Assessing Soil Organic Carbon Stocks and Particle-Size Fractions across Cropping Systems in the Kiti Sub-Watershed in Central Benin
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Cropping Systems
2.3. Sample Collection and Analysis
2.4. Soil Carbon Stock Calculation
2.5. Soil Organic Matter Particle-Size Fractionation
2.6. Statistical Analysis
3. Results
3.1. Soil Properties
3.2. Total Soil Organic Carbon Content (SOC) and Soil Organic Carbon Stock (C Stock) across the Cropping Systems
3.3. Organic Carbon Concentrations in Particle Size Fractions
3.4. Carbon Enrichment Factor (EF) in Particle-Size Fractionation
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Searchinger, T.; Waite, R.; Hanson, C.; Ranganathan, J.; Dumas, P.; Matthews, E.; Klirs, C. Creating a Sustainable Food Future: A Menu of Solutions to Feed Nearly 10 Billion People by 2050; Final Report; WRI: Washington, DC, USA, 2019. [Google Scholar]
- Lal, R.; Negassa, W.; Lorenz, K. Carbon sequestration in soil. Curr. Opin. Environ. Sustain. 2015, 15, 79–86. [Google Scholar] [CrossRef]
- Fischer, R.A.; Connor, D.J. Issues for cropping and agricultural science in the next 20 years. Field Crops Res. 2018, 222, 121–142. [Google Scholar] [CrossRef]
- Bekunda, M.; Sanginga, N.; Woomer, P.L. Chapter Four—Restoring Soil Fertility in Sub-Sahara Africa. In Advances in Agronomy; Sparks, D.L., Ed.; Academic Press: Cambridge, MA, USA, 2010; Volume 108, pp. 183–236. [Google Scholar]
- Kouelo, A.; Houngnandan, P.; Azontondé, H.; Benmansour, M.; Rabesiranana, N.; Mabit, L. Assessment of the level of soil degradation in three watersheds affected by intensive farming practices in Benin. J. Exp. Biol. Agric. Sci. 2015, 3, 529–540. [Google Scholar]
- Mucheru-Muna, M.; Mugendi, D.; Pypers, P.; Mugwe, J.; Kung’U, J.; Vanlauwe, B.; Merckx, R. Enhancing Maize Productivity and Profitability Using Organic Inputs and Mineral Fertilizer in Central Kenya Small-Hold Farms. Exp. Agric. 2014, 50, 250–269. [Google Scholar] [CrossRef] [Green Version]
- Blum, W.E.H. Functions of Soil for Society and the Environment. Rev. Environ. Sci. Bio Technol. 2005, 4, 75–79. [Google Scholar] [CrossRef]
- Koch, A.; McBratney, A.; Adams, M.; Field, D.; Hill, R.; Crawford, J.; Minasny, B.; Lal, R.; Abbott, L.; O’Donnell, A.; et al. Soil Security: Solving the Global Soil Crisis. Glob. Policy 2013, 4, 434–441. [Google Scholar] [CrossRef] [Green Version]
- Lal, R. Sequestration of atmospheric CO2 in global carbon pools. Energy Environ. Sci. 2008, 1, 86–100. [Google Scholar] [CrossRef]
- Bashagaluke, J.B.; Logah, V.; Opoku, A.; Sarkodie-Addo, J.; Quansah, C. Soil nutrient loss through erosion: Impact of different cropping systems and soil amendments in Ghana. PLoS ONE 2018, 13, e0208250. [Google Scholar] [CrossRef] [Green Version]
- Azontonde, H.A.; Igue, A.M.; Dagbenonbakin, D.G. La Carte de Fertilité des Sols du Bénin par Zone Agro-Ecologique du Benin Rapport Final; Ministère de l’Agriculture de l’Elevage et de la Pêche Cotonou: Cotonou, Bénin, 2016; p. 120. [Google Scholar]
- Mokwunye, A.U.; Bationo, A. Innovations as Key to the Green Revolution in Africa: Dordrecht. In Meeting the Demands for Plant Nutrients for an African Green Revolution: The Role of Indigenous Agrominerals; Bationo, A., Waswa, B., Okeyo, J.M., Maina, F., Kihara, J.M., Eds.; Springer: Dordrecht, The Netherlands, 2011; pp. 19–29. [Google Scholar]
- Mkonda, M.Y.; He, X. The Influence of Soil Organic Carbon and Climate Variability on Crop Yields in Kongwa District, Tanzania. Environ. Manag. 2022, 1–9. [Google Scholar] [CrossRef]
- Barthès, B.; Azontonde, A.; Blanchart, E.; Girardin, C.; Villenave, C.; Lesaint, S.; Oliver, R.; Feller, C. Effect of a legume cover crop (Mucuna pruriens var. utilis) on soil carbon in an Ultisol under maize cultivation in southern Benin. Soil Use Manag. 2004, 20, 231–239. [Google Scholar] [CrossRef]
- Conforti, M.; Buttafuoco, G.; Leone, A.P.; Aucelli, P.P.C.; Robustelli, G.; Scarciglia, F. Studying the relationship between water-induced soil erosion and soil organic matter using Vis–NIR spectroscopy and geomorphological analysis: A case study in southern Italy. Catena 2013, 110, 44–58. [Google Scholar] [CrossRef]
- Hancock, G.R.; Murphy, D.; Evans, K.G. Hillslope and catchment scale soil organic carbon concentration: An assessment of the role of geomorphology and soil erosion in an undisturbed environment. Geoderma 2010, 155, 36–45. [Google Scholar] [CrossRef]
- Baveye, P.C.; Schnee, L.S.; Boivin, P.; Laba, M.; Radulovich, R. Soil Organic Matter Research and Climate Change: Merely Re-storing Carbon Versus Restoring Soil Functions. Front. Environ. Sci. 2020, 8, 579904. [Google Scholar] [CrossRef]
- Paul, B.K.; Vanlauwe, B.; Ayuke, F.; Gassner, A.; Hoogmoed, M.; Hurisso, T.T.; Koala, S.; Lelei, D.; Ndabamenye, T.; Six, J.; et al. Medium-term impact of tillage and residue management on soil aggregate stability, soil carbon and crop productivity. Agric. Ecosyst. Environ. 2013, 164, 14–22. [Google Scholar] [CrossRef]
- Menta, C. Soil fauna diversity-function, soil degradation, biological indices, soil restoration. Biodivers. Conserv. Util. A Divers. World 2012, 59–94. [Google Scholar]
- Sarkar, R.; Sarkar, D.; Sinha, A.K.; Danish, S.; Bhattacharya, P.M.; Mukhopadhyay, P.; Salmen, S.H.; Ansari, M.J.; Datta, R. Soil organic carbon and labile and recalcitrant carbon fractions attributed by contrasting tillage and cropping systems in old and recent alluvial soils of subtropical eastern India. PLoS ONE 2021, 16, e0259645. [Google Scholar]
- Blanco-Moure, N.; Gracia, R.; Bielsa, A.C.; López, M.V. Soil organic matter fractions as affected by tillage and soil texture under semiarid Mediterranean conditions. Soil Tillage Res. 2016, 155, 381–389. [Google Scholar] [CrossRef] [Green Version]
- Tiefenbacher, A.; Sandén, T.; Haslmayr, H.-P.; Miloczki, J.; Wenzel, W.; Spiegel, H. Optimizing Carbon Sequestration in Croplands: A Synthesis. Agronomy 2021, 11, 882. [Google Scholar] [CrossRef]
- Amoakwah, E.; Lucas, S.T.; Didenko, N.A.; Rahman, M.A.; Islam, K.R. Impact of deforestation and temporal land-use change on soil organic carbon storage, quality, and lability. PLoS ONE 2022, 17, e0263205. [Google Scholar] [CrossRef]
- Gonzalez-Sanchez, E.J.; Veroz-Gonzalez, O.; Conway, G.; Moreno-Garcia, M.; Kassam, A.; Mkomwa, S.; Ordoñez-Fernandez, R.; Triviño-Tarradas, P.; Carbonell-Bojollo, R. Meta-analysis on carbon sequestration through Conservation Agriculture in Africa. Soil Tillage Res. 2019, 190, 22–30. [Google Scholar] [CrossRef]
- Lorenz, K. Organic urban agriculture. Soil Sci. 2015, 180, 146–153. [Google Scholar] [CrossRef] [Green Version]
- Saviozzi, A.; Vanni, G.; Cardelli, R. Carbon mineralization kinetics in soils under urban environment. Appl. Soil Ecol. 2014, 73, 64–69. [Google Scholar] [CrossRef]
- Poffenbarger, H.J.; Barker, D.W.; Helmers, M.J.; Miguez, F.E.; Olk, D.C.; Sawyer, J.E.; Six, J.; Castellano, M.J. Maximum soil organic carbon storage in Midwest U.S. cropping systems when crops are optimally nitrogen-fertilized. PLoS ONE 2017, 12, e0172293. [Google Scholar] [CrossRef]
- Croft, H.; Kuhn, N.J.; Anderson, K. On the use of remote sensing techniques for monitoring spatio-temporal soil organic carbon dynamics in agricultural systems. CATENA 2012, 94, 64–74. [Google Scholar] [CrossRef]
- Luo, Z.; Feng, W.; Luo, Y.; Baldock, J.; Wang, E. Soil organic carbon dynamics jointly controlled by climate, carbon inputs, soil properties and soil carbon fractions. Glob. Chang. Biol. 2017, 23, 4430–4439. [Google Scholar] [CrossRef]
- Mugwe, J.; Ngetich, F.; Otieno, E.O. Integrated Soil Fertility Management in sub-Saharan Africa: Evolving Paradigms toward Integration. In Zero Hunger. Encyclopedia of the UN Sustainable Development Goals; Leal Filho, W., Azul, A.M., Brandli, L., Özuyar, P.G., Wall, T., Eds.; Springer International Publishing: Cham, Germany, 2019. [Google Scholar]
- Hobley, E.; Wilson, B.; Wilkie, A.; Gray, J.; Koen, T. Drivers of soil organic carbon storage and vertical distribution in Eastern Australia. Plant Soil 2015, 390, 111–127. [Google Scholar] [CrossRef]
- Koussihouèdé, K.I.H.; Aholoukpè, H.N.S.; Assogba, K.F.V.; Amadji, G.L. Soil organic carbon status in a vegetable cropping system in Southern Benin: A rapid assessment. Afr. J. Soil Sci. 2017, 5, 410–419. [Google Scholar]
- Aholoukpè, H. Matière Organique du sol et Développement du Palmier à Huile sous Différents Modes de Gestion des Feuilles d’élagage: Cas des Palmeraies Villageoises du Département du Plateau au Bénin. Ph.D. Thesis, Université d’Abomey-Calavi, Montpellier, France, 2013. [Google Scholar]
- Carter, M. Analysis of Soil Organic Matter Storage in Agroecosystems. In Structure and Organic Matter Storage in Agricultural Soils; CRC Press: Boca Raton, FL, USA, 2020; pp. 3–11. [Google Scholar]
- Xu, J.; Sun, Y.; Gao, L.; Cui, X. A review of the factors influencing soil organic carbon stability. Zhongguo Shengtai Nongye Xuebao Chin. J. Eco Agric. 2018, 26, 222–230. [Google Scholar]
- Marriott, E.E.; Wander, M.M. Total and labile soil organic matter in organic and conventional farming systems. Soil Sci. Soc. Am. J. 2006, 70, 950–959. [Google Scholar] [CrossRef] [Green Version]
- Ghimire, R.; Lamichhane, S.; Acharya, B.S.; Bista, P.; Sainju, U.M. Tillage, crop residue, and nutrient management effects on soil organic carbon in rice-based cropping systems: A review. J. Integr. Agric. 2017, 16, 1–15. [Google Scholar] [CrossRef]
- Yang, X.; Meng, J.; Lan, Y.; Chen, W.; Yang, T.; Yuan, J.; Liu, S.; Han, J. Effects of maize stover and its biochar on soil CO2 emissions and labile organic carbon fractions in Northeast China. Agric. Ecosyst. Environ. 2017, 240, 24–31. [Google Scholar] [CrossRef]
- Choudhury, S.G.; Srivastava, S.; Singh, R.; Chaudhari, S.K.; Sharma, D.K.; Singh, S.K.; Sarkar, D. Tillage and residue management effects on soil aggregation, organic carbon dynamics and yield attribute in rice–wheat cropping system under reclaimed sodic soil. Soil Tillage Res. 2014, 136, 76–83. [Google Scholar] [CrossRef]
- Yoo, G.; Wander, M.M. Tillage effects on aggregate turnover and sequestration of particulate and humified soil organic carbon. Soil Sci. Soc. Am. J. 2008, 72, 670–676. [Google Scholar] [CrossRef]
- Semenov, V.M.; Lebedeva, T.N.; Pautova, N.B. Particulate Organic Matter in Noncultivated and Arable Soils. Eurasian Soil Sci. 2019, 52, 396–404. [Google Scholar] [CrossRef]
- Saidou, A.; Balogoun, I.; Kone, B.; Gnangle, C.; Aho, N. Effet d’un système agroforestier à karité (Vitellaria paradoxa cf gaertn) sur le sol et le potentiel de production du maïs (Zea maize) en zone Soudanienne du Bénin. Int. J. Biol. Chem. Sci. 2012, 6, 2066–2082. [Google Scholar]
- Bello, O.; Saïdou, A.; Ahoton, E.; Avaligbé, J.; Ezin, A.; Akponikpè, P.; Aho, N. Assessment of organic carbon stock in cashew plantations (Anacardium occidentale L.) in Benin (West Africa). Int. J. Agric. Environ. Res. 2017, 3, 3471–3495. [Google Scholar]
- Azontonde, H.A. Dynamique de la Matiere Organique et de l’azote dans le France Mucuna-Mais sur un sol Ferrallitique (Terres de Barre) au Sud-Benin. Ph.D. Thesis, des Scientifiques de l’IRD, Montpellier, France, 2000. [Google Scholar]
- Houssoukpèvi, I.A.; Aholoukpè, H.N.S.; Fassinou, D.J.M.; Rakotondrazafy, M.N.; Amadji, G.L.; Chapuis-Lardy, L.; Chevallier, T. Biomass and soil carbon stocks of the main land use of the Allada Plateau (Southern Benin). Carbon Manag. 2022, 13, 249–265. [Google Scholar] [CrossRef]
- Djeui, N.; de Boisseon, P.; Gavinelli, E. Statut organique d’un sol ferrallitique du Sud-Bénin sous forêt et différents systèmes de cultures. Cah. ORSTOM Série Pédologie 1992, 27, 5–22. [Google Scholar]
- Giller, K.E.; Tittonell, P.; Rufino, M.C.; van Wijk, M.T.; Zingore, S.; Mapfumo, P.; Adjei-Nsiah, S.; Herrero, M.; Chikowo, R.; Corbeels, M.; et al. Communicating complexity: Integrated assessment of trade-offs concerning soil fertility management within African farming systems to support innovation and development. Agric. Syst. 2011, 104, 191–203. [Google Scholar] [CrossRef]
- Roudier, P.; Sultan, B.; Quirion, P.; Berg, A. The impact of future climate change on West African crop yields: What does the recent literature say? Glob. Environ. Chang. 2011, 21, 1073–1083. [Google Scholar] [CrossRef] [Green Version]
- Atchada, C.C.; Zoffoun, A.G.; Akplo, T.M.; Azontonde, A.H.; Tente, A.B.; Djego, J.G. Modes d’utilisation des terres et stock de carbone organique du sol dans le bassin supérieur de Magou au Bénin. Int. J. Biol. Chem. Sci. 2018, 12, 2818–2829. [Google Scholar] [CrossRef] [Green Version]
- CPCS. Classification des sols. Labo. de Géologie Pédologie, Grignon, Ronéo. Labo. de Géologie Pédologie, Grignon, Ronéo 1967, (Commissiom de pédologie et de cartographie des sols), 87p. Available online: https://horizon.documentation.ird.fr/exl-doc/pleins_textes/divers16-03/12186.pdf (accessed on 25 September 2022).
- FAO. World Reference Base for Soil Resources 2014; FAO: Rome, Italy, 2015. [Google Scholar]
- Youssouf, I.; Lawani, M. Les Sols B Ninois: Classification Dans la Référence Mondiale, Quatorzieme Reunion du sous-Comite Ouest et Centre Africain de Correlation des Sols Pour la Mise en Valeur des Terre; FAO: Rome, Italy, 2016. [Google Scholar]
- Maliki, R.; Toukourou, M.; Sinsin, B.; Vernier, P. Productivity of Yam-Based Systems with Herbaceous Legumes and Short Fallows in the Guinea-Sudan Transition Zone of Benin. Nutr. Cycl. Agroecosystems 2012, 92, 9–19. [Google Scholar] [CrossRef]
- Eeswaran, R.; Nejadhashemi, A.P.; Faye, A.; Min, D.; Prasad, P.V.V.; Ciampitti, I.A. Current and Future Challenges and Opportunities for Livestock Farming in West Africa: Perspectives from the Case of Senegal. Agronomy 2022, 12, 1818. [Google Scholar] [CrossRef]
- Houessou, S.O.; Dossa, L.H.; Diogo, R.V.C.; Houinato, M.; Buerkert, A.; Schlecht, E. Change and continuity in traditional cattle farming systems of West African Coast countries: A case study from Benin. Agric. Syst. 2019, 168, 112–122. [Google Scholar] [CrossRef]
- Andrieu, N.; Vayssières, J.; Corbeels, M.; Blanchard, M.; Vall, E.; Tittonell, P. From farm scale synergies to village scale trade-offs: Cereal crop residues use in an agro-pastoral system of the Sudanian zone of Burkina Faso. Agric. Syst. 2015, 134, 84–96. [Google Scholar] [CrossRef]
- Junge, B.; Alabi, T.; Sonder, K.; Marcus, S.; Abaidoo, R.; Chikoye, D.; Stahr, K. Use of remote sensing and GIS for improved natural resources management: Case study from different agroecological zones of West Africa. Int. J. Remote Sens. 2010, 31, 6115–6141. [Google Scholar] [CrossRef]
- Aoudji, A.K.N.; Adégbidi, A.; Agbo, V.; Atindogbé, G.; Toyi, M.S.S.; Yêvidé, A.S.I.; Ganglo, J.C.; Lebailly, P. Functioning of farm-grown timber value chains: Lessons from the smallholder-produced teak (Tectona grandis L.f.) poles value chain in Southern Benin. For. Policy Econ. 2012, 15, 98–107. [Google Scholar] [CrossRef]
- Ellison, J.; Brinkmann, K.; Diogo, R.V.C.; Buerkert, A. Land cover transitions and effects of transhumance on available forage biomass of rangelands in Benin. Environ. Dev. Sustain. 2022, 24, 12276–12310. [Google Scholar] [CrossRef]
- Takacs, S.; Schulte to Bühne, H.; Pettorelli, N. What shapes fire size and spread in African savannahs? Remote Sens. Ecol. Conserv. 2021, 7, 610–620. [Google Scholar] [CrossRef]
- Wollenhaupt, N.; Wolkowski, R.; Clayton, M. Mapping soil test phosphorus and potassium for variable-rate fertilizer application. J. Prod. Agric. 1994, 7, 441–448. [Google Scholar] [CrossRef]
- Okalebo, J.R.; Gathua, K.W.; Woomer, P.L. Laboratory Methods of Soil and Plant Analysis: A Working Manual, 2nd ed.; Sacred Africa: Wolverhampton, UK, 2002; 26p. [Google Scholar]
- Robinson, G.W. A new method for the mechanical analysis of soils and other dispersions. J. Agric. Sci. 1922, 12, 306–321. [Google Scholar] [CrossRef] [Green Version]
- Feller, C. Organic inputs, soil organic matter and functional soil organic compartments in low-activity clay soils in tropical zones. Soil Org. Matter Dyn. Sustain. Trop. Agric. 1993, 77–88. [Google Scholar]
- Sainepo, B.M.; Gachene, C.K.; Karuma, A. Assessment of soil organic carbon fractions and carbon management index under different land use types in Olesharo Catchment, Narok County, Kenya. Carbon Balance Manag. 2018, 13, 4. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gura, I.; Mnkeni, P.; du Preez, C.; Barnard, J. Response of soil carbon fractions in a Haplic Cambisol to crop rotation systems and residue management practices under no tillage in the Eastern Cape, South Africa. S. Afr. J. Plant Soil 2021, 38, 372–380. [Google Scholar] [CrossRef]
- Cambardella, C.A.; Elliott, E. Particulate soil organic-matter changes across a grassland cultivation sequence. Soil Sci. Soc. Am. J. 1992, 56, 777–783. [Google Scholar] [CrossRef]
- Nelson, D.W.; Sommers, L.E. Total carbon, organic carbon, and organic matter. Methods Soil Anal. Part 3 Chem. Methods 1996, 5, 961–1010. [Google Scholar]
- Christensen, B. Physical fractionation of soil and structural and functional complexity in organic matter turnover. Eur. J. Soil Sci. 2001, 52, 345–353. [Google Scholar] [CrossRef]
- Shapiro, S.S.; Wilk, M.B. An analysis of variance test for normality (complete samples). Biometrika 1965, 52, 591–611. [Google Scholar] [CrossRef]
- Bartlett, M.S. Properties of Sufficiency and Statistical Tests. Proc. R. Soc. London Ser. A Math. Phys. Sci. 1937, 160, 268–282. [Google Scholar]
- Ellert, B.H.; Janzen, H.H.; Entz, T. Assessment of a method to measure temporal change in soil carbon storage. Soil Sci. Soc. Am. J. 2002, 66, 1687–1695. [Google Scholar] [CrossRef]
- Arrouys, D.; Jolivet, C.; Boulonne, L.; Bodineau, G.; Ratié, C.; Saby, N.; Grolleau, E. Le réseau de Mesures de la Qualité des SFrance France (RMQS). Etude Gest. Des Sols 2003, 10, 241–250. [Google Scholar]
- Volkoff, B.; Faure, P.; Dubroeucq, D.; Viennot, M. Estimation des stocks de carbone des sols du Bénin. Etude Gest. Des Sols 1999, 6, 115–130. [Google Scholar]
- Hairiah, K.; van Noordwijk, M.; Sari, R.R.; Saputra, D.D.; Widianto; Suprayogo, D.; Kurniawan, S.; Prayogo, C.; Gusli, S. Soil carbon stocks in Indonesian (agro) forest transitions: Compaction conceals lower carbon concentrations in standard accounting. Agric. Ecosyst. Environ. 2020, 294, 106879. [Google Scholar] [CrossRef]
- Reichenbach, M.; Fiener, P.; Garland, G.; Griepentrog, M.; Six, J.; Doetterl, S. The role of geochemistry in organic carbon stabilization against microbial decomposition in tropical rainforest soils. Soil 2021, 7, 453–475. [Google Scholar] [CrossRef]
- Parras-Alcántara, L.; Díaz-Jaimes, L.; Lozano-García, B. Management effects on soil organic carbon stock in Mediterranean open rangelands—Treeless grasslands. Land Degrad. Dev. 2015, 26, 22–34. [Google Scholar] [CrossRef]
- Sarkar, D.; Bungbungcha Meitei, C.; Baishya, L.K.; Das, A.; Ghosh, S.; Chongloi, K.L.; Rajkhowa, D. Potential of fallow chronosequence in shifting cultivation to conserve soil organic carbon in northeast India. CATENA 2015, 135, 321–327. [Google Scholar] [CrossRef]
- Akplo, T.M.; Alladassi, F.K.; Houngnandan, P.; Saidou, A.; Benmansour, M.; Azontonde, H.A. Mapping the risk of soil erosion using RUSLE, GIS and remote sensing: A case study of Zou watershed in central Benin. Moroc. J. Agric. Sci. 2020, 281–290. [Google Scholar]
- Zanatta, J.A.; Bayer, C.; Dieckow, J.; Vieira, F.C.B.; Mielniczuk, J. Soil organic carbon accumulation and carbon costs related to tillage, cropping systems and nitrogen fertilization in a subtropical Acrisol. Soil Tillage Res. 2007, 94, 510–519. [Google Scholar] [CrossRef]
- Yu, P.; Li, Q.; Jia, H.; Zheng, W.; Wang, M.; Zhou, D. Carbon stocks and storage potential as affected by vegetation in the Songnen grassland of northeast China. Quat. Int. 2013, 306, 114–120. [Google Scholar] [CrossRef]
- Chivenge, P.P.; Murwira, H.K.; Giller, K.E.; Mapfumo, P.; Six, J. Long-term impact of reduced tillage and residue management on soil carbon stabilization: Implications for conservation agriculture on contrasting soils. Soil Tillage Res. 2007, 94, 328–337. [Google Scholar] [CrossRef]
- Kirchmann, H.; Haberhauer, G.; Kandeler, E.; Sessitsch, A.; Gerzabek, M.H. Effects of level and quality of organic matter input on carbon storage and biological activity in soil: Synthesis of a long-term experiment. Glob. Biogeochem. Cycles 2004, 18, 1–9. [Google Scholar] [CrossRef]
- Ouédraogo, E.; Mando, A.; Stroosnijder, L. Effects of tillage, organic resources ertilizeren fertiliser on soil carbon dynamics and crop nitrogen uptake in semi-arid West Africa. Soil Tillage Res. 2006, 91, 57–67. [Google Scholar] [CrossRef]
- Mehra, P.; Baker, J.; Sojka, R.E.; Bolan, N.; Desbiolles, J.; Kirkham, M.B.; Ross, C.; Gupta, R. Chapter Five—A Review of Tillage Practices and Their Potential to Impact the Soil Carbon Dynamics. In Advances in Agronomy; Sparks, D.L., Ed.; Academic Press: Cambridge, MA, USA, 2018; Volume 150, pp. 185–230. [Google Scholar]
- Garnett, T.; Appleby, M.C.; Balmford, A.; Bateman, I.J.; Benton, T.G.; Bloomer, P.; Burlingame, B.; Dawkins, M.; Dolan, L.; Fraser, D.; et al. Sustainable Intensification in Agriculture: Premises and Policies. Science 2013, 341, 33–34. [Google Scholar] [CrossRef] [PubMed]
Years | Cropping Systems | ||||
---|---|---|---|---|---|
MCRC | YMI | TP | 5YF | Ab10YF | |
2005–2006 | Fallow | Maize–cotton | Teak plantation | Maize–cotton | Fallow |
2006–2007 | Fallow | Maize–cotton | Teak plantation | Maize–cotton | Fallow |
2007–2008 | Maize–soybean | Maize–soybean | Teak plantation | Maize–cotton | Fallow |
2008–2009 | Maize–soybean | Maize–soybean | Teak plantation | Maize–cotton | Fallow |
2009–2010 | Maize–soybean | Fallow | Teak plantation | Maize–cotton | Fallow |
2010–2011 | Maize–cotton | Fallow | Teak plantation | Maize–cotton | Fallow |
2011–2012 | Maize–cotton | Fallow | Teak plantation | Maize–cotton | Fallow |
2012–2013 | Maize–cotton | Fallow | Teak plantation | Fallow | Fallow |
2013–2014 | Maize–cotton | Fallow | Teak plantation | Fallow | Fallow |
2014–2015 | Maize–cotton | Fallow | Teak plantation | Fallow | Fallow |
2015–2016 | Maize–cotton | Yam–maize | Teak plantation | Fallow | Fallow |
2016–2017 | Maize–cotton | Yam–maize | Teak plantation | Fallow | Fallow |
Soil Properties | Soil Depth | MCRC | Yam-Maize | TP | 5YF | Ab10YF | p-Value |
---|---|---|---|---|---|---|---|
Clay (g·kg−1) | 0–20 | 333.13 ± 38 a | 389.67 ± 52 a | 344.13 ± 45 a | 366.36 ± 48 a | 379.94 ± 85 a | 0.090 ns |
Silt (g·kg−1) | 0–20 | 31.90 ± 36 a | 27.20 ± 44 a | 28.90 ± 30 a | 39.59 ± 66 a | 39.67 ± 52 a | 0.310 ns |
Sand (g·kg−1) | 0–20 | 636.80 ± 69 a | 599.77 ± 63 a | 624.80 ± 57 a | 595.32 ± 75 a | 583.47 ± 86 a | 0.100 ns |
Soil texture | 0–20 | Sandy clay loam | Sandy clay | Sandy clay loam | Sandy clay | Sandy clay | - |
pH | 0–20 | 5.80 ± 0.2 b | 6.05 ± 0.3 ab | 6.1 ± 0.1 ab | 6.2 ± 0.2 a | 6.3 ± 0.1 a | 0.010 * |
BD | 0–10 | 1.27 ± 0.17 ab | 1.41 ± 0.27 a | 1.14 ± 0.08 b | 1.43 ± 0.21 a | 1.11 ± 0.18 b | 0.024 * |
10–20 | 1.46 ± 0.16 b | 1.55 ± 0.22 b | 1.61 ± 0.09 ab | 1.54 ± 0.08 ab | 1.68 ± 0.01 a | 0.009 * | |
20–30 | 1.67 ± 0.12 a | 1.47 ± 1.14 b | 1.71 ± 015 a | 167 ± 0.21 a | 1.69 ± 0.013 a | 0.032 * | |
30–40 | 1.73 ± 0.2 a | 1.61 ± 0.2 b | 1.67 ± 0.13 a | 1.68 ± 0.18 a | 1.77 ± 0.08 a | 0.040 * |
Soil Properties | Depth (cm) | Cropping Systems | p-Value | ||||
---|---|---|---|---|---|---|---|
MCRC | YMI | TP | 5YF | Ab10YF | |||
SOC (g·kg−1) | 0–10 | 3.14 ± 0.98 b | 7.37 ± 4.24 b | 5.64 ± 2.62 b | 4.94 ± 2.3 b | 24.1 ± 11.6 a | <0.001 *** |
10–20 | 3.03 ± 1.33 b | 2.21 ± 0.47 b | 3.16 ± 1.04 ab | 5.22 ± 3.78 a | 2.43 ± 0.23 b | 0.011 * | |
20–30 | 2.55 ± 0.79 a | 2.06 ± 0.55 a | 2.84 ± 1.0 a | 2.83 ± 1.04 a | 2.10 ± 0.43 a | 0.1 ns | |
30–40 | 2.24 ± 0.61 ab | 1.36 ± 0.29 b | 2.64 ± 0.85 ab | 4.43 ± 4.37 a | 2.27 ± 2.47 ab | 0.021 * | |
C stock (Mg C·ha−1) | 0–10 | 3.25 ± 0.52 c | 7.34 ± 3.64 bc | 4.72 ± 1.9 bc | 5.73 ± 2.35 bc | 18.1 ± 6.35 a | <0.001 *** |
10–20 | 3.0 ± 0.7 ab | 2.98 ± 0.63 ab | 3.31 ± 2.05 ab | 6.29 ± 5.0 a | 1.39 ± 0.5 b | 0.001 ** | |
20–30 | 2.90 ± 1.07 a | 2.90 ± 1.07 a | 3.08 ± 1.13 a | 2.47 ± 0.91 ab | 1.35 ± 0.1 b | 0.006 ** | |
30–40 | 2.24 ± 0.49 ab | 1.81 ± 0.57 ab | 1.97 ± 0.96 ab | 3.26 ± 2.26 a | 1.35 ± 0.57 b | 0.012 * |
Depth (cm) | Fractions | MCRC (g·kg−1) | YMI (g·kg−1) | TP (g·kg−1) | 5YF (g·kg−1) | Ab10YF (g·kg−1) | p Value |
---|---|---|---|---|---|---|---|
0–10 | NOM | 3.40 ± 0.4 d | 4.46 ± 0.38 c | 3.73 ± 0.33 d | 5.93 ± 0.39 b | 7.99 ± 0.21 a | 0.003 ** |
fPOM | 1.19 ± 0.21 b | 1.23 ± 0.32 b | 1.28 ± 0.3 b | 1.89 ± 0.2 ab | 2.24 ± 0.12 a | 0.01 * | |
cPOM | 0.70 ± 0.4 b | 0.71 ± 0.42 b | 1.08 ± 0.9 ab | 2.09 ± 0.8 a | 2.3 ± 5.33 a | 0.02 * | |
Total fraction mass (g·kg−1 soil) | 986.62 | 978.67 | 971.22 | 981.45 | 969.33 | ||
10–20 | NOM | 1.05 ± 0.38 c | 1.26 ± 0.25 c | 1.66 ± 0.30 b | 2.53 ± 0.27 a | 1.81 ± 0.99 b | 0.04 * |
fPOM | 1.14 ± 0.47 a | 0.99 ± 0.29 a | 0.78 ± 0.21 a | 0.92 ± 0.29 a | 0.98 ± 0.33 b | 0.044 * | |
cPOM | 0.56 ± 0.11 b | 0.41 ± 0.21 b | 0.84 ± 0.32 ab | 1.12 ± 0.17 a | 1.24 ± 0.13 a | 0.04 * | |
Total fraction mass (g/kg soil) | 991.84 | 988.33 | 975.52 | 978.56 | 989.42 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ahogle, A.M.A.; Alladassi, F.K.; Akplo, T.M.; Azontonde, H.A.; Houngnandan, P. Assessing Soil Organic Carbon Stocks and Particle-Size Fractions across Cropping Systems in the Kiti Sub-Watershed in Central Benin. C 2022, 8, 67. https://doi.org/10.3390/c8040067
Ahogle AMA, Alladassi FK, Akplo TM, Azontonde HA, Houngnandan P. Assessing Soil Organic Carbon Stocks and Particle-Size Fractions across Cropping Systems in the Kiti Sub-Watershed in Central Benin. C. 2022; 8(4):67. https://doi.org/10.3390/c8040067
Chicago/Turabian StyleAhogle, Arcadius Martinien Agassin, Felix Kouelo Alladassi, Tobi Moriaque Akplo, Hessou Anastase Azontonde, and Pascal Houngnandan. 2022. "Assessing Soil Organic Carbon Stocks and Particle-Size Fractions across Cropping Systems in the Kiti Sub-Watershed in Central Benin" C 8, no. 4: 67. https://doi.org/10.3390/c8040067
APA StyleAhogle, A. M. A., Alladassi, F. K., Akplo, T. M., Azontonde, H. A., & Houngnandan, P. (2022). Assessing Soil Organic Carbon Stocks and Particle-Size Fractions across Cropping Systems in the Kiti Sub-Watershed in Central Benin. C, 8(4), 67. https://doi.org/10.3390/c8040067