Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (280)

Search Parameters:
Keywords = magnetron co-sputtering

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 4404 KiB  
Proceeding Paper
Surface Roughness and Fractal Analysis of TiO2 Thin Films by DC Sputtering
by Helena Cristina Vasconcelos, Telmo Eleutério and Maria Meirelles
Eng. Proc. 2025, 105(1), 2; https://doi.org/10.3390/engproc2025105002 - 4 Aug 2025
Abstract
This study examines the effect of oxygen concentration and sputtering power on the surface morphology of TiO2 thin films deposited by DC reactive magnetron sputtering. Surface roughness parameters were obtained using MountainsMap® software(10.2) from SEM images, while fractal dimensions and texture [...] Read more.
This study examines the effect of oxygen concentration and sputtering power on the surface morphology of TiO2 thin films deposited by DC reactive magnetron sputtering. Surface roughness parameters were obtained using MountainsMap® software(10.2) from SEM images, while fractal dimensions and texture descriptors were extracted via Python-based image processing. Fractal dimension was calculated using the box-counting method applied to binarized images with multiple threshold levels, and texture analysis employed Gray-Level Co-occurrence Matrix (GLCM) statistics to capture local anisotropies and spatial heterogeneity. Four samples were analyzed, previously prepared with oxygen concentrations of 50% and 75%, and sputtering powers of 500 W and 1000 W. The results have shown that films deposited at higher oxygen levels and sputtering powers exhibited increased roughness, higher fractal dimensions, and stronger GLCM contrast, indicating more complex and heterogeneous surface structures. Conversely, films produced at lower oxygen and power settings showed smoother, more isotropic surfaces with lower complexity. This integrated analysis framework links deposition parameters with morphological characteristics, enhancing the understanding of surface evolution and enabling better control of TiO2 thin film properties. Full article
Show Figures

Figure 1

13 pages, 1717 KiB  
Article
High-Performance Hydrogen Gas Sensor Based on Pd-Doped MoS2/Si Heterojunction
by Enyu Ma, Zihao Xu, Ankai Sun, Shuo Yang and Jianyu Jiang
Sensors 2025, 25(15), 4753; https://doi.org/10.3390/s25154753 - 1 Aug 2025
Viewed by 209
Abstract
High-performance hydrogen gas sensors have gained considerable interest for their crucial function in reducing H2 explosion risk. Although MoS2 has good potential for chemical sensing, its application in hydrogen detection at room temperature is limited by slow response and incomplete recovery. [...] Read more.
High-performance hydrogen gas sensors have gained considerable interest for their crucial function in reducing H2 explosion risk. Although MoS2 has good potential for chemical sensing, its application in hydrogen detection at room temperature is limited by slow response and incomplete recovery. In this work, Pd-doped MoS2 thin films are deposited on a Si substrate, forming Pd-doped MoS2/Si heterojunctions via magnetron co-sputtering. The incorporation of Pd nanoparticles significantly enhances the catalytic activity for hydrogen adsorption and facilitates more efficient electron transfer. Owing to its distinct structural characteristics and sharp interface properties, the fabricated Pd-doped MoS2/Si heterojunction device exhibits excellent H2 sensing performance under room temperature conditions. The gas sensor device achieves an impressive sensing response of ~6.4 × 103% under 10,000 ppm H2 concentration, representing a 110% improvement compared to pristine MoS2. Furthermore, the fabricated heterojunction device demonstrates rapid response and recovery times (24.6/12.2 s), excellent repeatability, strong humidity resistance, and a ppb-level detection limit. These results demonstrate the promising application prospects of Pd-doped MoS2/Si heterojunctions in the development of advanced gas sensing devices. Full article
(This article belongs to the Special Issue 2D Materials for Advanced Sensing Technology)
Show Figures

Figure 1

25 pages, 3459 KiB  
Article
Phase Composition, Structure, and Microwave Absorption of Magnetron-Sputtered Co–C–Cr Multilayer Films
by Nadezhda Prokhorenkova, Almira Zhilkashinova, Madi Abilev, Leszek Łatka, Igor Ocheredko and Assel Zhilkashinova
Compounds 2025, 5(3), 27; https://doi.org/10.3390/compounds5030027 - 20 Jul 2025
Viewed by 230
Abstract
Multilayer thin films composed of cobalt (Co), carbon (C), and chromium (Cr) possess promising electromagnetic properties, yet the combined Co–C–Cr system remains underexplored, particularly regarding its performance as a microwave absorber. Existing research has primarily focused on binary Co–C or Co–Cr compositions, leaving [...] Read more.
Multilayer thin films composed of cobalt (Co), carbon (C), and chromium (Cr) possess promising electromagnetic properties, yet the combined Co–C–Cr system remains underexplored, particularly regarding its performance as a microwave absorber. Existing research has primarily focused on binary Co–C or Co–Cr compositions, leaving a critical knowledge gap in understanding how ternary multilayer architectures influence electromagnetic behavior. This study addresses this gap by investigating the structure, phase composition, and microwave absorption performance of Co–C–Cr multilayer coatings fabricated via magnetron sputtering onto porous silicon substrates. This study compares four-layer and eight-layer configurations to assess how multilayer architecture affects impedance matching, reflection coefficients, and absorption characteristics within the 8.2–12.4 GHz frequency range. Structural analyses using X-ray diffraction and transmission electron microscopy confirm the coexistence of amorphous and nanocrystalline phases, which enhance absorption through dielectric and magnetic loss mechanisms. Both experimental and simulated results show that increasing the number of layers improves impedance gradients and broadens the operational bandwidth. The eight-layer coatings demonstrate a more uniform absorption response, while four-layer structures exhibit sharper resonant minima. These findings advance the understanding of ternary multilayer systems and contribute to the development of frequency-selective surfaces and broadband microwave shielding materials. Full article
Show Figures

Figure 1

15 pages, 7651 KiB  
Article
Induction of Strong Magneto-Optical Effect and High Compatibility with Si of BiFeO3 Thin Film by Sr and Ti Co-Doping
by Nanxi Lin, Hong Zhang, Yunye Shi, Chenjun Xu, Zhuoqian Xie and Yunjin Chen
Materials 2025, 18(13), 2953; https://doi.org/10.3390/ma18132953 - 22 Jun 2025
Viewed by 303
Abstract
The poor magnetic and magneto-optical properties of BiFeO3, along with its significant lattice mismatch with silicon, have limited its application in silicon-based integrated magneto-optical devices. In this study, co-doping with Sr2+ and Ti4+ ions effectively transformed the trigonal structure [...] Read more.
The poor magnetic and magneto-optical properties of BiFeO3, along with its significant lattice mismatch with silicon, have limited its application in silicon-based integrated magneto-optical devices. In this study, co-doping with Sr2+ and Ti4+ ions effectively transformed the trigonal structure of BiFeO3 into a cubic phase, thereby reducing the lattice mismatch with silicon to 2.8%. High-quality, highly oriented, silicon-based cubic Sr,Ti:BiFeO3 thin films were successfully fabricated using radio frequency magnetron sputtering. Due to the induced lattice distortion, the characteristic periodic spiral spin antiferromagnetic structure of BiFeO3 was suppressed, resulting in a significant enhancement of the saturation magnetization of cubic Bi0.5Sr0.5Fe0.5Ti0.5O3 (48.0 emu/cm3), compared to that of pristine BiFeO3 (5.0 emu/cm3). Furthermore, the incorporation of Sr2+ and Ti4+ ions eliminated the birefringence effect inherent in trigonal BiFeO3, thereby inducing a pronounced magneto-optical effect in the cubic Sr,Ti:BiFeO3 thin film. The magnetic circular dichroic ellipticity (ψF) of Bi0.5Sr0.5Fe0.5Ti0.5O3 reached an impressive 2300 degrees/cm. Full article
(This article belongs to the Section Optical and Photonic Materials)
Show Figures

Figure 1

16 pages, 1969 KiB  
Article
Environmental Sustainability of High-Power Impulse Magnetron Sputtering Nitriding Treatment of CoCrMo Alloys for Orthopedic Application: A Life Cycle Assessment Coupled with Critical Raw Material Analysis
by Valentina Zin, Stefania Fiameni, Ali Mohtashamifar, Simone Battiston, Francesco Montagner, Silvia Maria Deambrosis and Maria Losurdo
Sustainability 2025, 17(12), 5629; https://doi.org/10.3390/su17125629 - 18 Jun 2025
Viewed by 341
Abstract
CoCrMo alloys are interesting materials for implantable devices due to their favorable mechanical properties, high wear resistance, and good biocompatibility with the human body. Recent studies have demonstrated the possibility to further increase their wear resistance with an innovative approach consisting of nitriding [...] Read more.
CoCrMo alloys are interesting materials for implantable devices due to their favorable mechanical properties, high wear resistance, and good biocompatibility with the human body. Recent studies have demonstrated the possibility to further increase their wear resistance with an innovative approach consisting of nitriding treatments by the High-Power Impulse Magnetron Sputtering (HiPIMS) technique. Given the novelty of this treatment, it is relevant to develop a preliminary sustainability analysis of the processes to highlight the total environmental impact and to evaluate possible strategies to decrease it. Here, a Life Cycle Assessment (LCA) of HiPIMS nitriding treatments of CoCrMo alloys using a tantalum or molybdenum target is presented. The main impact driver in all impact categories was the electrical consumption of the vacuum apparatus and cooling system of HiPIMS instrumentation with a 45–47% and 37–39% contribution for Ta-based, and 39–40% and 41–42% for Mo-based treatments, respectively. Climate Change was found to be the most impacted category, followed by Resource Use both for Mo and Ta nitriding targets. Therefore, some perspectives to enhance the environmental sustainability of the synthesis process have been considered by means of a sensitivity analysis. Moreover, a Critical Raw Material (CRM) assessment is discussed, providing a complete sustainability evaluation of the proposed HiPIMS treatments. Full article
Show Figures

Graphical abstract

13 pages, 2943 KiB  
Article
Magnetron-Sputtered and Rapid-Thermally Annealed NiO:Cu Thin Films on 3D Porous Substrates for Supercapacitor Electrodes
by Seongha Oh, Young-Kil Jun and Nam-Hoon Kim
Energies 2025, 18(11), 2704; https://doi.org/10.3390/en18112704 - 23 May 2025
Viewed by 476
Abstract
The performance of NiO-based supercapacitor electrodes for energy storage systems was enhanced by doping Cu into NiO thin films (200 nm) using radio-frequency magnetron co-sputtering on 3D porous Ni foam substrates, followed by rapid thermal annealing. The Hall effect measurements demonstrated enhanced electrical [...] Read more.
The performance of NiO-based supercapacitor electrodes for energy storage systems was enhanced by doping Cu into NiO thin films (200 nm) using radio-frequency magnetron co-sputtering on 3D porous Ni foam substrates, followed by rapid thermal annealing. The Hall effect measurements demonstrated enhanced electrical conductivity, with resistivity values of 1.244 × 10−4 Ω·cm. The 3D porous NiO:Cu electrodes significantly increased the specific capacitance and achieved a value of 1809.2 Fg−1, with the NiO:Cu (10 at% Cu) thin films at a scan rate of 5 mVs−1, which is a 2.67-fold increase compared with the undoped NiO films on a glass substrate. The 3D porous NiO:Cu electrodes significantly improved the electrochemical properties of the NiO-based electrode, which resulted in a higher specific capacitance for enhancing the energy storage performance during grid stabilization. Full article
(This article belongs to the Section D2: Electrochem: Batteries, Fuel Cells, Capacitors)
Show Figures

Figure 1

17 pages, 3659 KiB  
Article
Tribological Performance of TiN–WS2 Soft–Hard Multifunctional Composite Coatings Deposited by Magnetron Sputtering
by Hu Qiao, Shengchao Zhu, Suixin Fan, Jiawei Kang, Peichao Tian, Jianxin Yang and Youqing Wang
Coatings 2025, 15(5), 596; https://doi.org/10.3390/coatings15050596 - 17 May 2025
Viewed by 941
Abstract
Titanium nitride (TiN) is a widely used industrial hard coating material, known for its excellent hardness and chemical stability. However, its relatively high coefficient of friction (COF) often leads to interfacial heat accumulation and adhesive wear during service, limiting its applicability in high-temperature [...] Read more.
Titanium nitride (TiN) is a widely used industrial hard coating material, known for its excellent hardness and chemical stability. However, its relatively high coefficient of friction (COF) often leads to interfacial heat accumulation and adhesive wear during service, limiting its applicability in high-temperature tribological environments. To enhance its tribological performance, a TiN–WS2 soft–hard composite coating was fabricated on cemented carbide substrates using reactive co-sputtering magnetron deposition. By adjusting the sputtering parameters and target power ratio, a synergistic deposition of the hard (TiN) and lubricating (WS2) phases was achieved and compared with a pure TiN coating. The results revealed that the incorporation of WS2 significantly reduced the COF at both room temperature (25 °C) and an elevated temperature (200 °C), with the average values decreasing from 0.61 to 0.39 at 25 °C and from 0.53 to 0.36 at 200 °C. A white light interferometry analysis showed that the TiN–WS2 coating exhibited narrower wear tracks and less surface damage than TiN at elevated temperatures, demonstrating superior friction-reducing and wear-resistant capabilities. In terms of mechanical properties, the composite coating showed a reduction in the hardness, the reduced elastic modulus (Er), and the adhesion strength by 27.3%, 19.8%, and 9.5%, respectively, compared to pure TiN. These findings indicate that the introduction of a quantitatively controlled lubricating WS2 phase allows for a balance between nanoscale hardness and wear resistance, offering promising potential for engineering applications under complex working conditions. Full article
Show Figures

Graphical abstract

22 pages, 6755 KiB  
Article
Structural, Mechanical, and Tribological Properties of Molybdenum-Doped Diamond-like Carbon Films
by Hassan Zhairabany, Hesam Khaksar, Edgars Vanags, Krisjanis Smits, Anatolijs Sarakovskis and Liutauras Marcinauskas
Crystals 2025, 15(5), 463; https://doi.org/10.3390/cryst15050463 - 15 May 2025
Viewed by 2505
Abstract
Non-hydrogenated diamond-like carbon (DLC) films and molybdenum-doped diamond-like carbon (Mo-DLC) films were deposited by direct current magnetron sputtering. The formation was carried out on Si (100) wafers. The influence of molybdenum concentration and deposition temperature on the surface morphology, chemical composition, type of [...] Read more.
Non-hydrogenated diamond-like carbon (DLC) films and molybdenum-doped diamond-like carbon (Mo-DLC) films were deposited by direct current magnetron sputtering. The formation was carried out on Si (100) wafers. The influence of molybdenum concentration and deposition temperature on the surface morphology, chemical composition, type of chemical bonds, friction force at nanoscale, and nanohardness of the DLC coatings were investigated by atomic force microscopy (AFM), energy dispersive X-ray spectroscopy (EDX), X-ray photoelectron spectroscopy (XPS), Raman spectroscopy, and nanoindenter, respectively. The concentration of molybdenum in the films varies from 1.2 at.% to 10.3 at.%. The increase in molybdenum content promotes the graphitization of DLC films, lowering the sp3 site fraction and increasing the oxygen content, which contributes to the reduction in nanohardness (by 21%) of the DLC films. The decrease in the synthesis temperature from 235 °C to 180 °C enhanced the oxygen amount up to 20.4 at.%. The sp3 site fraction and nanohardness of the Mo-DLC films were enhanced with the reduction in the deposition temperature. The film deposited at a substrate temperature of 235 °C exhibited the lowest friction coefficient (CoF) of 0.03, where its molybdenum concentration was 1.2 at.%. The decline in the synthesis temperature increased the CoF of the Mo-DLC films up to seven times. Full article
(This article belongs to the Special Issue Advances in Diamond Crystals and Devices)
Show Figures

Figure 1

20 pages, 5035 KiB  
Article
Magnetic, Electronic Structure and Micromagnetic Properties of Ferrimagnetic DyCo3 as a Platform for Ferrimagnetic Skyrmions
by Radu George Hategan, Andrei Aldea, Razvan Dan Miclea, Razvan Hirian, Ioan Botiz, Roxana Dudric, Lokesh Rasabathina, Olav Hellwig, Georgeta Salvan, Dietrich R. T. Zahn, Romulus Tetean and Coriolan Tiusan
Nanomaterials 2025, 15(8), 606; https://doi.org/10.3390/nano15080606 - 15 Apr 2025
Viewed by 849
Abstract
We demonstrate tunable ferrimagnetic properties in both bulk and thin film ferrimagnetic DyCo3 compatible with the hosting of topological magnetic chiral textures, namely skyrmions suitable for integration into spintronic applications with classic, neuromorphic and quantum functionalities. The bulk samples were prepared by [...] Read more.
We demonstrate tunable ferrimagnetic properties in both bulk and thin film ferrimagnetic DyCo3 compatible with the hosting of topological magnetic chiral textures, namely skyrmions suitable for integration into spintronic applications with classic, neuromorphic and quantum functionalities. The bulk samples were prepared by arc-melting of stoichiometric mixtures under purified argon atmosphere and the thin films by Ultra-High-Vacuum magnetron sputtering from a stoichiometric target. Magnetometry allows us to extract the main magnetic properties of bulk and thin films: the saturation magnetization, the magnetic anisotropy and their variation with temperature. These results are successfully complemented by band structure ab initio DFT calculations. Based on the critical magnetic parameters extracted from experiments, we performed micromagnetic simulations that reveal the skyrmionic potential of our samples in both continuous thin film and nano-patterned architectures. Full article
(This article belongs to the Special Issue Nanoscale Spintronics and Magnetism: From Fundamentals to Devices)
Show Figures

Graphical abstract

19 pages, 7091 KiB  
Article
Thin Films of Tungsten Disulfide Grown by Sulfurization of Sputtered Metal for Ultra-Low Detection of Nitrogen Dioxide Gas
by Anastasiya D. Fedorenko, Svetlana A. Lavrukhina, Victor A. Alekseev, Vitalii I. Sysoev, Veronica S. Sulyaeva, Alexander V. Okotrub and Lyubov G. Bulusheva
Nanomaterials 2025, 15(8), 594; https://doi.org/10.3390/nano15080594 - 12 Apr 2025
Viewed by 466
Abstract
Tungsten disulfide (WS2) is attractive for the development of chemiresistive sensors due to its favorable band gap, as well as its mechanical strength and chemical stability. In this work, we elaborate a procedure for the synthesis of thin films consisting of [...] Read more.
Tungsten disulfide (WS2) is attractive for the development of chemiresistive sensors due to its favorable band gap, as well as its mechanical strength and chemical stability. In this work, we elaborate a procedure for the synthesis of thin films consisting of vertically and/or horizontally oriented WS2 nanoparticles by sulfurizing nanometer-thick tungsten layers deposited on oxidized silicon substrates using magnetron sputtering. According to X-ray photoelectron spectroscopy and Raman scattering data, WS2 films grown in an H2-containing atmosphere at 1000 °C are almost free of tungsten oxide. The WS2 film’s thickness is controlled by varying the tungsten sputtering duration from 10 to 90 s. The highest response to nitrogen dioxide (NO2) at room temperature was demonstrated by the film obtained using a tungsten layer sputtered for 30 s. The increased sensitivity is attributed to the high surface-to-volume ratio provided by the horizontal and vertical orientation of the small WS2 nanoparticles. Based on density functional calculations, we conclude that the small in-plane size of WS2 provides many high-energy sites for NO2 adsorption, which leads to greater charge transfer in the sensor. The detection limit of NO2 calculated for the best sensor (WS2-30s) is 15 ppb at room temperature and 8 ppb at 125 °C. The sensor can operate in a humid environment and is significantly less sensitive to NH3 and a mixture of H2, CO, and CO2 gases. Full article
(This article belongs to the Section 2D and Carbon Nanomaterials)
Show Figures

Figure 1

11 pages, 5466 KiB  
Article
Electrocatalytic PANI-Encapsulated Aluminum Silicate/Ceramic Membranes for Efficient and Energy-Saving Removal of 4-Chlorophenol in Wastewater
by Shuo Wang, Tianhao Huang, Haoran Ma, Zihan Liu, Houbing Xia, Zhiqiang Sun, Jun Ma and Ying Zhao
Membranes 2025, 15(4), 114; https://doi.org/10.3390/membranes15040114 - 7 Apr 2025
Cited by 1 | Viewed by 619
Abstract
The removal of chlorinated organic pollutants from wastewater is a critical environmental challenge, as traditional methods for treating toxic pollutants like phenol and chlorophenols often suffer from high energy consumption and long treatment times, limiting their practical use. Electrocatalytic filtration has emerged as [...] Read more.
The removal of chlorinated organic pollutants from wastewater is a critical environmental challenge, as traditional methods for treating toxic pollutants like phenol and chlorophenols often suffer from high energy consumption and long treatment times, limiting their practical use. Electrocatalytic filtration has emerged as a promising alternative, but efficient, energy-saving electrocatalytic membranes for pollutants like 4-chlorophenol (4-CP) are still underexplored. A new type of electrocatalytic coupling membrane catalyst, ASP/CM (PANI-encapsulated aluminum silicate/ceramic membrane), was prepared using inexpensive silicate and polyaniline as the base materials, with in situ polymerization combined with co-focus magnetron sputtering. Under optimal conditions (25 mA/cm2, 10 mM Na2SO4, 1.0 mL·min−1 flow rate, and 50 μM 4-CP concentration), the membrane achieved about 95.1% removal of 4-CP and the degradation rate after five cycles was higher than 85%. In addition, O2•− and •OH are important active species in the electrocatalytic degradation of 4-CP. The 4-CP electrocatalytic membrane filtration process is a dual process of cathode reduction dechlorination and anodic oxidation. This work offers new insights into developing next-generation electrocatalytic membranes and expands the practical applications of electrocatalytic filtration systems. Full article
(This article belongs to the Special Issue Membrane Catalytic Oxidation in Water Treatment)
Show Figures

Figure 1

12 pages, 19666 KiB  
Article
Modulation of Giant Magnetoimpedance Effect in Co-Based Amorphous Wires by Carbon-Based Nanocoatings
by Zhen Yang, Jiabao Huang, Jingyuan Chen and Chong Lei
C 2025, 11(2), 26; https://doi.org/10.3390/c11020026 - 1 Apr 2025
Viewed by 1122
Abstract
Co-based amorphous wires (Co-AWs) are functional materials renowned for their high impedance change rate in magnetic fields and a pronounced giant magnetoimpedance (GMI) effect. In this study, magnetron sputtering (MS) and dip-coating (DC) techniques were employed to fabricate carbon-based nanocoatings aimed at modulating [...] Read more.
Co-based amorphous wires (Co-AWs) are functional materials renowned for their high impedance change rate in magnetic fields and a pronounced giant magnetoimpedance (GMI) effect. In this study, magnetron sputtering (MS) and dip-coating (DC) techniques were employed to fabricate carbon-based nanocoatings aimed at modulating the GMI properties of Co-AWs. The magnetic properties and GMI responses of the composite Co-AWs with carbon-based coatings were comparatively analyzed. The results demonstrate that both methods effectively enhanced the GMI properties of the coated Co-AWs. The DC method emerged as a rapid and efficient approach for forming the coated film, achieving a modest enhancement in GMI performance (10% enhancement). In contrast, the MS technique proved more effective in improving the GMI effect, yielding superior results. Co-AWs coated via Ms exhibited smoother surfaces and reduced coercivity. Notably, the GMI effect increased with the thickness of the sputtered carbon coatings, reaching a maximum GMI effect of 522% (a remarkable 357% enhancement) and a sensitivity of 33.8%/Oe at a coating thickness of 334 nm. The observed trend in the GMI effect with carbon layer thickness corresponded closely to variations in transverse permeability, as determined by vibrating sample magnetometry (VSM). Furthermore, the carbon coating induced changes in the initial quenching stress on the surface of the Co-AWs, leading to alterations in impedance and a significant reduction in the characteristic frequency of the Co-AWs. Our findings provide valuable insights into the modulation of GMI properties in Co-AWs, paving the way for their optimized application in advanced magnetic sensor technologies. Full article
(This article belongs to the Section Carbon Materials and Carbon Allotropes)
Show Figures

Graphical abstract

16 pages, 9709 KiB  
Article
Al Doping Effect on Enhancement of Nonlinear Optical Absorption in Amorphous Bi2Te3 Thin Films
by Tengfei Zhang, Shenjin Wei, Shubo Zhang, Menghan Li, Jiawei Wang, Jingze Liu, Junhua Wang, Ertao Hu and Jing Li
Materials 2025, 18(6), 1372; https://doi.org/10.3390/ma18061372 - 20 Mar 2025
Viewed by 475
Abstract
Bismuth telluride (Bi2Te3) has attracted significant attention due to its broadband ultrafast optical response and strong nonlinearity at high laser fluence in the field of optoelectronic materials. The objective of this work is to study the effect of Al [...] Read more.
Bismuth telluride (Bi2Te3) has attracted significant attention due to its broadband ultrafast optical response and strong nonlinearity at high laser fluence in the field of optoelectronic materials. The objective of this work is to study the effect of Al doping on the structure, linear optical properties, and nonlinear optical absorption behavior of Bi2Te3 thin films. The amorphous Al-doped Bi2Te3 thin films with varying Al doping concentrations were prepared using magnetron co-sputtering. The structure and linear optical properties were characterized using X-ray diffraction, scanning electron microscopy, energy-dispersive X-ray spectroscopy, X-ray photoelectron spectroscopy, spectroscopic ellipsometry, and UV/Vis/NIR spectrophotometry. The third-order nonlinear optical absorption properties of Al: Bi2Te3 thin films were investigated using the open-aperture Z-scan system with a 100 fs laser pulse width at a wavelength of 800 nm and a repetition rate of 1 kHz. The results indicate that Al dopant reduces both the refractive index and extinction coefficient and induces a redshift in the optical bandgap. The optical properties of the films can be effectively modulated by varying the Al doping concentration. Compared with undoped Bi2Te3 thin films, Al-doped Bi2Te3 thin films exhibit larger nonlinear optical absorption coefficients and higher damage thresholds and maintaining high transmittance. These findings provide experimental evidence and a reliable approach for the further optimization and design of ultrafast nonlinear optical devices. Full article
Show Figures

Figure 1

15 pages, 5202 KiB  
Article
Characterization of AlCrN Coated on Tungsten Carbide Substrate by a Continuous Plasma Nitriding-HiPIMS Hybrid Process
by Fu-Sen Yang, Yu-Lin Kuo, Jian-Fu Tang, Ting-Wei Liu and Chi-Lung Chang
Coatings 2025, 15(3), 353; https://doi.org/10.3390/coatings15030353 - 19 Mar 2025
Viewed by 542
Abstract
Plasma nitriding (PN) is often used to enhance the mechanical properties (surface hardness, wear and corrosion resistance) of bulk alloys. High-quality AlCrN hard coatings were obtained using high-power pulsed magnetron sputtering (HiPIMS) technology. This study proposes a combination of two surface treatment methods [...] Read more.
Plasma nitriding (PN) is often used to enhance the mechanical properties (surface hardness, wear and corrosion resistance) of bulk alloys. High-quality AlCrN hard coatings were obtained using high-power pulsed magnetron sputtering (HiPIMS) technology. This study proposes a combination of two surface treatment methods (plasma nitriding and hard coating deposition) in a continuous plasma process to optimize the application and service life of cutting tools. The main feature of this study is to verify the mechanical properties and adhesion strength of nitride tungsten carbide (WC-Co) bulk at a lower temperature (∼300 °C) and shorter time (0.5 to 1.5 h) of PN treatment. After 1.5 h of PN treatment on the WC-Co substrate without subsequent coating, the ultra-thin WNx diffusion interlayer (thickness ∼11.5 nm) on the subsurface was directly observed via TEM analysis, and the types of chemical bonding were confirmed by XPS analysis. Vickers analysis indicated that the surface hardness of the nitrided WC-Co substrate was enhanced by PN treatment from 1534 to 2034 Hv. The AlCrN coating deposited on the nitrided WC-Co substrate significantly enhances the surface mechanical properties, including adhesion strength (increasing from 70 to 150 N), hardness (rising from 2257 to 2568 HV), and wear resistance (with the wear rate decreasing from 14.5 to 3.4 × 10−8 mm3/Nm). Composite surface technology has a high commercial application value because it enhances the value of products under the existing equipment of manufacturers. Full article
(This article belongs to the Special Issue Advances in Novel Coatings)
Show Figures

Figure 1

15 pages, 4112 KiB  
Article
Carbon-Coated CF-Si/Al Anodes for Improved Lithium-Ion Battery Performance
by Liangliang Zeng, Peng Li, Mi Ouyang, Shujuan Gao and Kun Liang
Batteries 2025, 11(3), 114; https://doi.org/10.3390/batteries11030114 - 18 Mar 2025
Viewed by 983
Abstract
Despite their high specific capacity, magnetron-sputtered Si/Al thin films face rapid capacity decay due to stress-induced cracking, delamination, and detrimental electrolyte reactions. This study introduces a carbon-coated composite anode that overcomes these limitations, delivering superior reversible capacity, exceptional rate capability, and stable cycling [...] Read more.
Despite their high specific capacity, magnetron-sputtered Si/Al thin films face rapid capacity decay due to stress-induced cracking, delamination, and detrimental electrolyte reactions. This study introduces a carbon-coated composite anode that overcomes these limitations, delivering superior reversible capacity, exceptional rate capability, and stable cycling performance. An electrochemical evaluation reveals that the CF-Si/Al@C-500-1h composite exhibits marked enhancements in capacity retention (43.5% after 100 cycles at 0.6 A·g−1) and rate capability, maintaining 579.1 mAh·g−1 at 3 A·g−1 (1 C). The carbon layer enhances electrical conductivity, buffers volume expansion during lithiation/delithiation, and suppresses silicon aggregation and electrolyte side reactions. Coupled with an aluminum framework, this architecture ensures robust structural integrity and efficient lithium-ion transport. These advancements position CF-Si/Al@C-500-1h as a promising anode material for next-generation lithium-ion batteries, while insights into scalable fabrication and carbon integration strategies pave the way for practical applications. Full article
(This article belongs to the Special Issue Two-Dimensional Materials for Battery Applications)
Show Figures

Figure 1

Back to TopTop