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Abstract: Image-based spectral models assist in estimating the yield of maize. During the vegetative
and reproductive phenological phases, the corn crop undergoes changes caused by biotic and abiotic
stresses. These variations can be quantified using spectral models, which are tools that help producers
to manage crops. However, defining the correct time to obtain these images remains a challenge.
In this study, the possibility to estimate corn yield using multispectral images is hypothesized,
while considering the optimal timing for detecting the differences caused by various phenological
stages. Thus, the main objective of this work was to define the ideal phenological stage for taking
multispectral images to estimate corn yield. Multispectral bands and vegetation indices derived from
the Planet satellite were considered as predictor variables for the input data of the models. We used
root mean square error percentage and mean absolute percentage error to evaluate the accuracy and
trend of the yield estimates. The reproductive phenological phase R2 was found to be optimal for
determining the spectral models based on the images, which obtained the best root mean square
error percentage of 9.17% and the second-best mean absolute percentage error of 7.07%. Here, we
demonstrate that it is possible to estimate yield in a corn plantation in a stage before the harvest
through Planet multispectral satellite images.

Keywords: corn phenological stages; remote monitoring; yield prediction; spatial distribution of yield

1. Introduction

Estimating yield is a critical agronomic parameter for assisting the national and
international market in terms of demand, transport capacity, and storage of agricultural
products. It is possible to commercialize and ascertain prices by predicting crop yields and
considering the quantity of product that will be generated prior to the harvest [1].

Yield can be estimated by combining the collection of biophysical parameters sampled
in the field [2] and the information obtained using remote sensing techniques [3]. These
techniques consist of analyzing the spectral response of crops and the targets present on
the surface, which are obtained with multispectral sensors attached to satellites, remotely
piloted aircrafts, or field machinery [4]. A critical aspect of yield mapping is that it can
detect areas with lower yield potential, which may eventually be associated with nutritional
deficiencies of the plants or soil.

Multispectral images that are used to estimate yield follow scientific methodologies [5].
However, determining the period at which images should be obtained, the definition of
spectral bands, and the ideal vegetation indices for constructing prediction models that
are conditioned to the spectral characteristics of the different phenological stages of crops,
remains a challenge [6]. This occurs because each crop has agricultural variations, including
the type of management required for the structural changes inherent to each type of crop,
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such as the time of cultivation [7]. For example, annual and perennial crops exhibit distinct
phenological stages and different spectral responses, and their conditions are influenced
by canopy geometry, biomass, leaf area index, and leaf senescence [7]. Specifically, during
the vegetative and reproductive phases, the maize crop experiences stress that can reduce
yield. Depending on the moment of image acquisition for stress detection, it is uncertain
whether the spectral responses detect the condition affecting a plant, especially when using
a limited data set; thus, yield mapping becomes unfeasible.

In recent studies, spectral models for yield estimation based on machine learning and
MODIS [8], Landsat 8 [9], and aerial [10] showed greater accuracy with the use of images
obtained in the phenological stage, called the reproductive phase (R2 and R3), that is, the
period that varies from 12 to 18 days after the fertilization when the culture presents a
significant gain in biomass. However, these models are often developed in the late stage
and do not precisely estimate the absolute value of yield; decades of agricultural remote
sensing studies indicate that for any crop, the spectral bands always have a high sensitivity
to agronomic parameters that correlate with the production factors, making them potential
predictor variables.

Based on the aforementioned findings, in this study, we assume that the actual contri-
bution of spectral models for estimating yield is related to how useful they are for manage-
ment practices of maize crops, in addition to the potential accuracy of the absolute value of
production. The application of the current spectral models for yield prediction [11,12] have
limitations owing to the fact that these methodologies [13] only recommend estimations at
advanced phenological stages of maize development, that is, stages in which interventions
in the crop will only make a slight difference in the final yield [11].

Therefore, given the hypothesis that it is possible to estimate the yield of corn using
multispectral orbital images and algorithms based on machine learning, the objective of
this study was to evaluate whether there is an ideal phenological stage that accurately
estimates yield in a timely manner for applying management practices that will increase the
productive potential of the crop. The accuracy of multispectral prediction models based on
machine learning algorithms (neural networks, support vector machines, random forests,
and decision trees) was evaluated from the surface reflectance extracted from Planet images
that was obtained during the main phenological stages of a corn crop.

It is worth emphasizing that our research presents a solution for precision agriculture
and decision-making in the agricultural management of corn. Even at the predicted stages
of ear reproduction, the spectral estimation models showed the possibility of an accurate
large-scale monitoring of yield in commercial plots. Therefore, the advantages of using the
models presented are as follows:

• Possibility of remote monitoring of yield;
• Prediction of places of high and low productivity in the first reproductive stages

of maize;
• Provision of a database on culture within the scope of digital agriculture;
• Mapping of the geospatial distribution of crop production for later decision-making.

Finally, this work presents a possibility of monitoring with the exclusive use of remote
data, as opposed to the current spectral models, which are mostly hybrids.

2. Materials and Methods
2.1. Areas of Study

This study was conducted in the municipality of Patos de Minas, which is in the
mesoregion of Triângulo Mineiro and Alto Paranaíba, Minas Gerais, Brazil (Figure 1). The
study area (21.56 ha) has red latosol, an average altitude of 938 m, consists of flat and wavy
relief, and has an average annual precipitation of 950 mm. The mesoregion of Triângulo
Mineiro and Alto Paranaíba is one of the main producers of grains in the state of Minas
Gerais, Brazil. The high production is attributed to corn and soybean crops owing to the
high technological development of this region [14]. Temperature is a driving factor of this
production [15]; according to [16], the mesoregion of Triângulo Mineiro and Alto Paranaíba,
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Brazil has a tropical climate with mild and dry winter seasons. The average temperatures
in the region vary from 23 ◦C to 28 ◦C during summer, and from 16 ◦C to 21 ◦C during
winter. These temperatures tend to be favorable for the development of the second crop
corn [14].
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2.2. The Methodology Used for Data Processing

The estimation models and their respective predictor variables, namely, the image
bands and multispectral indices, the regression algorithms (machine learning), and the
estimated variable (yield) were based on [17,18]. In general, the methodology presented in
Figure 2 was developed considering the following stages: data acquisition of yield, obtain-
ing images during various phenological stages, defining algorithms for yield estimation,
method validation, and mapping the yield spatial distribution. Thus, the research steps are
defined as follows: (I) data acquisition, (II) pre-processing, (III) data sampling and filtering,
(IV) generation of prediction models, (V) validation of the accuracy of the models, and (VI)
confection of thematic maps.

2.3. Delimitation of the Experiment

To analyze the yield data, the study area was standardized in the municipality of Patos
de Minas (Figure 1). The harvests were performed on 8 August 2020, during the second
crop period, considering the national market of the crop in Brazil. The experiment was set
up using an inter-row spacing of 0.5 m with a distribution of 3 plants per meter. Thus, the
vertical spacing was approximately 0.33 m. Twenty-four lines were arranged in an irregular
polygon with an area equal to 21.56 ha. The AG8088 PRO2 corn cultivator was used. A
harvester index, New Holland CR 9060 model, was considered for the estimation of yield.
For data of this nature, the yield is presented in tons per hectare in a spacing of one m2.
The files are available in a georeferenced vector format (shapefile).
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2.4. Filtering of Maize Crop Yield Data

For treatment and filtering of the yield data, we defined the following two sample
removal criteria: (1) definition of a confidence interval to remove outliers, and (2) removal
of noise from the automated harvesting process. (1) We define the confidence interval as
recommended based on 151 classical statistics for removing outliers; that is, we remove
any outlier measurement from a sample set given by the condition µ ± 3 × σ, where µ
is the mean of the yield data, and σ is the standard deviation of the yield data. Thus, we
established the upper and lower thresholds based on the population mean, defining a
confidence interval of 99.7%. (2) We excluded the noises as recommended by the manual
of the harvester manufacturers; that is, null data and those indicating negative yield were
eliminated from the samples. In Equation (1), the lower values have a minimum threshold
of zero because it is not possible to assign negative yield to plants to exclude outliers. Thus,
values not belonging to the interval were excluded.
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2.5. Descriptive and Exploratory Analysis of Yield

We performed a descriptive analysis of the yield data for a detailed description of the
production of each area. We calculated the mean, standard deviation, and coefficient of
variation for this variable. Furthermore, an exploratory analysis was also performed, in
which the values of the maximum, minimum, quartile 1, quartile 2, median, and histogram
of the variables were estimated.

2.6. Acquisition of Multispectral Data

Yield estimation models using multispectral images of high spatial resolution are
widely applied in studies for short-cycle crops because they enable visualization of the
spatial distribution of the more and less productive areas. The images that comprise the
purely spectral models are captured using an unmanned aircraft [19,20] and satellites with
spectral bands sensitive to agricultural variables [17,18].

To define the prediction variables of our estimation models, we used high-resolution
multispectral images from the Planet satellite because our experiments were in small areas
and there was a high availability of images referring to the crop development period.

Regarding the Planet satellite constellation, images were captured using a CCD camera
equipped with a Bayer Mask filter. The sensor functions via photon filtering, and converts
the photons into electrons. In this manner, the digital values of each pixel in each band
are obtained through electron amplification. The Planet images have a spatial resolution
of 3 m and a radiometric resolution that varies between 12 bits for the “analytic” images.
The spectral resolution of the satellite consists of the following 4 bands: * spectral ranges
(average wavelength) of blue (ρ485), green (ρ545), red (ρ630), and near-infrared (ρ820).
Bands are captured with the Planet Scope 0, Planet Scope 1, and Planet Scope 2 optical
instruments [21].

2.7. Processing of Multispectral Data

The images from the Planet satellite can be obtained in the following three different
processing levels: PlanetScope Basic Scene Product, PlanetScope Ortho Scene Product,
and PlanetScene Ortho Tile Product. The variations between the supplied images oscillate
between the presence of geometric correction (contained in the last two types of images)
and the presence of the image in UTM projection (only the last image). In all cases, the
supplied images are atmospherically corrected by the company; that is, the digital numbers
of the bands are offered in surface reflectance values.

The images were obtained along the main phenological stages of corn development
in the study area. In this phase, we only prioritized the images that presented significant
spectral changes in the visible and near-infrared bands because there was little spectral
variability in many of the consecutive stages. Note that each area has a distinct spectral
characteristic where the spectral variability depends on abiotic and biotic factors of the
culture and the date of cultivation.

The dates corresponding to the phenological stages of the study area are presented
in Figure 3, which are indicated by green, whereas the red lines indicate the intervals at
which the images were obtained.
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2.8. Calculation of Vegetation Indices

Several studies have indicated that the multispectral vegetation indices comprise the
spectral models of yield estimation [22,23]. The insertion of data of this nature makes
the models more robust and assertive because the combination of bands in the indices
highlights the vegetation characteristics, which are not detected with a single band [4].

In this study, we calculated the vegetation indices (Table 1) from the original Planet
sensor bands. The calculation of the IR was conducted in the software ENVI 5.1. Note that
the vegetation indices in Table 1 were selected because they highlight specific characteristics
of the vegetation, such as biomass, vegetative vigor, pigmentation, and leaf area index.

Table 1. Equations and references for calculations of vegetation indices derived from original Planet
satellite bands.

Index Equation Reference Contribution

Normalized
difference

vegetation index

(ρ820 − ρ630)
(ρ820 + ρ630)

[24] High correlation
with yield

Green normalized
difference

(ρ820 − ρ545)
(ρ820 + ρ545)

[25]
Sensitivity to
chlorophyll

concentration
Ratio vegetation

index
ρ630
ρ820 [26,27] Correlation with crop

leaf density
Soil adjusted

vegetation
index

(ρ820 − ρ630)
(ρ820 + ρ630 + C) × (1 + C)

[28] Minimizes the ground
glare effect

Modified soil
adjusted

vegetation index 1

2 × ρ820 + 1 − √d
2

[29] Minimizes the soil effect of
the SAVI index

Optimized soil
adjusted vegetation index

(ρ820 − ρ630)
(ρ820 + ρ630 + 0.16)

[30] Analysis on
vegetative stages

Enhanced vegetation
index

ρ545 × (ρ820 − ρ630)
(ρ820 + C1 × ρ630 × C2 × ρ485 + X)

[31]
Enhance

vegetation with less
atmospheric influence

Triangular vegetation index
√

NDVI + 0.5 [32] Sensitivity to crop leaf area
index

Second modified
triangular
vegetation

index

1.5[2.5(ρ820 − ρ545) − 2.5(ρ630 − ρ545)]√
[(2 ∗ ρ820 + 1)2 − 6 × ρ820 − 5 ×

√
ρ820 − 0.5

] [33] Sensitivity to crop leaf
area index

Chlorophyll
vegetation index

ρ820 × ρ630
ρ5452 [34]

Increased
sensitivity to
chlorophyll

Chlorophyll index ρ820
ρ545 − 1 [35]

Assists in
estimating total plant

chlorophyll
Green leaf index (2 × ρ545 − ρ630 − ρ485)

(2 × ρ545 + ρ630 + ρ485)
[36] Leaf area intensity of the crop

Triangular
greenness index

− 0.5[(ρ630 − ρ485)(ρ630 − ρ545)
− (ρ630 − ρ545)(ρ630 − ρ485)]

[28]

Enhances
vegetation with low

sensitivity to atmospheric
effects

Normalized green, red
difference index

(ρ545 − ρ630)
(ρ545 + ρ630)

[37] Correlation with
crop biomass

1 d = (2× ρ820)2− 8× (ρ820− ρ630). ρ refers to the satellite band and the number refers to the central wavelength
of the spectral range. NDVI refers to normalized difference vegetation index. C refers to values as coefficients for
atmospheric resistance. X refers to the value to be adjusted for canopy background.

2.9. Generation of Prediction and Quality Control Models

For model generation, we selected samples from the total population of the yield
data for each area. We divided each area into grids with 100 equal rectangles. The grids
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were used to select one point per rectangle. Thus, a total of 100 points were selected
from the entire data set, which was homogeneously distributed throughout each study
plot (Figure 4). Points closest to the centroid of each rectangle were selected. The data
points used for training and validation of the model were divided such that 80 points were
randomly selected for model training and 20 points for validation.
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The surface reflectance band values and the brightness of the multispectral indices
were extracted by generating regions of interest using part of the points of the vectorial
files. In this manner, each georeferenced yield value was related to the respective digital
number in the image.

Following point selection, we calculated the yield and the spectral values derived from
the images with the respective IVs using the Pearson model. Considering the high quantity
of bands and IVs available to estimate yield, we defined criteria with a greater correlation
with yield, for which the bands and vegetation indices would be predictor variables for
each model.

We also justified this step of mining predictor variables as a strategy to mainly avoid
overfitting of the generated models, which can occur when the number of parameters used
in the regression is high. Thus, we selected the five highest absolute correlation values of
the bands/IVs to develop the models. The indices/bands selected varied according to each
phenological stage.

The following two types of methodologies were used to define the algorithms for yield
estimation: (1) nonparametric regression methods, which included random trees (RTs),
random forests (RFs), neural networks (NNs) and support vector machines (SVMs). It
is important to emphasize that these algorithms were chosen by the application used in
research to generate the spectral models for yield crop estimation. This step was developed
in the Weka 3.9.5 software. RT, RF, NN, and SVM are learning techniques that use multiple
decision trees. These are used to make a validation set from which statistical predictions
are generated, which are based on sets of independent variables. Thus, it is easier to handle
data from different sources, such as from images and field measurements, because the
algorithm does not require for the data to present a normal statistical distribution. Due to
this advantage, the algorithm has been widely used to resolve several agricultural problems,
including estimating yield [12,38]. Table 2 presents the values of the input parameters in
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the constitution of the non-parametric models for the two areas according to the default
setting of the WEKA software (3.9).

Table 2. Input parameters for making support vector machine (A), neural net (B), and random
forest (C) models in the study area for the research analyses. E.F. = Phenological stage; bS = batch-
Size; dNCC = doNotCheckCapabilities; fT = filterType; nDP = numDecimlPlaces; rO = regOptmizer;
tT = trainingTime; hL = Hidden Layers; lR = learningRate; aB = autoBiuld; nTBF = nomialToBinaryFil-
ter, nA = normalizeAtribute; nNC = normalizeNumericClass; tT = trainingTime; bSP = bagSizePercent;
bTR = breakTiesRandomly; cOOB = calcOutOfBag; cAI = computeAttributeImportance, KV = KValue;
aUI = allowUnclassifiedInstancess.

E.F. Support Vector Machine

bs c debug dNCC ft kernel nDP rO

VE 100 1.0 False False Normalize Polykernel 2 RegSMOImproved
R3 100 1.0 False False Normalize Polykernel 2 RegSMOImproved

E.F. Neural Net

GUI aB debug/decay/dNCC bS hL IR momentum nTBF/nA/nNC tT

V8 False True False 100 3 0.3 0.2 True 500
V11 False True False 100 3 0.1 0.3 True 500
R1 False True False 100 1 0.1 0.2 True 500
R2 False True False 100 3 0.3 0.2 True 500

E.F. Random Forest

bSP bS bTR cOOB Cai debug dNCC maxDepth Iterations

R5 100 100 False False False False False 0 100

E.F. Random Tree

KV allowUnclassified-
Instancess Bs bTR/

dNCC
MaxDepth/
numFolds minVarianceProp minNum

V5 0 False 100 False 0 0.001 1.0
R4 0 False 100 False 0 0.001 1.0
R6 0 False 100 False 0 0.001 1.0

The mean absolute percentage error (MAPE%) (Equation (1)) and root mean square
error percentage (RMSE%) were used for validation and analyses of the model accuracy as
follows (Equation (2)):

MAPE(%) =

∑n
i=1|ŷi−yi |

yi

n
× 100 (1)

where ŷi is the predicted value, yi is the value observed in the field, and n is the total
number of elements.

RMSE (%) =

√
∑n

i=1(ŷi−yi)
2

n × 100

∑n
i=1

yi
n

(2)

Here, ŷi indicates the predicted values, yi are the values measured in the field, and n is
the total number of observations.

2.10. Map of the Discrepancy between Value Observed in the Field and Estimated by the Model

Difference maps were created to analyze the results obtained via the estimation algo-
rithms and to verify if there was a difference between the data observed in the field and
those estimated by the models. Thus, it was possible to analyze whether the distribution
generated by the model was primarily qualitative or quantitative, as well as determine
the trends in space. We verified whether the model could record the low and high regions
using this technique, regardless of the accuracy of the absolute values.
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The maps were normalized with values ranging between −1 and 1. To complement
the analysis, the evaluative metrics of RMSE and MAPE in this step, as well as the values
of mean and standard deviation, which were derived from the map, were calculated once
again. Thus, it was also possible to analyze the difference in the accuracy determined by
the model and its application (the map).

3. Results
3.1. Exploratory Analysis of the Yield Variable

Figure 5 presents the histogram of the study area for the yield variable, which is
superimposed by a normal distribution curve (Table 3).
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Table 3. Exploratory analysis of the yield variable: S.D. = standard deviation, Q1 = quartile 1,
Q3 = quartile 3, C.V. = coefficient of variation.

Variable Average D.P. Minimum Maximum Q1 Median Q3 C.V. (%)

Yield 8871 1110 6345 11,254 8115 8808 9675 12.52

The upper and lower threshold values for the study area are 11,254 kg/ha and
6345 kg/ha, respectively. The first quartile (Q1) has a value of 8115 kg/ha, while the
third quartile (Q3) has a value of 9675 kg/ha. Thus, 50% of the production values are
comprised in the interval established between Q1 and Q3, which has an interquartile range
of 1560 kg/ha. The average yield was equal to 8871 kg/ha, and is greater than the average
yield of the state of Minas Gerais in the 2019/2020 harvest, which obtained a value of
5726 kg/ha [39]. The coefficient of variation (CV) was equal to 12.52%, which does not
prevent the variable from being estimated. Ref. [40] managed to estimate the yield of
the maize crop with significant results, despite having a CV value of 26.8% in vegetative
stage 6.

3.2. Analysis of the Validation Metrics between Yield and Phenological Stages and Selection of the
Best Model for Estimation

Phenological stages and the validation metrics used, as well as the indices/flags that
obtained the best response with the yield variable for each phenological stage are presented
in Table 4.
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Table 4. Analysis of the model performance according to phenological stage for the study area: neural
network (NN), linear regression (LR), support vector machine (SVM), random forest (RF), algorithm
(Alg.), root mean square error percentage (RMSE), and mean absolute percentage error (MAPE).

Date E.F. Alg. MAPE RMSE Bands/Indexes

20//2002 VE SVM 6.31 9.68 GLI, VARI, GNDVI, CI-G, CVI
13//2003 V5 RT 7.09 9.62 R, B, G, CVI, GNDVI
31//2003 V8 NN 7.39 9.70 R, G, GNDVI, CI-G, CVI
11//2004 V11 NN 7.95 10.32 CVI, CI-G, RVI, TGI, GNDVI

25 April 2020 R1 NN 7.25 9.25 G. RVI, CVI, GNDVI, CI-G
13//2005 R2 NN 7.07 9.17 NIR, CI-G, GNDVI, TVI, RVI

22 May 2020 R3 SVM 7.30 10.53 EVI, CVI, NGRDI, VARI, TGI
05//2006 R4 RT 9.62 13.62 G, GNDVI, CI-G, CVI, MTVI
18//2006 R5 RF 9.42 12.88 NGRDI, VARI, TGI, EVI, RVI
03//2007 R6 RT 15.91 20.96 MSAVI, MTVI, SAVI, OSAVI, NDVI

The yield in the VE vegetative stage can be estimated with the RMSE and MAPE
values for both areas, which were lower than 26% and 21%, respectively. The models are
more assertive in R1 and VE, where the MAPE and RMSE values are lower than 25% and
23%, respectively.

Figure 6 also presents MAPE% and RMSE% trends, generated via the models of the
yield estimation along the phenological stages.
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Figure 6. Root mean square error percentage (RMSE%) and mean absolute percentage error (MAPE%)
curves for the study area.

The vegetative stage VE begins with a value near the lower threshold of the graph.
Throughout the development of the base vegetative stages, there is a growth of values noted
in V11. Hereon, a drop in the values of the metrics used is observed as the reproductive
stages begin.

To better represent the variability between the observed and estimated yield values,
the scatter plots of the observed versus estimated values for the study area are shown in
Figure 7.
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Figure 7. Observed x estimated values for the phenological stages of the study area.

The graphs in Figure 7 demonstrate the points associated with the estimated values,
which are present in the ordinate axis, and the observed values, which are contained in the
abscissa axis. For the VE, V5, V8, and V11 phenological stages, the data present a greater
dispersion along the abscissa axis, following a linear trend. The data sets with the highest
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angular coefficient are once again those with the highest deterministic coefficient, as shown
in Table 4, which are in the VE, R2, R5, and R6 stages.

3.3. Spatialization of the Estimated Variable

Results of the maps generated as a function of the yield estimate for Areas 1 and 2, are
shown in (Figure 8A,B), respectively.
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Figure 8. Spatial distribution of yield in the study area based on the data measured in the field
(A) and spatial distribution of yield in the study area based on the SVM algorithm applied to the
bands/indices (B) from the Planet satellite.

Points measured in the field (Figure 8A) and the result of the spatialization of the yield
variable, which is calculated using the SVM model (Figure 8B) are shown. It is possible
to identify the differences between the measured and estimated scenarios by analyzing
the images. The primary difference is the number of values in the interval below 3000 kg,
which is indicated in red. The second map presents a significant reduction in the area
comprised in this interval. It is possible to verify the presence of vertical “lines” in both
maps, which may be due to the difference of treatments used in the area.

Figure 9 presents the normalized difference between the estimated and observed
values for each study area.
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Figure 9. Difference between observed and estimated values.

The study area presents a greater difference in the lower portion of the plot and certain
strips in the left and right extremities. The most significant proportion of values is located
between the interval ranging from −0.5 to −0.25, with 53.98% of the areas centered in
this class. These results corroborate those found in Table 5, although they are numerically
different. In this context, the results are more quantitative and are closer to the values
observed in the field.

Table 5. Statistics of observed and estimated surfaces indicating root mean square error percentage
(RMSE) and mean absolute percentage error (MAPE).

Metrics Analyzed Study Area

Observed Dear
Average 9137.66 8448.98

Standard Deviation 924.62 917.76
RMSE 12.31
MAPE 8.38

4. Discussion

It is possible to observe the symmetrical trend of the data through a graphical analysis
(Figure 5). This result corroborates with the smaller CV (Table 3) determined by the yield
variable, thus indicating the potential of the variable to be estimated. However, a slight
trend to the left of the graph is still noted, indicating inherent characteristics of a positive
asymmetric curve.

In regard to the indices and bands used to create the spectral estimation and prediction
models, the correlation analysis showed that the vegetation indices and bands do not fully
explain the yield variation because there are many factors responsible for the final yield,
but these indices can be useful as indicators of corn yield. Based on the RMSE%, MAPE%
and R2 values obtained, spectral model performance reflects the possibility of remotely
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estimating and predicting corn yield, despite the high spectral variability in the canopy
caused by biotic and abiotic factors in the production environment.

Thus, the lowest values of MAPE% and RMSE% in the study area were found during
R2, which indicates that R2 may be the ideal period for estimating yield in this phenological
stage, where the plant is in the process of pollination. The stigma-styles were visible as
they tried to capture the pollen grains [41]. The difference of 4 days indicates that the
stigma-styles of each plant were already pollinated or in an advanced stage because this
pollination period usually occurs between 2 and 3 days [42]. In a study [8], the authors
tried to estimate the yield of the corn crop through multispectral images using the RNA
Bayesian algorithm, where they determined that the best deterministic coefficient results
for the generated estimation models are found 2 months before the harvest period, which
may indicate a tendency for the estimation of yield in corn culture to present its apex before
the harvest.

Overall, the results indicate that the algorithms with the highest incidence in the
phenological stages were SVM, NN, and RT, which demonstrated a better performance
in the phenological stages of VE and R3 for SVM; V8, V11, R1 and R2 for NN; V5, R4,
and R6 for RT. The SVM algorithm is widely used in maize crops and demonstrates the
ability to model different agronomic parameters, such as disease detection [43,44] and
transpiration [45,46]. On the other hand, NN is used more frequently for yield estimation
in maize crops, both through images obtained from remotely piloted aircrafts [47] and
from orbital sensors [48]. To estimate yield through MODIS and GLASS satellite images,
Wang et al. [48] used NN, which was based on a back-propagation algorithm. In the
aforementioned study, the authors estimated yield with an MAPE value of less than 10%,
and an RMSE at 700 kg/ha in most cases.

Based on the results in VE and V5, it is possible to observe the presence of visible
bands, and the vegetation indices derived from them. The behavior of electromagnetic
radiation in the visible range is mainly determined by chlorophyll. The mesophyll pigments
tend to absorb wavelengths in the blue and red range [49]. Thus, the radiation from the
green channel is reflected in a greater incidence, which may justify the presence of the green
band and vegetation indices such as GNDVI and CI g in the models of the phenological
stages of VE and V5. Based on the results in VE and V5, it is possible to observe the
presence of visible bands, and vegetation 346 indices derived from them. The behavior of
electromagnetic radiation in the visible range is mainly 347 determined by chlorophyll. The
mesophyll pigments tend to absorb wavelengths in the blue and red range [49]. Thus, the
radiation from the green channel is reflected in a greater incidence 349, which may justify
the presence of the green band and the vegetation indices such as GNDVI and CI-G in the
350 models of the phenological stages of VE and V5.

The visible vegetation indices also comprise, in larger numbers, the models of the
phenological stages of V8. In a study conducted by [48], the VARI and TGI indices presented
the potential for estimating yield in corn crops; the authors generated models based on the
NN algorithm, using six IV as the input parameters, among which were TGI and VARI.

The models arising from the phenological reproductive stages mark the presence of
the near-infrared range for the first time among the input parameters used. It is possible
to verify its presence in the R1, R2, R3, R4, R5, and R6 stages. The radiation coming from
the near-infrared range tends to be sensitive to vegetation due to low absorption and
backscattering when in contact with the internal cellular structures of the plant [49]. The
reproductive stages mark the development of the corn ear [41].

In R1, the growth of the stalk and internodes are finalized. At this stage, the stigma-
style continues its growth to be pollinated. Thus, the process of fertilization of the ovule
can continue [42]. At R2, there is an accumulation of soluble sugars in the endosperm of
the grain, which helps to increase the mass of grain. During this period, the corn ear is near
the final fully developed size [41]. These internal changes may favor the greater reflectance
from the near-infrared region and the vegetation indices derived from it.
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The phenological stage of R6 is characterized by the physiological maturity of the
grains. In this period, the senescence process in the leaves becomes more visible as they
gain a “drier” appearance due to chlorophyll degradation. This stage is commonly destined
to harvest once the grains are independent of the mother plant. In this context, the presence
of the SAVI index and its variations of MSAVI and OSAVI, which are among those selected
for the constitution of the R6 model, stand out.

The results displayed in Table 4 present an oscillation between the evaluation metrics
used. In general, the possibility of estimating yield in the initial phenological stages is
explained by the sensitivity of the bands and indices with macro and micronutrients of the
exposed soil due to poorly developed crop canopy. Studies [50,51] have demonstrated that
the amount of macro and micronutrients at the time of planting influence and have a high
correlation with the final yield of the crop [52].

From the yield distribution maps, the treatments’ effect were observed primarily in the
corn plant trials in all sections of the study areas, where yield alternated according to natural
crop development. The challenges in implementing the models in areas neighboring the
study area require indexing of more yield data from other agricultural regions, that is, corn
growing areas subject to different management techniques and environmental conditions.
In relation to the spatial distribution pattern of yield classes, an irregular geometric pattern
can be observed; that is, the map does not significantly reflect any spectral model sensitivity
to the rectilinear geometry defined by the different irrigation sectors. Thus, the spatial
distribution of yield is more conditioned to the biotic and abiotic factors of the crop itself;
that is, the yield classes do not exhibit the influence of the anthropic actions applied in the
experimental area.

5. Conclusions

The spectral yield estimation models show that the following:

- For estimating yield of the maize crop utilizing the spectral models based on mul-
tispectral images and machine learning algorithms, the reproductive phenological
phase of R2 was found to obtain the best RMSE% and MAPE% values of 9.17% and
7.07%, respectively;

- Due to the influence of ground spectral response from images taken at the stadium
- VE, it is possible to estimate the yield with satisfactory levels of accuracy;
- The composition of the predictor variables and the accuracy and precision of the mod-

els are associated with the phenological stage of development; that is, the architecture
of the model is variable for different areas and stages of senescence of the plant.

Limitations and Future Perspectives

A number of studies have been conducted to estimate corn yield using multispectral
images. Similar to other studies presented in the literature, this study is limited to local
prediction models, given that the data used are restricted to a planted area of 21.56 ha.
The challenges in implementing the models in areas neighboring the study area require
indexing of more yield data from other agricultural regions, that is, corn growing areas
subject to different management techniques and environmental conditions.

From an economic standpoint, there is also a need to apply prediction models to
multispectral sensors with better spatial resolutions. This is because the prediction models
generated via images with average spatial resolution provide only general information of
the real yield observed in loco. Corn is one of the most valuable agricultural crops in the
world, and thus, the more specific the information, the more justifiable is the implementa-
tion of this technology for crop management.
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