Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (28)

Search Parameters:
Keywords = maize plantation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 8891 KiB  
Article
Mapping Soil Available Nitrogen Using Crop-Specific Growth Information and Remote Sensing
by Xinle Zhang, Yihan Ma, Shinai Ma, Chuan Qin, Yiang Wang, Huanjun Liu, Lu Chen and Xiaomeng Zhu
Agriculture 2025, 15(14), 1531; https://doi.org/10.3390/agriculture15141531 - 15 Jul 2025
Viewed by 427
Abstract
Soil available nitrogen (AN) is a critical nutrient for plant absorption and utilization. Accurately mapping its spatial distribution is essential for improving crop yields and advancing precision agriculture. In this study, 188 AN soil samples (0–20 cm) were collected at Heshan Farm, Nenjiang [...] Read more.
Soil available nitrogen (AN) is a critical nutrient for plant absorption and utilization. Accurately mapping its spatial distribution is essential for improving crop yields and advancing precision agriculture. In this study, 188 AN soil samples (0–20 cm) were collected at Heshan Farm, Nenjiang County, Heihe City, Heilongjiang Province, in 2023. The soil available nitrogen content ranged from 65.81 to 387.10 mg kg−1, with a mean value of 213.85 ± 61.16 mg kg−1. Sentinel-2 images and normalized vegetation index (NDVI) and enhanced vegetation index (EVI) time series data were acquired on the Google Earth Engine (GEE) platform in the study area during the bare soil period (April, May, and October) and the growth period (June–September). These remote sensing variables were combined with soil sample data, crop type information, and crop growth period data as predictive factors and input into a Random Forest (RF) model optimized using the Optuna hyperparameter tuning algorithm. The accuracy of different strategies was evaluated using 5-fold cross-validation. The research results indicate that (1) the introduction of growth information at different growth periods of soybean and maize has different effects on the accuracy of soil AN mapping. In soybean plantations, the introduction of EVI data during the pod setting period increased the mapping accuracy R2 by 0.024–0.088 compared to other growth periods. In maize plantations, the introduction of EVI data during the grouting period increased R2 by 0.004–0.033 compared to other growth periods, which is closely related to the nitrogen absorption intensity and spectral response characteristics during the reproductive growth period of crops. (2) Combining the crop types and their optimal period growth information could improve the mapping accuracy, compared with only using the bare soil period image (R2 = 0.597)—the R2 increased by 0.035, the root mean square error (RMSE) decreased by 0.504%, and the mapping accuracy of R2 could be up to 0.632. (3) The mapping accuracy of the bare soil period image differed significantly among different months, with a higher mapping accuracy for the spring data than the fall, the R2 value improved by 0.106 and 0.100 compared with that of the fall, and the month of April was the optimal window period of the bare soil period in the present study area. The study shows that when mapping the soil AN content in arable land, different crop types, data collection time, and crop growth differences should be considered comprehensively, and the combination of specific crop types and their optimal period growth information has a greater potential to improve the accuracy of mapping soil AN content. This method not only opens up a new technological path to improve the accuracy of remote sensing mapping of soil attributes but also lays a solid foundation for the research and development of precision agriculture and sustainability. Full article
Show Figures

Figure 1

21 pages, 9547 KiB  
Article
Spatial Patterns and Characteristics of Urban–Rural Agricultural Landscapes: A Case Study of Bengaluru, India
by Jayan Wijesingha, Thomas Astor, Sunil Nautiyal and Michael Wachendorf
Land 2025, 14(2), 208; https://doi.org/10.3390/land14020208 - 21 Jan 2025
Cited by 2 | Viewed by 1794
Abstract
Globally, the agricultural landscape is the most exposed due to urbanisation. Therefore, finding the spatial and temporal patterns of changes in agricultural landscapes is essential for sustainable development. This study developed a workflow to address this information gap and determine the spatial patterns [...] Read more.
Globally, the agricultural landscape is the most exposed due to urbanisation. Therefore, finding the spatial and temporal patterns of changes in agricultural landscapes is essential for sustainable development. This study developed a workflow to address this information gap and determine the spatial patterns and characteristics of agricultural landscapes along an urban–rural gradient. The workflow comprised three steps. First, remote sensing data were classified to map crop types. Second, landscape metrics were used to examine the spatial patterns of agricultural land cover concerning urbanisation levels. Finally, unsupervised clustering was applied to categorise agricultural landscape types along the urban–rural interface. The workflow was tested using WorldView-3 satellite data in Bengaluru, India. It identified four major herbaceous crop types (millet, maize, pulses, and cash crops) and woody plantations as agricultural land cover. An analysis revealed that agricultural land cover increased from urban to rural areas, with diverse patterns in transition zones. The cluster analysis characterised four agricultural landscapes. The findings imply that changes in an agricultural landscape along an urban–rural gradient are not linear. The newly developed integrated workflow empowers stakeholders to make informed and well-reasoned decisions, and it can be periodically implemented to maintain the ongoing monitoring of urbanisation’s effect on food systems. Full article
Show Figures

Figure 1

16 pages, 310 KiB  
Article
Silicon as a Predicator of Sustainable Nutrient Management in Maize Cultivation (Zea mays L.)
by Przemysław Kardasz, Piotr Szulc, Krzysztof Górecki, Katarzyna Ambroży-Deręgowska and Roman Wąsala
Sustainability 2024, 16(23), 10677; https://doi.org/10.3390/su162310677 - 5 Dec 2024
Cited by 1 | Viewed by 922
Abstract
Field trials were conducted at the Field Experimental Station in Winna Góra. Weed control after maize sowing increased the grain yield by 15.7% compared to that after herbicide application at the BBCH 14/15 stage. Higher effectiveness of silicon application in maize cultivation can [...] Read more.
Field trials were conducted at the Field Experimental Station in Winna Góra. Weed control after maize sowing increased the grain yield by 15.7% compared to that after herbicide application at the BBCH 14/15 stage. Higher effectiveness of silicon application in maize cultivation can be achieved on plantations free from primary or secondary weed infestation. The application of a 50% NPK dose increased the grain yield by 8.6%, while a 100% dose improved it by 13.9% compared to that of the control object (without mineral fertilization). Furthermore, it was observed that the effectiveness of the silicon increased with higher total precipitation during the maize growing season, as evidenced by the results from 2022. In that year, the difference between the control (without silicon application) and the treatment with silicon applied at the BBCH 15/16 stage was more than 33%. The average mass losses from the green tea bags ranged from 54.9% to 71.9% in the variant of the sowing experiment carried out after spraying with the herbicide and from 69.4% to 72.4% in the variant with herbicide spraying at the BBCH14 stage. The rooibos tea’s mass losses were lower, as expected, and ranged from 18.6% to 36.4% in the first variant and from 30.8% to 38.6% in the second variant. The mass losses of the green tea and rooibos tea were the highest in the variant with herbicide spraying at the BBCH14 stage and the lowest in the variant of the sowing experiment carried out after herbicide spraying. The stabilization factor (S) ranged from 193 × 10−3 to 254 × 10−3 in sowing after herbicide spraying and from 188 × 10−3 to 226 × 10−3 in the variant with herbicide spraying at the BBCH14 stage. The k (decomposition constant) ranged from 7.8 × 10−3 to 11.5 × 10−3 in the first variant and from 7.2 × 10−3 to 13.4 × 10−3 in the variant with herbicide spraying at BBCH14. Full article
(This article belongs to the Section Sustainable Agriculture)
12 pages, 11356 KiB  
Article
Problems of Sustainable Agriculture with Regard to the Destruction of the European Corn Borer in Maize Plantations
by Marcin Zastempowski, Robert Lamparski, Andrzej Bochat, Jerzy Kaszkowiak, Sebastian Sendel and Łukasz Gierz
Sustainability 2024, 16(22), 9685; https://doi.org/10.3390/su16229685 - 7 Nov 2024
Viewed by 1201
Abstract
This article describes the results of the studies related to the occurrence of the European corn borer (Ostrinia nubilalis Hbn) pest carried out at the Technical University of Bydgoszcz. The studies concerned the real occurrence of the pest in corn stubble [...] Read more.
This article describes the results of the studies related to the occurrence of the European corn borer (Ostrinia nubilalis Hbn) pest carried out at the Technical University of Bydgoszcz. The studies concerned the real occurrence of the pest in corn stubble (cultivated variety SY Collosseum). The research issue undertaken is in line with an IPM (integrated pest management) system and is important since the feeding of the European corn borer can lead to large, direct yield losses estimated nationally at an average of up to about 20%, which does not differ significantly from that of world crops. Corn, for the purposes of this study, was harvested for green fodder in September, and for grain in November 2022, using a John Deere X9 1110 harvester. The average stubble height when cut for green fodder was 280 mm, while for grain it was 265 mm. The experimental studies conducted clearly showed that European corn borer larvae colonized as much as 12% of corn samples harvested for grain at an average stubble height of 155 mm, and 19% of corn samples harvested for grain at an average height of 75 mm. The conducted studies also showed that the average diameter of the stems at the height of the residence of the corn borer larvae when harvested for green fodder is 19.80 mm, and 21.80 mm for grain. The studies conducted by the authors showed the randomness of the locations of the pest larvae, which clearly indicates that the generally known and used mechanical methods of its control are not fully effective. Therefore, the authors presented their own design of a machine construction (filed with the patent office of the Republic of Poland) for destroying the European corn borer in a mechanical way without the use of crop protection chemicals. The presented research problem in this paper is of national and global importance considering the fact that corn is grown on an area of nearly 162 million hectares, where we have to deal with the European corn borer pest. In the case of implementing the design of the construction of a machine for destroying the pest, there will be no need to use chemical pesticides, which will significantly contribute to environmental protection. Full article
Show Figures

Figure 1

20 pages, 1970 KiB  
Review
Rubber-Based Agroforestry Systems Associated with Food Crops: A Solution for Sustainable Rubber and Food Production?
by Andi Nur Cahyo, Ying Dong, Taryono, Yudhistira Nugraha, Junaidi, Sahuri, Eric Penot, Aris Hairmansis, Yekti Asih Purwestri, Andrea Akbar, Hajar Asywadi, Risal Ardika, Nur Eko Prasetyo, Dwi Shinta Agustina, Taufan Alam, Fetrina Oktavia, Siti Subandiyah and Pascal Montoro
Agriculture 2024, 14(7), 1038; https://doi.org/10.3390/agriculture14071038 - 28 Jun 2024
Cited by 6 | Viewed by 4405
Abstract
Agroforestry is often seen as a sustainable land-use system for agricultural production providing ecosystem services. Intercropping with food crops leads to equal or higher productivity than monoculture and results in food production for industry and subsistence. Low rubber price and low labor productivity [...] Read more.
Agroforestry is often seen as a sustainable land-use system for agricultural production providing ecosystem services. Intercropping with food crops leads to equal or higher productivity than monoculture and results in food production for industry and subsistence. Low rubber price and low labor productivity in smallholdings have led to a dramatic conversion of rubber plantations to more profitable crops. The literature analysis performed in this paper aimed at better understanding the ins and outs that could make rubber-based agroforestry more attractive for farmers. A comprehensive search of references was conducted in March 2023 using several international databases and search engines. A Zotero library was set up consisting of 415 scientific references. Each reference was carefully read and tagged in several categories: cropping system, country, main tree species, intercrop type, intercrop product, level of product use, discipline of the study, research topic, and intercrop species. Of the 232 journal articles, 141 studies were carried out on rubber agroforestry. Since 2011, the number of studies per year has increased. Studies on rubber-based agroforestry systems are performed in most rubber-producing countries, in particular in Indonesia, Thailand, China, and Brazil. These studies focus more or less equally on perennials (forest species and fruit trees), annual intercrops, and mixed plantations. Of the 47 annual crops associated with rubber in the literature, 20 studies dealt with rice, maize, banana, and cassava. Agronomy is the main discipline in the literature followed by socio-economy and then ecology. Only four papers are devoted to plant physiology and breeding. The Discussion Section has attempted to analyze the evolution of rubber agroforestry research, progress in the selection of food crop varieties adapted to agroforestry systems, and to draw some recommendations for rubber-based agroforestry systems associated with food crops. Full article
(This article belongs to the Section Agricultural Systems and Management)
Show Figures

Figure 1

18 pages, 4469 KiB  
Article
Defining the Ideal Phenological Stage for Estimating Corn Yield Using Multispectral Images
by Carlos Alberto Matias de Abreu Júnior, George Deroco Martins, Laura Cristina Moura Xavier, João Vitor Meza Bravo, Douglas José Marques and Guilherme de Oliveira
Agronomy 2023, 13(9), 2390; https://doi.org/10.3390/agronomy13092390 - 15 Sep 2023
Cited by 3 | Viewed by 1872
Abstract
Image-based spectral models assist in estimating the yield of maize. During the vegetative and reproductive phenological phases, the corn crop undergoes changes caused by biotic and abiotic stresses. These variations can be quantified using spectral models, which are tools that help producers to [...] Read more.
Image-based spectral models assist in estimating the yield of maize. During the vegetative and reproductive phenological phases, the corn crop undergoes changes caused by biotic and abiotic stresses. These variations can be quantified using spectral models, which are tools that help producers to manage crops. However, defining the correct time to obtain these images remains a challenge. In this study, the possibility to estimate corn yield using multispectral images is hypothesized, while considering the optimal timing for detecting the differences caused by various phenological stages. Thus, the main objective of this work was to define the ideal phenological stage for taking multispectral images to estimate corn yield. Multispectral bands and vegetation indices derived from the Planet satellite were considered as predictor variables for the input data of the models. We used root mean square error percentage and mean absolute percentage error to evaluate the accuracy and trend of the yield estimates. The reproductive phenological phase R2 was found to be optimal for determining the spectral models based on the images, which obtained the best root mean square error percentage of 9.17% and the second-best mean absolute percentage error of 7.07%. Here, we demonstrate that it is possible to estimate yield in a corn plantation in a stage before the harvest through Planet multispectral satellite images. Full article
(This article belongs to the Special Issue Crop Production Parameter Estimation through Remote Sensing Data)
Show Figures

Figure 1

14 pages, 1464 KiB  
Review
Intercropping Cover Crops for a Vital Ecosystem Service: A Review of the Biocontrol of Insect Pests in Tea Agroecosystems
by Sabin Saurav Pokharel, Han Yu, Wanping Fang, Megha N. Parajulee and Fajun Chen
Plants 2023, 12(12), 2361; https://doi.org/10.3390/plants12122361 - 18 Jun 2023
Cited by 21 | Viewed by 4982
Abstract
The intercropping of cover crops has been adopted in several agroecosystems, including tea agroecosystems, which promotes ecological intensification. Prior studies have shown that growing cover crops in tea plantations provided different ecological services, including the biocontrol of pests. Cover crops enrich soil nutrients, [...] Read more.
The intercropping of cover crops has been adopted in several agroecosystems, including tea agroecosystems, which promotes ecological intensification. Prior studies have shown that growing cover crops in tea plantations provided different ecological services, including the biocontrol of pests. Cover crops enrich soil nutrients, reduce soil erosion, suppress weeds and insect pests, and increase the abundance of natural enemies (predators and parasitoids). We have reviewed the potential cover crops that can be incorporated into the tea agroecosystem, particularly emphasizing the ecological services of cover crops in pest control. Cover crops were categorized into cereals (buckwheat, sorghum), legumes (guar, cowpea, tephrosia, hairy indigo, and sunn hemp), aromatic plants (lavender, marigold, basil, and semen cassiae), and others (maize, mountain pepper, white clover, round-leaf cassia, and creeping indigo). Legumes and aromatic plants are the most potent cover crop species that can be intercropped in monoculture tea plantations due to their exceptional benefits. These cover crop species improve crop diversity and help with atmospheric nitrogen fixation, including with the emission of functional plant volatiles, which enhances the diversity and abundance of natural enemies, thereby assisting in the biocontrol of tea insect pests. The vital ecological services rendered by cover crops to monoculture tea plantations, including regarding the prevalent natural enemies and their pivotal role in the biocontrol of insect pests in the tea plantation, have also been reviewed. Climate-resilient crops (sorghum, cowpea) and volatile blends emitting aromatic plants (semen cassiae, marigold, flemingia) are recommended as cover crops that can be intercropped in tea plantations. These recommended cover crop species attract diverse natural enemies and suppress major tea pests (tea green leaf hopper, white flies, tea aphids, and mirid bugs). It is presumed that the incorporation of cover crops within the rows of tea plantations will be a promising strategy for mitigating pest attacks via the conservation biological control, thereby increasing tea yield and conserving agrobiodiversity. Furthermore, a cropping system with intercropped cover crop species would be environmentally benign and offer the opportunity to increase natural enemy abundance, delaying pest colonization and/or preventing pest outbreaks for pest management sustainability. Full article
(This article belongs to the Special Issue Plant Chemistry and Insect Adaptation from Physiology to Ecology)
Show Figures

Figure 1

15 pages, 1261 KiB  
Article
Assessing Soil Organic Carbon Stocks and Particle-Size Fractions across Cropping Systems in the Kiti Sub-Watershed in Central Benin
by Arcadius Martinien Agassin Ahogle, Felix Kouelo Alladassi, Tobi Moriaque Akplo, Hessou Anastase Azontonde and Pascal Houngnandan
C 2022, 8(4), 67; https://doi.org/10.3390/c8040067 - 23 Nov 2022
Cited by 5 | Viewed by 3368
Abstract
Soil organic carbon storage in agricultural soil constitutes a crucial potential for sustainable agricultural productivity and climate change mitigation. This paper aimed at assessing soil organic carbon stock and its distribution in three particle size fractions across five cropping systems located in Kiti [...] Read more.
Soil organic carbon storage in agricultural soil constitutes a crucial potential for sustainable agricultural productivity and climate change mitigation. This paper aimed at assessing soil organic carbon stock and its distribution in three particle size fractions across five cropping systems located in Kiti sub-watershed in Benin. Soil samples were collected using a grid sampling method on four soil depth layers: 0–10, 10–20, 20–30 and 30–40 cm in five cropping systems maize–cotton relay cropping (MCRC), yam–maize intercropping (YMI), teak plantation (TP), 5-year fallow (5YF) and above 10-year fallow (Ab10YF) from July to August 2017. Soil organic carbon stock (C stock) was estimated for the different soil layers and particle-size fractionation of soil organic matter was performed considering three fractions. The fractions coarse particulate organic matter (cPOM: 250–2000 µm), fine particulate organic matter (fPOM: 53–250 µm) and non-particulate organic matter (NOM: <53 µm) were separated from two soil depth layers: 0–10 and 10–20 cm. The results showed that fallow lands Ab10YF and 5YF exhibited the highest C stock, 22.20 and 17.74 Mg C·ha−1, while cultivated land under tillage MCRC depicted the lowest, C stock 11.48 Mg C·ha−1. The three organic carbon fractions showed a significant variation across the cropping systems with the NOM fraction holding the largest contribution to total soil organic carbon for all the cropping systems, ranging between 3.40 and 7.99 g/kg. The cPOM and fPOM were the most influenced by cropping systems with the highest concentration observed in Ab10YF and 5YF. The findings provide insights for upscaling farm management practices towards sustainable agricultural systems with substantial potential for carbon sequestration and climate change mitigation. Full article
(This article belongs to the Special Issue Biomass—a Renewable Resource for Carbon Materials)
Show Figures

Figure 1

18 pages, 3573 KiB  
Article
Assessment of Agricultural Water Sufficiency under Climate and Land Use Changes in the Lam Takong River Basin
by Sudarat Insan and Kittiwet Kuntiyawichai
Water 2022, 14(18), 2794; https://doi.org/10.3390/w14182794 - 8 Sep 2022
Cited by 2 | Viewed by 2866
Abstract
To narrow the gap of agricultural water insufficiency in the Lam Takong River Basin, Thailand, we conducted an assessment of water availability and agricultural water demand under climate and land use changes. The water availability was estimated by SWAT, which was calibrated and [...] Read more.
To narrow the gap of agricultural water insufficiency in the Lam Takong River Basin, Thailand, we conducted an assessment of water availability and agricultural water demand under climate and land use changes. The water availability was estimated by SWAT, which was calibrated and validated during 2008–2012 and 2013–2018 against the observed daily discharge at the M.164 station. Measured and simulated discharges showed good agreement during calibration and validation, as indicated by values of 0.75 and 0.69 for R2 and 0.74 and 0.63 for Nash–Sutcliffe Efficiency, respectively. The results of GCMs (IPSL-CM5-MR, NorESM1-M, and CanESM2) under RCPs 4.5 and 8.5 were calculated to investigate changes in rainfall and temperature during 2020–2099. The warming tendencies of future maximum and minimum temperatures were projected as 0.018 and 0.022 °C/year and 0.038 and 0.045 °C/year under RCPs 4.5 and 8.5, respectively. The future rainfall was found to increase by 0.34 and 1.06 mm/year under RCPs 4.5 and 8.5, respectively. As compared to the 2017 baseline, the future planted areas of rice, maize, and cassava were projected to decrease during 2020–2099, while the sugarcane plantation area was expected to increase until 2079 and then decline. The top three greatest increases in future land use area were identified as residential and built-up land (in 2099), water bodies (in 2099), and other agricultural land (in 2059), while the three largest decrease rates were paddy fields (in 2099), forest land (in 2099), and orchards (during 2059–2079). Under the increased reservoir storage and future climate and land use changes, the maximum and minimum increases in annual discharge were 1.4 (RCP 8.5) and 0.1 million m3 (RCP 4.5) during 2060–2079. The sugarcane water demand calculated by CROPWAT was solely projected to increase from baseline to 2099 under RCP 4.5, while the increase for sugarcane and cassava was found for RCP 8.5. The future unmet water demand was found to increase under RCPs 4.5 and 8.5, and the highest deficits would take place in June and March during 2020–2039 and 2040–2099, respectively. In this context, it is remarkable that the obtained results are able to capture the continued and growing imbalance between water supply and agricultural demand exacerbated by future climatic and anthropogenic land use changes. This research contributes new insight for compiling a comprehensive set of actions to effectively build resilience and ensure future water sufficiency in the Lam Takong River Basin. Full article
Show Figures

Figure 1

18 pages, 17186 KiB  
Article
Analysis of Change in Maize Plantation Distribution and Its Driving Factors in Heilongjiang Province, China
by Rui Guo, Xiufang Zhu, Ce Zhang and Changxiu Cheng
Remote Sens. 2022, 14(15), 3590; https://doi.org/10.3390/rs14153590 - 27 Jul 2022
Cited by 14 | Viewed by 3133
Abstract
Accurate identification of maize plantation distribution and timely examination of key spatial-temporal drivers is a practice that can support agricultural production estimates and development decisions. Previous studies have rarely used efficient cloud processing methods to extract crop distribution, and meteorological and socioeconomic factors [...] Read more.
Accurate identification of maize plantation distribution and timely examination of key spatial-temporal drivers is a practice that can support agricultural production estimates and development decisions. Previous studies have rarely used efficient cloud processing methods to extract crop distribution, and meteorological and socioeconomic factors were often considered independently in driving force analysis. In this paper, we extract the spatial distribution of maize using classification and regression tree (CART) and random forest (RF) algorithms based on the Google Earth Engine (GEE) platform. Combining remote sensing, meteorological and statistical data, the spatio-temporal variation characteristics of maize plantation proportion (MPP) at the county scale were analyzed using trend analysis, kernel density estimation, and standard deviation ellipse analysis, and the driving forces of MPP spatio-temporal variation were explored using partial correlation analysis and geodetectors. Our empirical results in Heilongjiang province, China showed that (1) the CART algorithm achieved higher classification accuracy than the RF algorithm; (2) MPP showed an upward trend in more than 75% of counties, especially in high-latitude regions; (3) the main climatic factor affecting the inter-annual fluctuation of MPP was relative humidity; (4) the impact of socioeconomic factors on MPP spatial distribution was significantly larger than meteorological factors, the temperature was the most important meteorological factor, and the number of rural households was the most important socioeconomic factor affecting MPP spatial distribution. The interaction between different factors was greater than a single factor alone; (5) the correlation between meteorological factors and MPP differed across different latitudinal regions and landforms. This research provides a key reference for the optimal adjustment of crop cultivation distribution and agricultural development planning and policy. Full article
Show Figures

Graphical abstract

18 pages, 4377 KiB  
Article
Impacts of Intercropped Maize Ecological Shading on Tea Foliar and Functional Components, Insect Pest Diversity and Soil Microbes
by Yan Zou, Fangyuan Shen, Yanni Zhong, Changning Lv, Sabin Saurav Pokharel, Wanping Fang and Fajun Chen
Plants 2022, 11(14), 1883; https://doi.org/10.3390/plants11141883 - 20 Jul 2022
Cited by 14 | Viewed by 3129
Abstract
Ecological shading fueled by maize intercropping in tea plantations can improve tea quality and flavor, and efficiently control the population occurrence of main insect pests. In this study, tea plants were intercropped with maize in two planting directions from east to west (i.e., [...] Read more.
Ecological shading fueled by maize intercropping in tea plantations can improve tea quality and flavor, and efficiently control the population occurrence of main insect pests. In this study, tea plants were intercropped with maize in two planting directions from east to west (i.e., south shading (SS)) and from north to south (i.e., east shading (ES) and west shading (WS)) to form ecological shading, and the effects on tea quality, and the population occurrence and community diversity of insect pests and soil microbes were studied. When compared with the non-shading control, the tea foliar nutrition contents of free fatty acids have been significantly affected by the ecological shading. SS, ES, and WS all significantly increased the foliar content of theanine and caffeine and the catechin quality index in the leaves of tea plants, simultaneously significantly reducing the foliar content of total polyphenols and the phenol/ammonia ratio. Moreover, ES and WS both significantly reduced the population occurrences of Empoasca onukii and Trialeurodes vaporariorum. Ecological shading significantly affected the composition of soil microbial communities in tea plantations, in which WS significantly reduced the diversity of soil microorganisms. Full article
Show Figures

Figure 1

15 pages, 1441 KiB  
Article
Energy, Economic, and Environmental Assessment of Sweet Potato Production on Plantations of Various Sizes in South China
by Chaochen Tang, Yusheng Lu, Bingzhi Jiang, Jingyi Chen, Xueying Mo, Yang Yang and Zhangying Wang
Agronomy 2022, 12(6), 1290; https://doi.org/10.3390/agronomy12061290 - 28 May 2022
Cited by 21 | Viewed by 5991
Abstract
Sweet potato (Ipomoea batatas L.) is an important starch-producing crop used worldwide. However, few studies have been conducted on the energy efficient, cost benefit, and greenhouse gas (GHG) emissions of sweet potato production. To address this issue, the data were collected using [...] Read more.
Sweet potato (Ipomoea batatas L.) is an important starch-producing crop used worldwide. However, few studies have been conducted on the energy efficient, cost benefit, and greenhouse gas (GHG) emissions of sweet potato production. To address this issue, the data were collected using a questionnaire for face-to-face interviews of 78 sweet potato growers and 74 reference crop (i.e., rice, maize, and potato) growers in Guangdong province. Results revealed that sweet potato production exhibited the highest value of energy efficiency (0.83 kg MJ−1) and economic productivity (0.85 kg CNY−1) among four crops. The GHG emissions from sweet potato production (1165 kg CO2-eq ha−1) were significantly higher than GHG from rice and maize but lower than GHG from potatoes. Moreover, plantation size significantly (p < 0.05) affected inputs of labor, machinery, and diesel fuel and further affected the energy rate, energy efficiency, and GHG emissions of sweet potato production. Sweet potato production in small-size farms (<2.0 ha) exhibited the highest energy efficiency (0.97 kg MJ−1) and the lowest GHG emissions (1045 kg CO2-eq ha−1). Quartering assessments based on energy efficiency, economic productivity, and GHG emissions showed that fertilizers and labor were the major contributors to energy consumption, economic costs, and GHG emissions. Future efforts should be made to reduce fertilizer application and increase fertilizer use efficiency for sustainable sweet potato production. Full article
Show Figures

Figure 1

20 pages, 3267 KiB  
Article
Beyond Monetary Cost-Benefit Analyses: Combining Economic, Environmental and Social Analyses of Short Rotation Coppice Poplar Production in Slovakia
by Daniela Fürtner, Enrique Alejandro Perdomo Echenique, Stefan J. Hörtenhuber, Peter Schwarzbauer and Franziska Hesser
Forests 2022, 13(2), 349; https://doi.org/10.3390/f13020349 - 19 Feb 2022
Cited by 10 | Viewed by 3625
Abstract
Rising demand for bio-based products exerts a growing pressure on natural resources such as wood. Sustainable solutions are becoming increasingly important to meet the demand. In this study, 20-year poplar Short Rotation Coppice (SRC) plantations located in Western Slovakia are investigated with respect [...] Read more.
Rising demand for bio-based products exerts a growing pressure on natural resources such as wood. Sustainable solutions are becoming increasingly important to meet the demand. In this study, 20-year poplar Short Rotation Coppice (SRC) plantations located in Western Slovakia are investigated with respect to (socio)-economic, environmental and social sustainability. The cost–benefit methodology is applied to assess the economic profitability of a switch from conventional annual crops (corn maize and winter rye) to perennial SRC. To compare economic profitability of the land management, net present value (NPV), payback time (PBT), internal rate of return (IRR) and benefit–cost ratio (BCR) are calculated. The study was enhanced by adopting the concept of regional value added to indicate the local value creation. The results for the three scenarios yield an NPV equal to 12,156 euros ha−1 for corn maize, 9763 euros ha−1 for winter rye and 2210 euros ha−1 with a PBT of 14.13 years for poplar SRC production. The regional value added for the corn maize scenario was estimated with 10,841 euros ha−1, the winter rye with 7973 euros ha−1 and the poplar SRC with 1802 euros ha−1. To appraise non-monetized social values, semi-structured interviews (N = 4) were conducted among experts familiar with SRC management in Eastern Europe. Non-monetary benefits for the stakeholder groups society, farmers or landowners and the industry were identified in terms of land fragmentation, carbon sequestration and an increase in biodiversity within the plantations, farm diversification and higher independency from wood markets. The relatively poor image of SRC, farmers or landowners having concerns about being tied on long-term contracts and legal restrictions may become obstacles in the establishment of SRC. For estimating the capability of carbon sequestration in SRC plantations the RothC model was utilized, resulting in the potential soil organic carbon (SOC) average increase of 29% during the 20 years. However, a transition in land use patterns must involve thorough considerations of all three pillars of sustainability to ensure long-term viability of the establishment. Full article
Show Figures

Figure 1

15 pages, 23407 KiB  
Article
Deforestation for Agriculture Temporarily Improved Soil Quality and Soil Organic Carbon Stocks
by Bo Wang, Guibin Wang, Sai Tay Zar Myo, Yong Li, Cheng Xu, Zeyang Lin, Zhuangzhuang Qian and Luozhong Tang
Forests 2022, 13(2), 228; https://doi.org/10.3390/f13020228 - 2 Feb 2022
Cited by 4 | Viewed by 3456
Abstract
Deforestation for agricultural development or extension is a common land-use problem that may cause a series of changes in the ecological environment and soil carbon stock in planting systems. However, the response of soil physical, chemical properties and carbon stocks in agricultural systems [...] Read more.
Deforestation for agricultural development or extension is a common land-use problem that may cause a series of changes in the ecological environment and soil carbon stock in planting systems. However, the response of soil physical, chemical properties and carbon stocks in agricultural systems in the initial period after deforestation have not been thoroughly examined, especially in the subsoil. We investigated the variations in the soil physicochemical properties and organic carbon stocks to a depth of 100 cm in a poplar (Populus deltoides cv. 35) plantation, a summer maize (Zea mays L.) followed by winter wheat (Triticum aestivum L.) field after 1 year of deforestation of a poplar plantation, and a wheat–maize rotation field used for decades. The soil bulk density and pH decreased, and the soil total nitrogen (TN), total phosphorus, and total potassium contents increased considerably. The soil organic carbon (SOC) content and stocks (to 100 cm) increased by 32.8% and 20.1%, respectively. The soil TN content was significantly (p < 0.001) positively correlated with the SOC content, and the C:N ratio increased for the field following deforestation. Furthermore, the nitrogen in the poplar plantation and the field following deforestation was limited. We recommend increasing the amount of nitrogen fertilizer following deforestation to improve fertility and this will be beneficial to SOC storage. Full article
Show Figures

Figure 1

17 pages, 2877 KiB  
Article
Continuous Cropping Changes the Composition and Diversity of Bacterial Communities: A Meta-Analysis in Nine Different Fields with Different Plant Cultivation
by Mohammad Murtaza Alami, Qiuling Pang, Zedan Gong, Tewu Yang, Daiqun Tu, Ouyang Zhen, Weilong Yu, Mohammad Jawad Alami and Xuekui Wang
Agriculture 2021, 11(12), 1224; https://doi.org/10.3390/agriculture11121224 - 3 Dec 2021
Cited by 24 | Viewed by 4037
Abstract
Chinese goldthread (Coptis chinensis Franch.) represents one of the most important medicinal plants with diverse medicinal applications, but it easily suffers from continuous cropping obstacles in the plantation. In this study, we have selected eight different continuously cropped fields with C. chinensis [...] Read more.
Chinese goldthread (Coptis chinensis Franch.) represents one of the most important medicinal plants with diverse medicinal applications, but it easily suffers from continuous cropping obstacles in the plantation. In this study, we have selected eight different continuously cropped fields with C. chinensis and fallow field, providing detailed information regarding the diversity and composition of the rhizospheric bacterial communities. We have found a significant difference between fallow field (LH) and other continuously cropped fields in soil pH; the total content of nitrogen, phosphorus, and potassium; and soil enzyme activities. The results indicate that continuous cropping had a significant effect on soil physicochemical properties and enzyme activities under different plant cultivations. The relative abundance of bacterial phyla was significantly altered among the fields; for example, proteobacteria and Actinobacteria were observed to be higher in continuous cropping of maize (HY6) and lower in sweet potato continuous cropping (HH). Alpha diversity analysis showed that different plants with different years of continuous cropping could change the diversity of bacterial communities, among which the effect of maize and Polygonum multiflorum continuous cropping were most significant. Principle coordinate analysis (PCoA) showed that continuously cropped C. chinensis (LZ) and cabbage continuously cropped for 2 years (HS) were slightly clustered together and separated from LH and others. The results showed that the similarity of the bacterial community in the same crop rotation was higher, which further indicated that the bacterial community structure was significantly altered by the continuous cropping system and plant species. Our study provides a foundation for future agricultural research to improve microbial activity and increase crops/cash-crops productivity under a continuous cropping system and mitigate continuous cropping obstacles. Full article
Show Figures

Figure 1

Back to TopTop