Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (28)

Search Parameters:
Keywords = magnetoresistance (MR) sensors

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 8023 KiB  
Article
Two Degrees of Freedom Synchronous Motion Modulation Technique Using MEMS Voltage-Controlled Oscillator-Based Phase-Locked Loop for Magnetoresistive Sensing
by Zhenyu Shi, Zhenxiang Qi, Haoqi Lyu, Qifeng Jiao, Chen Chen and Xudong Zou
Sensors 2025, 25(6), 1835; https://doi.org/10.3390/s25061835 - 15 Mar 2025
Viewed by 2227
Abstract
This study presents a novel dual phase-locked loop two-dimensional synchronized motion modulation (TDSMM-DPLL) system designed to enhance the low-frequency detection capability of magnetoresistive (MR) sensors by effectively mitigating 1/f noise. The TDSMM-DPLL system integrates a comb-driven resonator and a piezoelectric cantilever beam resonator, [...] Read more.
This study presents a novel dual phase-locked loop two-dimensional synchronized motion modulation (TDSMM-DPLL) system designed to enhance the low-frequency detection capability of magnetoresistive (MR) sensors by effectively mitigating 1/f noise. The TDSMM-DPLL system integrates a comb-driven resonator and a piezoelectric cantilever beam resonator, achieving synchronized magnetic field modulation through a DPLL circuit that adjusts the resonant frequency of the comb-driven resonator to twice that of the cantilever beam resonator. Theoretical analysis and finite element simulations demonstrate a modulation efficiency of 38.98%, which is significantly higher than that of traditional one-dimensional modulation methods. Experimental validation confirms the system’s effectiveness, showing a 3.13-fold reduction in frequency Allan variance, decreasing from 217.32 ppb to 69.46 ppb, indicating substantial noise suppression. These results highlight the TDSMM-DPLL system’s potential to improve the performance of MR sensors in low-frequency applications, making it a promising solution for high-precision magnetic field detection. Full article
(This article belongs to the Section Electronic Sensors)
Show Figures

Figure 1

16 pages, 6177 KiB  
Article
Magnetoresistive Shunt as an Alternative to Wheatstone Bridge Sensors in Electrical Current Sensing
by Diego Ramírez-Muñoz, Rafael García-Gil, Sandra Soriano-Díaz, Susana Cardoso and Paulo P. Freitas
Electronics 2024, 13(15), 2991; https://doi.org/10.3390/electronics13152991 - 29 Jul 2024
Viewed by 1547
Abstract
The main objective of the work is to investigate the capacity of a single magnetoresistance (MR) element to measure AC electrical currents. An instrumentation system is presented to characterize individually the four active elements of an MR bridge current sensor preserving their internal [...] Read more.
The main objective of the work is to investigate the capacity of a single magnetoresistance (MR) element to measure AC electrical currents. An instrumentation system is presented to characterize individually the four active elements of an MR bridge current sensor preserving their internal connections. The system suggests the possibility to sense electrical currents using only one element of the bridge opening the way to design new MR sensors based on this concept. Sensitivity, offset and non-linearity deviation were obtained using bridges of tunnel (TMR)- and giant (GMR)-based MR technologies. The single element embedded in a Wheatstone bridge configuration is used for practical current measurements in a 50 Hz line. An electronic circuitry is proposed to measure alternating (AC) currents with a single MR element, including a lock-in amplifier and an interface to properly convert the signal to its root mean square (rms) value with a resolution of 250 mA peak in the 125 A range. Full article
Show Figures

Figure 1

12 pages, 2765 KiB  
Article
Characterization of Magnetoresistive Shunts and Its Sensitivity Temperature Compensation
by Diego Ramírez-Muñoz, Rafael García-Gil, Susana Cardoso and Paulo Freitas
Sensors 2024, 24(10), 3047; https://doi.org/10.3390/s24103047 - 11 May 2024
Cited by 2 | Viewed by 1757
Abstract
The main purpose of the paper is to show how a magnetoresistive (MR) element can work as a current sensor instead of using a Wheatstone bridge composed by four MR elements, defining the concept of a magnetoresistive shunt (MR-shunt). This concept is reached [...] Read more.
The main purpose of the paper is to show how a magnetoresistive (MR) element can work as a current sensor instead of using a Wheatstone bridge composed by four MR elements, defining the concept of a magnetoresistive shunt (MR-shunt). This concept is reached by considering that once the MR element is biased at a constant current, the voltage drop between its terminals offers information, by the MR effect, of the current to be measured, as happens in a conventional shunt resistor. However, an MR-shunt has the advantage of being a non-dissipative shunt since the current of interest does not circulate through the material, preventing its self-heating. Moreover, it provides galvanic isolation. First, we propose an electronic circuitry enabling the utilization of the available MR sensors integrated into a Wheatstone bridge as sensing elements (MR-shunt). This circuitry allows independent characterization of each of the four elements of the bridge. An independently implemented MR element is also analyzed. Secondly, we propose an electronic conditioning circuit for the MR-shunt, which allows both the bridge-integrated element and the single element to function as current sensors in a similar way to the sensing bridge. Third, the thermal variation in the sensitivity of the MR-shunt, and its temperature coefficient, are obtained. An electronic interface is proposed and analyzed for thermal drift compensation of the MR-shunt current sensitivity. With this hardware compensation, temperature coefficients are experimentally reduced from 0.348%/°C without compensation to −0.008%/°C with compensation for an element integrated in a sensor bridge and from 0.474%/°C to −0.0007%/°C for the single element. Full article
Show Figures

Figure 1

16 pages, 5054 KiB  
Article
Magnetoresistance and Magnetic Relaxation of La-Sr-Mn-O Films Grown on Si/SiO2 Substrate by Pulsed Injection MOCVD
by Nerija Žurauskienė, Vakaris Rudokas and Sonata Tolvaišienė
Sensors 2023, 23(12), 5365; https://doi.org/10.3390/s23125365 - 6 Jun 2023
Cited by 1 | Viewed by 1799
Abstract
The results of magnetoresistance (MR) and resistance relaxation of nanostructured La1−xSrxMnyO3 (LSMO) films with different film thicknesses (60–480 nm) grown on Si/SiO2 substrate by the pulsed-injection MOCVD technique are presented and compared with [...] Read more.
The results of magnetoresistance (MR) and resistance relaxation of nanostructured La1−xSrxMnyO3 (LSMO) films with different film thicknesses (60–480 nm) grown on Si/SiO2 substrate by the pulsed-injection MOCVD technique are presented and compared with the reference manganite LSMO/Al2O3 films of the same thickness. The MR was investigated in permanent (up to 0.7 T) and pulsed (up to 10 T) magnetic fields in the temperature range of 80–300 K, and the resistance-relaxation processes were studied after the switch-off of the magnetic pulse with an amplitude of 10 T and a duration of 200 μs. It was found that the high-field MR values were comparable for all investigated films (~−40% at 10 T), whereas the memory effects differed depending on the film thickness and substrate used for the deposition. It was demonstrated that resistance relaxation to the initial state after removal of the magnetic field occurred in two time scales: fast’ (~300 μs) and slow (longer than 10 ms). The observed fast relaxation process was analyzed using the Kolmogorov–Avrami–Fatuzzo model, taking into account the reorientation of magnetic domains into their equilibrium state. The smallest remnant resistivity values were found for the LSMO films grown on SiO2/Si substrate in comparison to the LSMO/Al2O3 films. The testing of the LSMO/SiO2/Si-based magnetic sensors in an alternating magnetic field with a half-period of 22 μs demonstrated that these films could be used for the development of fast magnetic sensors operating at room temperature. For operation at cryogenic temperature, the LSMO/SiO2/Si films could be employed only for single-pulse measurements due to magnetic-memory effects. Full article
Show Figures

Figure 1

27 pages, 9233 KiB  
Review
Flexible Magnetic Sensors
by Lili Pan, Yali Xie, Huali Yang, Mengchao Li, Xilai Bao, Jie Shang and Run-Wei Li
Sensors 2023, 23(8), 4083; https://doi.org/10.3390/s23084083 - 18 Apr 2023
Cited by 39 | Viewed by 9351 | Correction
Abstract
With the merits of high sensitivity, high stability, high flexibility, low cost, and simple manufacturing, flexible magnetic field sensors have potential applications in various fields such as geomagnetosensitive E-Skins, magnetoelectric compass, and non-contact interactive platforms. Based on the principles of various magnetic field [...] Read more.
With the merits of high sensitivity, high stability, high flexibility, low cost, and simple manufacturing, flexible magnetic field sensors have potential applications in various fields such as geomagnetosensitive E-Skins, magnetoelectric compass, and non-contact interactive platforms. Based on the principles of various magnetic field sensors, this paper introduces the research progress of flexible magnetic field sensors, including the preparation, performance, related applications, etc. In addition, the prospects of flexible magnetic field sensors and their challenges are presented. Full article
Show Figures

Figure 1

21 pages, 8270 KiB  
Article
Effects of Partial Manganese Substitution by Cobalt on the Physical Properties of Pr0.7Sr0.3Mn(1−x)CoxO3 (0 ≤ x ≤ 0.15) Manganites
by Feriel Zdiri, José María Alonso, Taoufik Mnasri, Patricia de la Presa, Irene Morales, José Luis Martínez, Rached Ben Younes and Pilar Marin
Materials 2023, 16(4), 1573; https://doi.org/10.3390/ma16041573 - 13 Feb 2023
Cited by 3 | Viewed by 2318
Abstract
We have investigated the structural, magnetic, and electrical transport properties of Pr0.7 Sr0.3 Mn(1−x)Cox O3 nanopowders (x = 0, 0.05, 0.10 and 0.15). The Pechini Sol-gel method was used to synthesize these nanopowders. X-ray diffraction at room [...] Read more.
We have investigated the structural, magnetic, and electrical transport properties of Pr0.7 Sr0.3 Mn(1−x)Cox O3 nanopowders (x = 0, 0.05, 0.10 and 0.15). The Pechini Sol-gel method was used to synthesize these nanopowders. X-ray diffraction at room temperature shows that all the nano powders have an orthorhombic structure of Pnma space group crystallography. The average crystallite size of samples x = 0, 0.05, 0.10, and 0.15 are 33.78 nm, 29 nm, 33.61 nm, and 24.27 nm, respectively. Semi-quantitative chemical analysis by energy dispersive spectroscopy (EDS) confirms the expected stoichiometry of the sample. Magnetic measurements indicate that all samples show a ferromagnetic (FM) to paramagnetic (PM) transition with increasing temperature. The Curie temperature TC gradually decreases (300 K, 270 K, 250 K, and 235 K for x = 0, 0.05, 0.10, and 0.15, respectively) with increasing Co concentrations. The M-H curves for all compounds reveal the PM behavior at 300 K, while the FM behavior characterizes the magnetic hysteresis at low temperature (5 K). The electrical resistivity measurements show that all compounds exhibit metallic behavior at low temperature (T < Tρ) well fitted by the relation ρ = ρ0 + ρ2T2 + ρ4.5T4.5 and semiconductor behavior above Tρ (T > Tρ), for which the electronic transport can be explained by the variable range hopping model and the adiabatic small polaron hopping model. All samples have significant magnetoresistance (MR) values, even at room temperature. This presented research provides an innovative and practical approach to develop materials in several technological areas, such as ultra-high density magnetic recording and magneto resistive sensors. Full article
Show Figures

Figure 1

15 pages, 9015 KiB  
Article
Measurement System for Short-Pulsed Magnetic Fields
by Voitech Stankevič, Skirmantas Keršulis, Justas Dilys, Vytautas Bleizgys, Mindaugas Viliūnas, Vilius Vertelis, Andrius Maneikis, Vakaris Rudokas, Valentina Plaušinaitienė and Nerija Žurauskienė
Sensors 2023, 23(3), 1435; https://doi.org/10.3390/s23031435 - 28 Jan 2023
Cited by 8 | Viewed by 3352
Abstract
A measurement system based on the colossal magnetoresistance CMR-B-scalar sensor was developed for the measurement of short-duration high-amplitude magnetic fields. The system consists of a magnetic field sensor made from thin nanostructured manganite film with minimized memory effect, and a magnetic field recording [...] Read more.
A measurement system based on the colossal magnetoresistance CMR-B-scalar sensor was developed for the measurement of short-duration high-amplitude magnetic fields. The system consists of a magnetic field sensor made from thin nanostructured manganite film with minimized memory effect, and a magnetic field recording module. The memory effect of the La1−xSrx(Mn1−yCoy)zO3 manganite films doped with different amounts of Co and Mn was investigated by measuring the magnetoresistance (MR) and resistance relaxation in pulsed magnetic fields up to 20 T in the temperature range of 80–365 K. It was found that for low-temperature applications, films doped with Co (LSMCO) are preferable due to the minimized magnetic memory effect at these temperatures, compared with LSMO films without Co. For applications at temperatures higher than room temperature, nanostructured manganite LSMO films with increased Mn content above the stoichiometric level have to be used. These films do not exhibit magnetic memory effects and have higher MR values. To avoid parasitic signal due to electromotive forces appearing in the transmission line of the sensor during measurement of short-pulsed magnetic fields, a bipolar-pulsed voltage supply for the sensor was used. For signal recording, a measurement module consisting of a pulsed voltage generator with a frequency up to 12.5 MHz, a 16-bit ADC with a sampling rate of 25 MHz, and a microprocessor was proposed. The circuit of the measurement module was shielded against low- and high-frequency electromagnetic noise, and the recorded signal was transmitted to a personal computer using a fiber optic link. The system was tested using magnetic field generators, generating magnetic fields with pulse durations ranging from 3 to 20 μs. The developed magnetic field measurement system can be used for the measurement of high-pulsed magnetic fields with pulse durations in the order of microseconds in different fields of science and industry. Full article
Show Figures

Figure 1

28 pages, 18150 KiB  
Article
Microgrid Protection Using Magneto-Resistive Sensors and Superimposed Reactive Energy
by Musfira Mehmood, Syed Basit Ali Bukhari, Abdullah Altamimi, Zafar A. Khan, Syed Ali Abbas Kazmi, Muhammad Yousif and Dong Ryeol Shin
Sustainability 2023, 15(1), 599; https://doi.org/10.3390/su15010599 - 29 Dec 2022
Viewed by 2095
Abstract
The concept of microgrids has emerged as an effective way to integrate distributed energy resources (DERs) into distribution networks. The presence of DERs in microgrids leads to challenges in the formulation of protection for microgrids. Protection problems arise in a microgrid due to [...] Read more.
The concept of microgrids has emerged as an effective way to integrate distributed energy resources (DERs) into distribution networks. The presence of DERs in microgrids leads to challenges in the formulation of protection for microgrids. Protection problems arise in a microgrid due to varying fault current levels in different operating scenarios. In order to overcome the practical challenges arising from varying fault current levels leading to short-circuit faults in microgrids, this paper proposes a MagnetoResistive (MR) sensors-based protection scheme, with fault localization through SuperimposedReactiveEnergy (SRE). The process is initiated by employing highly sensitive non-intrusive magnetic sensors to detect the magnetic field at each end of the distribution line. The magnetic field is then used to calculate the total harmonic distortion and thus detect faults in microgrids. After detection of faults, the proposed scheme uses SRE to identify faulty zones in microgrids. Finally, SI components of the current are extracted for fault classification. Extensive simulations on the International Electro-technical Commission (IEC) microgrid are performed in MATLAB/Simulink to validate the efficacy of the proposed scheme. Simulation results show that the proposed scheme can effectively detect, classify and isolate different faults in microgrids, while operating under various modes with varying fault locations and resistances, with the efficiency of approximately 97–98%. Full article
(This article belongs to the Section Energy Sustainability)
Show Figures

Figure 1

21 pages, 2678 KiB  
Review
A Review: Research Progress of Neural Probes for Brain Research and Brain–Computer Interface
by Jiahui Luo, Ning Xue and Jiamin Chen
Biosensors 2022, 12(12), 1167; https://doi.org/10.3390/bios12121167 - 14 Dec 2022
Cited by 25 | Viewed by 5479
Abstract
Neural probes, as an invasive physiological tool at the mesoscopic scale, can decipher the code of brain connections and communications from the cellular or even molecular level, and realize information fusion between the human body and external machines. In addition to traditional electrodes, [...] Read more.
Neural probes, as an invasive physiological tool at the mesoscopic scale, can decipher the code of brain connections and communications from the cellular or even molecular level, and realize information fusion between the human body and external machines. In addition to traditional electrodes, two new types of neural probes have been developed in recent years: optoprobes based on optogenetics and magnetrodes that record neural magnetic signals. In this review, we give a comprehensive overview of these three kinds of neural probes. We firstly discuss the development of microelectrodes and strategies for their flexibility, which is mainly represented by the selection of flexible substrates and new electrode materials. Subsequently, the concept of optogenetics is introduced, followed by the review of several novel structures of optoprobes, which are divided into multifunctional optoprobes integrated with microfluidic channels, artifact-free optoprobes, three-dimensional drivable optoprobes, and flexible optoprobes. At last, we introduce the fundamental perspectives of magnetoresistive (MR) sensors and then review the research progress of magnetrodes based on it. Full article
(This article belongs to the Section Biosensor and Bioelectronic Devices)
Show Figures

Figure 1

13 pages, 2736 KiB  
Article
The Effect of Geometrical Overlap between Giant Magnetoresistance Sensor and Magnetic Flux Concentrators: A Novel Comb-Shaped Sensor for Improved Sensitivity
by Prabhanjan D. Kulkarni, Hitoshi Iwasaki and Tomoya Nakatani
Sensors 2022, 22(23), 9385; https://doi.org/10.3390/s22239385 - 1 Dec 2022
Cited by 10 | Viewed by 2564
Abstract
The combination of magnetoresistive (MR) element and magnetic flux concentrators (MFCs) offers highly sensitive magnetic field sensors. To maximize the effect of MFC, the geometrical design between the MR element and MFCs is critical. In this paper, we present simulation and experimental studies [...] Read more.
The combination of magnetoresistive (MR) element and magnetic flux concentrators (MFCs) offers highly sensitive magnetic field sensors. To maximize the effect of MFC, the geometrical design between the MR element and MFCs is critical. In this paper, we present simulation and experimental studies on the effect of the geometrical relationship between current-in-plane giant magnetoresistive (GMR) element and MFCs made of a NiFeCuMo film. Finite element method (FEM) simulations showed that although an overlap between the MFCs and GMR element enhances their magneto-static coupling, it can lead to a loss of magnetoresistance ratio due to a magnetic shielding effect by the MFCs. Therefore, we propose a comb-shaped GMR element with alternate notches and fins. The FEM simulations showed that the fins of the comb-shaped GMR element provide a strong magneto-static coupling with the MFCs, whereas the electric current is confined within the main body of the comb-shaped GMR element, resulting in improved sensitivity. We experimentally demonstrated a higher sensitivity of the comb-shaped GMR sensor (36.5 %/mT) than that of a conventional rectangular GMR sensor (28 %/mT). Full article
(This article belongs to the Special Issue Advances in Magnetic Sensors)
Show Figures

Figure 1

14 pages, 3496 KiB  
Article
Enhancement of Room-Temperature Low-Field Magnetoresistance in Nanostructured Lanthanum Manganite Films for Magnetic Sensor Applications
by Nerija Zurauskiene, Voitech Stankevic, Skirmantas Kersulis, Milita Vagner, Valentina Plausinaitiene, Jorunas Dobilas, Remigijus Vasiliauskas, Martynas Skapas, Mykola Koliada, Jaroslaw Pietosa and Andrzej Wisniewski
Sensors 2022, 22(11), 4004; https://doi.org/10.3390/s22114004 - 25 May 2022
Cited by 14 | Viewed by 2698
Abstract
The results of colossal magnetoresistance (CMR) properties of La1-xSrxMnyO3 (LSMO) films grown by the pulsed injection MOCVD technique onto an Al2O3 substrate are presented. The grown films with different Sr (0.05 ≤ x [...] Read more.
The results of colossal magnetoresistance (CMR) properties of La1-xSrxMnyO3 (LSMO) films grown by the pulsed injection MOCVD technique onto an Al2O3 substrate are presented. The grown films with different Sr (0.05 ≤ x ≤ 0.3) and Mn excess (y > 1) concentrations were nanostructured with vertically aligned column-shaped crystallites spread perpendicular to the film plane. It was found that microstructure, resistivity, and magnetoresistive properties of the films strongly depend on the strontium and manganese concentration. All films (including low Sr content) exhibit a metal–insulator transition typical for manganites at a certain temperature, Tm. The Tm vs. Sr content dependence for films with a constant Mn amount has maxima that shift to lower Sr values with the increase in Mn excess in the films. Moreover, the higher the Mn excess concentration in the films, the higher the Tm value obtained. The highest Tm values (270 K) were observed for nanostructured LSMO films with x = 0.17–0.18 and y = 1.15, while the highest low-field magnetoresistance (0.8% at 50 mT) at room temperature (290 K) was achieved for x = 0.3 and y = 1.15. The obtained low-field MR values were relatively high in comparison to those published in the literature results for lanthanum manganite films prepared without additional insulating oxide phases. It can be caused by high Curie temperature (383 K), high saturation magnetization at room temperature (870 emu/cm3), and relatively thin grain boundaries. The obtained results allow to fabricate CMR sensors for low magnetic field measurement at room temperature. Full article
Show Figures

Figure 1

16 pages, 12458 KiB  
Article
Nanostructured Manganite Films Grown by Pulsed Injection MOCVD: Tuning Low- and High-Field Magnetoresistive Properties for Sensors Applications
by Voitech Stankevic, Nerija Zurauskiene, Skirmantas Kersulis, Valentina Plausinaitiene, Rasuole Lukose, Jonas Klimantavicius, Sonata Tolvaišienė, Martynas Skapas, Algirdas Selskis and Saulius Balevicius
Sensors 2022, 22(2), 605; https://doi.org/10.3390/s22020605 - 13 Jan 2022
Cited by 7 | Viewed by 2330
Abstract
The results of colossal magnetoresistance (CMR) properties of La0.83Sr0.17Mn1.21O3 (LSMO) films grown by pulsed injection MOCVD technique onto various substrates are presented. The films with thicknesses of 360 nm and 60 nm grown on AT-cut single [...] Read more.
The results of colossal magnetoresistance (CMR) properties of La0.83Sr0.17Mn1.21O3 (LSMO) films grown by pulsed injection MOCVD technique onto various substrates are presented. The films with thicknesses of 360 nm and 60 nm grown on AT-cut single crystal quartz, polycrystalline Al2O3, and amorphous Si/SiO2 substrates were nanostructured with column-shaped crystallites spread perpendicular to the film plane. It was found that morphology, microstructure, and magnetoresistive properties of the films strongly depend on the substrate used. The low-field MR at low temperatures (25 K) showed twice higher values (−31% at 0.7 T) for LSMO/quartz in comparison to films grown on the other substrates (−15%). This value is high in comparison to results published in literature for manganite films prepared without additional insulating oxides. The high-field MR measured up to 20 T at 80 K was also the highest for LSMO/quartz films (−56%) and demonstrated the highest sensitivity S = 0.28 V/T at B = 0.25 T (voltage supply 2.5 V), which is promising for magnetic sensor applications. It was demonstrated that Mn excess Mn/(La + Sr) = 1.21 increases the metal-insulator transition temperature of the films up to 285 K, allowing the increase in the operation temperature of magnetic sensors up to 363 K. These results allow us to fabricate CMR sensors with predetermined parameters in a wide range of magnetic fields and temperatures. Full article
Show Figures

Figure 1

9 pages, 2327 KiB  
Article
Free Layer Thickness Dependence of the Stability in Co2(Mn0.6Fe0.4)Ge Heusler Based CPP-GMR Read Sensor for Areal Density of 1 Tb/in2
by Pirat Khunkitti, Apirat Siritaratiwat and Kotchakorn Pituso
Micromachines 2021, 12(9), 1010; https://doi.org/10.3390/mi12091010 - 25 Aug 2021
Cited by 3 | Viewed by 2160
Abstract
Current-perpendicular-to-the-plane giant magnetoresistance (CPP-GMR) read sensors based on Heusler alloys are promising candidates for ultrahigh areal densities of magnetic data storage technology. In particular, the thickness of reader structures is one of the key factors for the development of practical CPP-GMR sensors. In [...] Read more.
Current-perpendicular-to-the-plane giant magnetoresistance (CPP-GMR) read sensors based on Heusler alloys are promising candidates for ultrahigh areal densities of magnetic data storage technology. In particular, the thickness of reader structures is one of the key factors for the development of practical CPP-GMR sensors. In this research, we studied the dependence of the free layer thickness on the stability of the Co2(Mn0.6Fe0.4)Ge Heusler-based CPP-GMR read head for an areal density of 1 Tb/in2, aiming to determine the appropriate layer thickness. The evaluations were done through simulations based on micromagnetic modelling. The reader stability indicators, including the magnetoresistance (MR) ratio, readback signal, dibit response asymmetry parameter, and power spectral density profile, were characterized and discussed. Our analysis demonstrates that the reader with a free layer thickness of 3 nm indicates the best stability performance for this particular head. A reasonably large MR ratio of 26% was obtained by the reader having this suitable layer thickness. The findings can be utilized to improve the design of the CPP-GMR reader for use in ultrahigh magnetic recording densities. Full article
(This article belongs to the Special Issue Magnetic and Spin Devices)
Show Figures

Figure 1

23 pages, 4425 KiB  
Review
Current Progress of Magnetoresistance Sensors
by Songlin Yang and Jin Zhang
Chemosensors 2021, 9(8), 211; https://doi.org/10.3390/chemosensors9080211 - 5 Aug 2021
Cited by 49 | Viewed by 9831
Abstract
Magnetoresistance (MR) is the variation of a material’s resistivity under the presence of external magnetic fields. Reading heads in hard disk drives (HDDs) are the most common applications of MR sensors. Since the discovery of giant magnetoresistance (GMR) in the 1980s and the [...] Read more.
Magnetoresistance (MR) is the variation of a material’s resistivity under the presence of external magnetic fields. Reading heads in hard disk drives (HDDs) are the most common applications of MR sensors. Since the discovery of giant magnetoresistance (GMR) in the 1980s and the application of GMR reading heads in the 1990s, the MR sensors lead to the rapid developments of the HDDs’ storage capacity. Nowadays, MR sensors are employed in magnetic storage, position sensing, current sensing, non-destructive monitoring, and biomedical sensing systems. MR sensors are used to transfer the variation of the target magnetic fields to other signals such as resistance change. This review illustrates the progress of developing nanoconstructed MR materials/structures. Meanwhile, it offers an overview of current trends regarding the applications of MR sensors. In addition, the challenges in designing/developing MR sensors with enhanced performance and cost-efficiency are discussed in this review. Full article
(This article belongs to the Special Issue Advances in Magnetic Sensors with Nanocomponents)
Show Figures

Graphical abstract

10 pages, 3026 KiB  
Article
Substrate Impact on MR Characteristics of Carbon Nano Films Explored via AFM and Raman Analysis
by Awais Siddique Saleemi, Muhammad Hafeez, Muhammad Saeed, Ali Abdullah, Muhammad Anis-ur- Rehman and Shern-Long Lee
Materials 2021, 14(13), 3649; https://doi.org/10.3390/ma14133649 - 30 Jun 2021
Cited by 2 | Viewed by 1973
Abstract
Recent advances in the fabrication and classification of amorphous carbon (a-Carbon) thin films play an active part in the field of surface materials science. In this paper, a pulsed laser deposition (PLD) technique through controlling experimental parameters, including deposition time/temperature and laser energy/frequency, [...] Read more.
Recent advances in the fabrication and classification of amorphous carbon (a-Carbon) thin films play an active part in the field of surface materials science. In this paper, a pulsed laser deposition (PLD) technique through controlling experimental parameters, including deposition time/temperature and laser energy/frequency, has been employed to examine the substrate effect of amorphous carbon thin film fabrication over SiO2 and glass substrates. In this paper, we have examined the structural and magnetoresistance (MR) properties of these thin films. The intensity ratio of the G-band and D-band (ID/IG) were 1.1 and 2.4, where the C(sp2) atomic ratio for the thin films samples that were prepared on glass and SiO2 substrates, were observed as 65% and 85%, respectively. The MR properties were examined under a magnetic field ranging from −9 T to 9 T within a 2-K to 40-K temperature range. A positive MR value of 15% was examined at a low temperature of 2 K for the thin films grown on SiO2 substrate at a growth temperature of 400 °C using a 300 mJ/pulse laser frequency. The structural changes may tune the magnetoresistance properties of these a-Carbon materials. These results were demonstrated to be highly promising for carbon-based spintronics and magnetic sensors. Full article
(This article belongs to the Special Issue DLC (Diamond-Like Carbon) Film Formation and Application)
Show Figures

Figure 1

Back to TopTop