources (22.50%), traffic exhaust infiltration (16.67%), organic solvents (16.55%), and industrial emissions (7.66%). Although both non-cancer (HI) and cancer (TCR) risks for all population groups were below international thresholds, summer tourists experienced higher exposure than daily commuters. Notably, child tourists showed the greatest vulnerability, with a TCR of 5.83 × 10−7, far exceeding that of commuting children (1.88 × 10−7). Benzene was the dominant contributor, accounting for over 50% of HI and 70% of TCR. This study presents the first integrated NTS and quantitative risk assessment to characterise ACs in summer metro environments, revealing a broader range of hazardous compounds beyond BTEX. It quantifies population-specific risks, highlights children’s heightened vulnerability. The findings fill critical gaps in ACs exposure and provide a scientific basis for improved air quality management and pollution mitigation strategies in urban rail transit systems. Full article
(This article belongs to the Section Building Energy, Physics, Environment, and Systems)
Show Figures

Figure 1

25 pages, 2973 KiB  
Article
Application of a DPSIR-Based Causal Framework for Sustainable Urban Riparian Forests: Insights from Text Mining and a Case Study in Seoul
by Taeheon Choi, Sangin Park and Joonsoon Kim
Forests 2025, 16(8), 1276; https://doi.org/10.3390/f16081276 - 4 Aug 2025
Viewed by 171
Abstract
As urbanization accelerates and climate change intensifies, the ecological integrity of urban riparian forests faces growing threats, underscoring the need for a systematic framework to guide their sustainable management. To address this gap, we developed a causal framework by applying text mining and [...] Read more.
As urbanization accelerates and climate change intensifies, the ecological integrity of urban riparian forests faces growing threats, underscoring the need for a systematic framework to guide their sustainable management. To address this gap, we developed a causal framework by applying text mining and sentence classification to 1001 abstracts from previous studies, structured within the DPSIR (Driver–Pressure–State–Impact–Response) model. The analysis identified six dominant thematic clusters—water quality, ecosystem services, basin and land use management, climate-related stressors, anthropogenic impacts, and greenhouse gas emissions—which reflect the multifaceted concerns surrounding urban riparian forest research. These themes were synthesized into a structured causal model that illustrates how urbanization, land use, and pollution contribute to ecological degradation, while also suggesting potential restoration pathways. To validate its applicability, the framework was applied to four major urban streams in Seoul, where indicator-based analysis and correlation mapping revealed meaningful linkages among urban drivers, biodiversity, air quality, and civic engagement. Ultimately, by integrating large-scale text mining with causal inference modeling, this study offers a transferable approach to support adaptive planning and evidence-based decision-making under the uncertainties posed by climate change. Full article
(This article belongs to the Section Forest Economics, Policy, and Social Science)
Show Figures

Figure 1

17 pages, 11742 KiB  
Article
The Environmental and Grid Impact of Boda Boda Electrification in Nairobi, Kenya
by Halloran Stratford and Marthinus Johannes Booysen
World Electr. Veh. J. 2025, 16(8), 427; https://doi.org/10.3390/wevj16080427 - 31 Jul 2025
Viewed by 242
Abstract
Boda boda motorbike taxis are a primary mode of transport in Nairobi, Kenya, and a major source of urban air pollution. This study investigates the environmental and electrical grid impacts of electrifying Nairobi’s boda boda fleet. Using real-world tracking data from 118 motorbikes, [...] Read more.
Boda boda motorbike taxis are a primary mode of transport in Nairobi, Kenya, and a major source of urban air pollution. This study investigates the environmental and electrical grid impacts of electrifying Nairobi’s boda boda fleet. Using real-world tracking data from 118 motorbikes, we simulated the effects of a full-scale transition from internal combustion engine (ICE) vehicles to electric motorbikes. We analysed various scenarios, including different battery charging strategies (swapping and home charging), motor efficiencies, battery capacities, charging rates, and the potential for solar power offsetting. The results indicate that electrification could reduce daily CO2 emissions by approximately 85% and eliminate tailpipe particulate matter emissions. However, transitioning the entire country’s fleet would increase the national daily energy demand by up to 6.85 GWh and could introduce peak grid loads as high as 2.40 GW, depending on the charging approach and vehicle efficiency. Battery swapping was found to distribute the grid load more evenly and better complement solar power integration compared to home charging, which concentrates demand in the evening. This research provides a scalable, data-driven framework for policymakers to assess the impacts of transport electrification in similar urban contexts, highlighting the critical trade-offs between environmental benefits and grid infrastructure requirements. Full article
Show Figures

Figure 1

30 pages, 9606 KiB  
Article
A Visualized Analysis of Research Hotspots and Trends on the Ecological Impact of Volatile Organic Compounds
by Xuxu Guo, Qiurong Lei, Xingzhou Li, Jing Chen and Chuanjian Yi
Atmosphere 2025, 16(8), 900; https://doi.org/10.3390/atmos16080900 - 24 Jul 2025
Viewed by 389
Abstract
With the ongoing advancement of industrialization and rapid urbanization, the emission of volatile organic compounds (VOCs) has increased significantly. As key precursors of PM2.5 and ozone formation, VOCs pose a growing threat to the health of ecosystems. Due to their complex and [...] Read more.
With the ongoing advancement of industrialization and rapid urbanization, the emission of volatile organic compounds (VOCs) has increased significantly. As key precursors of PM2.5 and ozone formation, VOCs pose a growing threat to the health of ecosystems. Due to their complex and dynamic transformation processes across air, water, and soil media, the ecological risks associated with VOCs have attracted increasing attention from both the scientific community and policy-makers. This study systematically reviews the core literature on the ecological impacts of VOCs published between 2005 and 2024, based on data from the Web of Science and Google Scholar databases. Utilizing three bibliometric tools (CiteSpace, VOSviewer, and Bibliometrix), we conducted a comprehensive visual analysis, constructing knowledge maps from multiple perspectives, including research trends, international collaboration, keyword evolution, and author–institution co-occurrence networks. The results reveal a rapid growth in the ecological impact of VOCs (EIVOCs), with an average annual increase exceeding 11% since 2013. Key research themes include source apportionment of air pollutants, ecotoxicological effects, biological response mechanisms, and health risk assessment. China, the United States, and Germany have emerged as leading contributors in this field, with China showing a remarkable surge in research activity in recent years. Keyword co-occurrence and burst analyses highlight “air pollution”, “exposure”, “health”, and “source apportionment” as major research hotspots. However, challenges remain in areas such as ecosystem functional responses, the integration of multimedia pollution pathways, and interdisciplinary coordination mechanisms. There is an urgent need to enhance monitoring technology integration, develop robust ecological risk assessment frameworks, and improve predictive modeling capabilities under climate change scenarios. This study provides scientific insights and theoretical support for the development of future environmental protection policies and comprehensive VOCs management strategies. Full article
Show Figures

Figure 1

13 pages, 264 KiB  
Review
Impact of Climate Change and Air Pollution on Bronchiolitis: A Narrative Review Bridging Environmental and Clinical Insights
by Cecilia Nobili, Matteo Riccò, Giulia Piglia and Paolo Manzoni
Pathogens 2025, 14(7), 690; https://doi.org/10.3390/pathogens14070690 - 14 Jul 2025
Viewed by 451
Abstract
Climate change and air pollution are reshaping viral circulation patterns and increasing host vulnerability, amplifying the burden of respiratory illness in early childhood. This narrative review synthesizes current evidence on how environmental exposures, particularly to nitrogen dioxide, ozone, and fine particulate matter, contribute [...] Read more.
Climate change and air pollution are reshaping viral circulation patterns and increasing host vulnerability, amplifying the burden of respiratory illness in early childhood. This narrative review synthesizes current evidence on how environmental exposures, particularly to nitrogen dioxide, ozone, and fine particulate matter, contribute to the incidence and severity of bronchiolitis, with a focus on biological mechanisms, epidemiological trends, and public health implications. Bronchiolitis remains one of the leading causes of hospitalization in infancy, with Respiratory Syncytial Virus (RSV) being responsible for the majority of severe cases. Airborne pollutants penetrate deep into the airways, triggering inflammation, compromising mucosal defenses, and impairing immune function, especially in infants with pre-existing vulnerabilities. These interactions can intensify the clinical course of viral infections and contribute to more severe disease presentations. Children in urban areas exposed to high levels of traffic-related emissions are disproportionately affected, underscoring the need for integrated public health interventions. These include stricter emission controls, urban design strategies to reduce exposure, and real-time health alerts during pollution peaks. Prevention strategies should also address indoor air quality and promote risk awareness among families and caregivers. Further research is needed to standardize exposure assessments, clarify dose–response relationships, and deepen our understanding of how pollution interacts with viral immunity. Bronchiolitis emerges as a sentinel condition at the crossroads of climate, environment, and pediatric health, highlighting the urgent need for collaboration across clinical medicine, epidemiology, and environmental science. Full article
26 pages, 1541 KiB  
Article
Projected Urban Air Pollution in Riyadh Using CMIP6 and Bayesian Modeling
by Khadeijah Yahya Faqeih, Mohamed Nejib El Melki, Somayah Moshrif Alamri, Afaf Rafi AlAmri, Maha Abdullah Aldubehi and Eman Rafi Alamery
Sustainability 2025, 17(14), 6288; https://doi.org/10.3390/su17146288 - 9 Jul 2025
Viewed by 564
Abstract
Rapid urbanization and climate change pose significant challenges to air quality in arid metropolitan areas, with critical implications for public health and sustainable development. This study projects the evolution of air pollution in Riyadh, Saudi Arabia, through 2070 using an integrated modeling approach [...] Read more.
Rapid urbanization and climate change pose significant challenges to air quality in arid metropolitan areas, with critical implications for public health and sustainable development. This study projects the evolution of air pollution in Riyadh, Saudi Arabia, through 2070 using an integrated modeling approach that combines CMIP6 climate projections with localized air quality data. We analyzed daily concentrations of major pollutants (SO2, NO2) across 15 strategically selected monitoring stations representing diverse urban environments, including traffic corridors, residential areas, healthcare facilities, and semi-natural zones. Climate data from two Earth System Models (CNRM-ESM2-1 and MPI-ESM1.2) were bias-corrected and integrated with historical pollution measurements (2000–2015) using hierarchical Bayesian statistical modeling under SSP2-4.5 and SSP5-8.5 emission scenarios. Our results revealed substantial deterioration in air quality, with projected increases of 80–130% for SO2 and 45–55% for NO2 concentrations by 2070 under high-emission scenarios. Spatial analysis demonstrated pronounced pollution gradients, with traffic corridors (Eastern Ring Road, Northern Ring Road, Southern Ring Road) and densely urbanized areas (King Fahad Road, Makkah Road) experiencing the most severe increases, exceeding WHO guidelines by factors of 2–3. Even semi-natural areas showed significant increases in pollution due to regional transport effects. The hierarchical Bayesian framework effectively quantified uncertainties while revealing consistent degradation trends across both climate models, with the MPI-ESM1.2 model showing a greater sensitivity to anthropogenic forcing. Future concentrations are projected to reach up to 70 μg m−3 for SO2 and exceed 100 μg m−3 for NO2 in heavily trafficked areas by 2070, representing 2–3 times the Traffic corridors showed concentration increases of 21–24% compared to historical baselines, with some stations (R5, R13, and R14) recording projected levels above 4.0 ppb for SO2 under the SSP5-8.5 scenario. These findings highlight the urgent need for comprehensive emission reduction strategies, accelerated renewable energy transition, and reformed urban planning approaches in rapidly developing arid cities. Full article
Show Figures

Figure 1

9 pages, 1411 KiB  
Proceeding Paper
Emission Reduction in Commercial Vehicles Using Selective Catalysts
by Chandrasekar Pichandi, Kumar Subburayan, Arulmurugan Seetharaman, Sai Krishna Umamahesh, Sakthi Kumar Kumaresan, Skanath Kumar Pudukkottai Sivasubramanian, Muthaimanoj Periyasamy and Natteri Mangadu Sudharsan
Eng. Proc. 2025, 93(1), 17; https://doi.org/10.3390/engproc2025093017 - 2 Jul 2025
Viewed by 191
Abstract
Transportation is a major contributor to air pollution, with vehicles emitting around 65% of manmade hydrocarbons, 64% of carbon monoxide, and 40% of nitrogen oxides. These pollutants harm the environment, human health, and materials. With vehicle populations expected to reach 1.3 billion by [...] Read more.
Transportation is a major contributor to air pollution, with vehicles emitting around 65% of manmade hydrocarbons, 64% of carbon monoxide, and 40% of nitrogen oxides. These pollutants harm the environment, human health, and materials. With vehicle populations expected to reach 1.3 billion by 2030, emissions will only worsen. This project focuses on enhancing the efficiency of catalytic converters, which help convert harmful tailpipe emissions like unburned hydrocarbons and CO into less harmful substances (CO2 and H2O). Using a selective catalyst alongside a catalytic converter, the study aims to significantly reduce toxic emissions from traditional IC engine vehicles. Full article
Show Figures

Figure 1

32 pages, 7124 KiB  
Review
Sentinel Data for Monitoring of Pollutant Emissions by Maritime Transport—A Literature Review
by Teresa Batista, Saad Ahmed Jamal and Crismeire Isbaex
Remote Sens. 2025, 17(13), 2202; https://doi.org/10.3390/rs17132202 - 26 Jun 2025
Viewed by 747
Abstract
This research discusses the application of Sentinel satellite data for monitoring air pollution in port areas. The Scopus and Web of Science databases were comprehensively analysed to identify relevant peer-reviewed literature and assess research publications. The systematic literature review was conducted using the [...] Read more.
This research discusses the application of Sentinel satellite data for monitoring air pollution in port areas. The Scopus and Web of Science databases were comprehensively analysed to identify relevant peer-reviewed literature and assess research publications. The systematic literature review was conducted using the PRISMA methodology for inclusion and exclusion criteria. A total of 519 articles were identified from which 70 relevant articles were finally selected and discussed in detail for their relevancy to the maritime environment. Sentinel-5P was found to have several use cases in the literature that are useful for measuring maritime air pollution, while Sentinel 1 and 2 were mainly used for other applications like oil spills and water quality, respectively. Although aerial surveys, like those conducted using unmanned aerial vehicles (UAVs), offer more precise estimates of greenhouse gases (GHGs), they are only useful for certain applications because the technology is costly and impractical for daily monitoring. Satellite-based sensors are the state of the art for obtaining remote observations of emissions in open sea. Sentinel-5P measurements offer daily data for air quality monitoring, which supports ground surveys to identify and penalize major emission sources and consequently support environmental management in accordance with contemporary policies. Pollutant concentration levels for the maritime sector can be analysed both spatially and temporally using Sentinel-5P data. In the future, addressing the limitations of the Sentinel-5P data, such as underestimation and source separation, could improve air pollution assessments. Full article
Show Figures

Graphical abstract

21 pages, 2288 KiB  
Article
Life Cycle Emissions and Driving Forces of Air Pollutants and CO2 from Refractory Manufacturing Industry in China Based on LMDI Model
by Yan Wang, Yu Shangguan, Cheng Wang, Xinyue Zhou, Huanjia Liu, Yi Cao, Xiayu Liu, Yan Guo, Guangxuan Yan, Panru Kang and Ke Cheng
Toxics 2025, 13(7), 533; https://doi.org/10.3390/toxics13070533 - 26 Jun 2025
Viewed by 342
Abstract
China is the world’s largest supplier of raw materials and is a major consumer of refractories. The environmental damage that results from the use of refractories has drawn increasing attention. Life cycle emissions of air pollutants and CO2 associated with the refractory [...] Read more.
China is the world’s largest supplier of raw materials and is a major consumer of refractories. The environmental damage that results from the use of refractories has drawn increasing attention. Life cycle emissions of air pollutants and CO2 associated with the refractory manufacturing industry between 2009 and 2021 were quantified in this study. Particulate matter, SO2, and NOx emissions decreased by 7.1% (1515 t), 23.6% (2982 t), and 27.8% (3178 t), respectively, over the aforementioned period despite refractory output volumes being relatively stable. Advancements in manufacturing and purification technologies and internal modifications within the industry played a significant role in these decreases. To sustain output while significantly lowering emissions, the industry shifted toward the production of new minimally polluting refractories and monolithic refractories and away from the production of highly polluting clay bricks. CO2 emission was reduced by 1.36 million tons as a result of product modifications. A logarithmic mean Divisia index (LMDI) model was used to quantify the driving forces of five factors (pollution production coefficient, control technology level, economic development level, economic structure, and consumption structure) affecting emissions. Three different emission reduction scenarios were simulated, and potential emission reductions of 23.1–77.7% by 2030 were projected. Full article
Show Figures

Graphical abstract

36 pages, 7938 KiB  
Article
Air Pollution in Two Districts of the City of Cusco: An Interdisciplinary Study Based on Environmental Monitoring and Social Risk Perception
by Marian M. Poblete, Enma Tereza Huaman, Eliana Ibarra, Daniel L. Mendoza, Fredy S. Monge-Rodriguez and Daniel Horna
Atmosphere 2025, 16(7), 770; https://doi.org/10.3390/atmos16070770 - 23 Jun 2025
Viewed by 531
Abstract
Air pollution is a growing environmental and public health concern, particularly in urban areas where vehicular emissions, industrial activities, and public events contribute to deteriorating air quality. This study examines air pollution concentrations in two districts of Cusco, Peru, using an interdisciplinary approach [...] Read more.
Air pollution is a growing environmental and public health concern, particularly in urban areas where vehicular emissions, industrial activities, and public events contribute to deteriorating air quality. This study examines air pollution concentrations in two districts of Cusco, Peru, using an interdisciplinary approach that integrates environmental monitoring and social risk perception analysis. Air quality measurements revealed elevated levels of PM2.5 and NO2, with 40–60% of data falling within “Moderate” or “Unhealthy for sensitive groups” categories according to international standards. Notably, major cultural events such as Inti Raymi were associated with a threefold increase in pollutant concentrations, highlighting their impact on urban air quality. Simultaneously, surveys and interviews assessed public perception, revealing a varied understanding of pollution risks and a general concern for health impacts, especially in more polluted and densely populated areas. However, trust in scientists remains limited, which poses challenges for the implementation of evidence-based environmental strategies. This study highlights significant environmental inequality within the city, with central districts facing greater pollution burdens than peripheral zones. These findings underscore the need for holistic air quality management strategies that combine scientific assessments with community engagement. Strengthening trust between scientists and local populations is essential to develop inclusive and effective interventions that align with both technical and social priorities, particularly in rapidly urbanizing contexts such as Cusco. Full article
(This article belongs to the Special Issue Climate Changes, Air Quality and Human Health in South America)
Show Figures

Figure 1

16 pages, 1754 KiB  
Article
The Impact of Air Pollution on Morbidity in the Industrial Areas of the East Kazakhstan Region
by Gulnaz Sadykanova, Sanat Kumarbekuly and Ayauzhan Yessimbekova
Atmosphere 2025, 16(6), 736; https://doi.org/10.3390/atmos16060736 - 17 Jun 2025
Viewed by 982
Abstract
Atmospheric air pollution is a major environmental and public health concern, particularly in industrialized regions. The East Kazakhstan Region exhibits high rates of oncological, cardiovascular, and respiratory diseases. However, the specific impact of industrial emissions on morbidity remains insufficiently studied. This study employed [...] Read more.
Atmospheric air pollution is a major environmental and public health concern, particularly in industrialized regions. The East Kazakhstan Region exhibits high rates of oncological, cardiovascular, and respiratory diseases. However, the specific impact of industrial emissions on morbidity remains insufficiently studied. This study employed correlation and regression analyses using data on pollutant emissions and population morbidity indicators from 2014 to 2023. Correlation and regression methods, along with geoinformation technologies, were applied. A moderate positive correlation was found between industrial emission volumes and the incidence of neoplasms (r = 0.59, R2 = 0.35), especially in areas with high concentrations of sulfur dioxide, nitrogen oxides, and particulate matter. The findings confirm the significant influence of polluted air—particularly mixed pollutants—on the increase in cancer-related diseases. The conclusions emphasize the urgent need to implement emission reduction measures, enhance environmental monitoring and disease prevention, and carry out further epidemiological research. Full article
(This article belongs to the Section Air Quality and Health)
Show Figures

Figure 1

30 pages, 3202 KiB  
Article
A Comprehensive Model for Quantifying, Predicting, and Evaluating Ship Emissions in Port Areas Using Novel Metrics and Machine Learning Methods
by Filip Bojić, Anita Gudelj and Rino Bošnjak
J. Mar. Sci. Eng. 2025, 13(6), 1162; https://doi.org/10.3390/jmse13061162 - 12 Jun 2025
Viewed by 467
Abstract
Seaports, as major transportation hubs, generate significant air pollution due to intensive ship traffic, directly affecting local air quality. While emission inventories are commonly used to manage ship-based air pollution, they reflect only the emission-related aspect of a specified period and area, limiting [...] Read more.
Seaports, as major transportation hubs, generate significant air pollution due to intensive ship traffic, directly affecting local air quality. While emission inventories are commonly used to manage ship-based air pollution, they reflect only the emission-related aspect of a specified period and area, limiting the broader interpretability and comparability of the results. To overcome the mentioned challenges, this research presents the PrE-PARE model, which enables the prediction, analysis, and risk evaluation of ship-sourced air pollution in port areas. The model comprises three interconnected modules. The first is applied for quantifying emissions using detailed technical and movement datasets, which are combined into individual voyage trajectories to enable a high-resolution analysis of ship-based air pollutants. In the second module, the Multivariate Adaptive Regression Splines (MARS) machine learning method is adapted to predict emissions in varying operational scenarios. In the third module, novel metric methods are introduced, enabling a standardised efficiency comparison between ships. These methods are supported by a unique classification system to determine the emission risk in different periods, evaluate the intensity of various ship types, and rank individual ships based on their operational efficiency and emission optimisation potential. By combining new methods with technical and operational shipping data, the model provides a transparent, comparable, and adaptable system for emissions monitoring. The results demonstrate that the PrE-PARE model has the potential to improve strategic planning and air quality management in ports while remaining flexible enough to be applied in different contexts and future scenarios. Full article
(This article belongs to the Special Issue Sustainable Maritime Transport and Port Intelligence)
Show Figures

Figure 1

15 pages, 4446 KiB  
Article
Characteristic Chemical Profile of Particulate Matter (PM2.5)—A Comparative Study Between Two Periods, Case Study in Medellín, Colombia
by Mauricio A. Correa-Ochoa, Miriam Gómez-Marín, Kelly Viviana Patiño-López, David Aguiar and Santiago A. Franco
Sustainability 2025, 17(12), 5380; https://doi.org/10.3390/su17125380 - 11 Jun 2025
Viewed by 659
Abstract
Medellín, a densely populated city in the Colombian Andes, faces significant health and environmental risks due to poor air quality. This is linked to the atmospheric dynamics of the valley in which it is located (Aburrá Valley). The region is characterized by a [...] Read more.
Medellín, a densely populated city in the Colombian Andes, faces significant health and environmental risks due to poor air quality. This is linked to the atmospheric dynamics of the valley in which it is located (Aburrá Valley). The region is characterized by a narrow valley and one of the most polluted areas in South America. This is a comparative study of the chemical composition of PM2.5 (particles with diameter less than 2.5 µm) in Medellín between two periods (2014–2015 and 2018–2019) in which temporal trends and emission sources were evaluated. PM2.5 samples were collected from urban, suburban, and rural stations following standardized protocols and compositional analyses of metals (ICP-MS), ions (ion chromatography), and carbonaceous species (organic carbon (OC) and elemental carbon (EC) by thermo-optical methods) were performed. The results show a reduction in average PM2.5 concentrations for the two periods (from 26.74 µg/m3 to 20.10 µg/m3 in urban areas), although levels are still above WHO guidelines. Urban stations showed higher PM2.5 levels, with predominance of carbonaceous aerosols (Total Carbon—TC = OC + EC = 35–50% of PM2.5 mass) and secondary ions (sulfate > nitrate, 13–14% of PM2.5 mass). Rural areas showed lower PM2.5 concentrations but elevated OC/EC ratios, suggesting the influence of biomass burning as a major emission source. Metals were found to occupy fractions of less than 10% of the PM2.5 mass; however, they included important toxic species associated with respiratory and cardiovascular risks. This study highlights progress in reducing PM2.5 levels in the region, which has been impacted by local policies but emphasizes current and future challenges related mainly to secondary aerosol formation and carbonaceous aerosol emissions. Full article
Show Figures

Figure 1

58 pages, 949 KiB  
Review
Excess Pollution from Vehicles—A Review and Outlook on Emission Controls, Testing, Malfunctions, Tampering, and Cheating
by Robin Smit, Alberto Ayala, Gerrit Kadijk and Pascal Buekenhoudt
Sustainability 2025, 17(12), 5362; https://doi.org/10.3390/su17125362 - 10 Jun 2025
Viewed by 1597
Abstract
Although the transition to electric vehicles (EVs) is well underway and expected to continue in global car markets, most vehicles on the world’s roads will be powered by internal combustion engine vehicles (ICEVs) and fossil fuels for the foreseeable future, possibly well past [...] Read more.
Although the transition to electric vehicles (EVs) is well underway and expected to continue in global car markets, most vehicles on the world’s roads will be powered by internal combustion engine vehicles (ICEVs) and fossil fuels for the foreseeable future, possibly well past 2050. Thus, good environmental performance and effective emission control of ICE vehicles will continue to be of paramount importance if the world is to achieve the stated air and climate pollution reduction goals. In this study, we review 228 publications and identify four main issues confronting these objectives: (1) cheating by vehicle manufacturers, (2) tampering by vehicle owners, (3) malfunctioning emission control systems, and (4) inadequate in-service emission programs. With progressively more stringent vehicle emission and fuel quality standards being implemented in all major markets, engine designs and emission control systems have become increasingly complex and sophisticated, creating opportunities for cheating and tampering. This is not a new phenomenon, with the first cases reported in the 1970s and continuing to happen today. Cheating appears not to be restricted to specific manufacturers or vehicle types. Suspicious real-world emissions behavior suggests that the use of defeat devices may be widespread. Defeat devices are primarily a concern with diesel vehicles, where emission control deactivation in real-world driving can lower manufacturing costs, improve fuel economy, reduce engine noise, improve vehicle performance, and extend refill intervals for diesel exhaust fluid, if present. Despite the financial penalties, undesired global attention, damage to brand reputation, a temporary drop in sales and stock value, and forced recalls, cheating may continue. Private vehicle owners resort to tampering to (1) improve performance and fuel efficiency; (2) avoid operating costs, including repairs; (3) increase the resale value of the vehicle (i.e., odometer tampering); or (4) simply to rebel against established norms. Tampering and cheating in the commercial freight sector also mean undercutting law-abiding operators, gaining unfair economic advantage, and posing excess harm to the environment and public health. At the individual vehicle level, the impacts of cheating, tampering, or malfunctioning emission control systems can be substantial. The removal or deactivation of emission control systems increases emissions—for instance, typically 70% (NOx and EGR), a factor of 3 or more (NOx and SCR), and a factor of 25–100 (PM and DPF). Our analysis shows significant uncertainty and (geographic) variability regarding the occurrence of cheating and tampering by vehicle owners. The available evidence suggests that fleet-wide impacts of cheating and tampering on emissions are undeniable, substantial, and cannot be ignored. The presence of a relatively small fraction of high-emitters, due to either cheating, tampering, or malfunctioning, causes excess pollution that must be tackled by environmental authorities around the world, in particular in emerging economies, where millions of used ICE vehicles from the US and EU end up. Modernized in-service emission programs designed to efficiently identify and fix large faults are needed to ensure that the benefits of modern vehicle technologies are not lost. Effective programs should address malfunctions, engine problems, incorrect repairs, a lack of servicing and maintenance, poorly retrofitted fuel and emission control systems, the use of improper or low-quality fuels and tampering. Periodic Test and Repair (PTR) is a common in-service program. We estimate that PTR generally reduces emissions by 11% (8–14%), 11% (7–15%), and 4% (−1–10%) for carbon monoxide (CO), hydrocarbons (HC), and oxides of nitrogen (NOx), respectively. This is based on the grand mean effect and the associated 95% confidence interval. PTR effectiveness could be significantly higher, but we find that it critically depends on various design factors, including (1) comprehensive fleet coverage, (2) a suitable test procedure, (3) compliance and enforcement, (4) proper technician training, (5) quality control and quality assurance, (6) periodic program evaluation, and (7) minimization of waivers and exemptions. Now that both particulate matter (PM, i.e., DPF) and NOx (i.e., SCR) emission controls are common in all modern new diesel vehicles, and commonly the focus of cheating and tampering, robust measurement approaches for assessing in-use emissions performance are urgently needed to modernize PTR programs. To increase (cost) effectiveness, a modern approach could include screening methods, such as remote sensing and plume chasing. We conclude this study with recommendations and suggestions for future improvements and research, listing a range of potential solutions for the issues identified in new and in-service vehicles. Full article
Show Figures

Figure 1

20 pages, 3271 KiB  
Article
Integration of Mosses (Funaria hygrometrica) and Lichens (Xanthoria parietina) as Native Bioindicators of Atmospheric Pollution by Trace Metal Elements in Mediterranean Forest Plantations
by Malek Bousbih, Mohammed S. Lamhamedi, Mejda Abassi, Damase P. Khasa and Zoubeir Bejaoui
Environments 2025, 12(6), 191; https://doi.org/10.3390/environments12060191 - 6 Jun 2025
Viewed by 707
Abstract
Atmospheric emissions of industrial-origin trace metals are a major environmental problem that negatively affects air quality and the functioning of forest ecosystems. Traditional air quality monitoring methods require investments in equipment and infrastructure. Indeed, it is difficult to measure most of these pollutants [...] Read more.
Atmospheric emissions of industrial-origin trace metals are a major environmental problem that negatively affects air quality and the functioning of forest ecosystems. Traditional air quality monitoring methods require investments in equipment and infrastructure. Indeed, it is difficult to measure most of these pollutants because their concentrations usually occur at very low levels. However, this study explores an ecological approach for low-cost air quality biomonitoring that is based on native biological indicators in the context of the Mediterranean basin. This study aims (i) to evaluate the lichen species composition, diversity, and distribution across three distinct forest sites; (ii) investigate the relationship between lichen species richness and proximity to the pollution source; and (iii) evaluate heavy metal bioaccumulation using a moss species (Funaria hygrometrica) and a lichen species (Xanthoria parietina) as bioindicators of atmospheric pollution. High concentrations of toxic metals were observed along the transect and closer to the pollutant source with marked interspecies variability. X. parietina exhibited high bioaccumulation potential for most toxic metals (Fe, Zn, Pb, Cr, Cu, and Ni) compared to F. hygrometrica with concentrations varying across the three sites, reaching maximum dry-mass values of 6289 µg/g for Fe at the first site and 226 µg/g for Zn at Site 3. Our results suggest that X. parietina can be used as a potential bioindicator for long-term spatial biomonitoring of air quality by determining atmospheric toxic metals concentrations. Full article
Show Figures

Figure 1

Back to TopTop