Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (231)

Search Parameters:
Keywords = magnetically hard materials

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 2880 KiB  
Article
Novel Magnetically Charged Grafts for Vascular Repair: Process Optimization, Mechanical Characterization and In Vitro Validation
by Iriczalli Cruz-Maya, Roberto De Santis, Luciano Lanotte and Vincenzo Guarino
Polymers 2025, 17(13), 1877; https://doi.org/10.3390/polym17131877 - 5 Jul 2025
Viewed by 494
Abstract
In the last decade, magnetic nanoparticles (MNPs) have attracted much attention for the implementation of non-invasive approaches suitable for the diagnosis and treatment of vascular diseases. In this work, the optimization of novel vascular grafts loaded with Nickel-based nanoparticles via electrospinning is proposed. [...] Read more.
In the last decade, magnetic nanoparticles (MNPs) have attracted much attention for the implementation of non-invasive approaches suitable for the diagnosis and treatment of vascular diseases. In this work, the optimization of novel vascular grafts loaded with Nickel-based nanoparticles via electrospinning is proposed. Two different polycarbonate urethanes—i.e., Corethane A80 (COT) and Chronoflex AL80 (CHF)—were used to fabricate 3D electrospun nanocomposite grafts. SEM analysis showed a homogeneous distribution of fibers, with slight differences in terms of average diameters as a function of the polymer used—(1.14 ± 0.18) µm for COT, and (1.33 ± 0.23) µm for CHF—that tend to disappear in the presence of MNPs—(1.26 ± 0.19) µm and (1.26 ± 0.213) µm for COT/NPs and CHF/NPs, respectively. TGA analyses confirmed the higher ability of CHF to entrap MNPs in the fibers—18.25% with respect to 14.63% for COT—while DSC analyses suggested an effect of MNPs on short-range rearrangements of hard/soft micro-domains of CHF. Accordingly, mechanical tests confirmed a decay of mechanical strength in the presence of MNPs with some differences depending on the matrix—from (6.16 ± 0.33) MPa to (4.55 ± 0.2) MPa (COT), and from (3.67 ± 0.18) MPa to (2.97 ± 0.22) MPa (CNF). The in vitro response revealed that the presence of MNPs did not negatively affect cell viability after 7 days in in vitro culture, suggesting a promising use of these materials as smart vascular grafts able to support the actuation function of vessel wall muscles. Full article
(This article belongs to the Section Polymer Applications)
Show Figures

Figure 1

17 pages, 2763 KiB  
Article
Experimental Evaluation of Arc Stud Welding Techniques on Structural and Stainless Steel: Effects on Penetration Depth and Weld Quality
by Tanja Tomić, Tihomir Mihalic, Josip Groš and Lucija Vugrinec
Appl. Sci. 2025, 15(13), 7269; https://doi.org/10.3390/app15137269 - 27 Jun 2025
Viewed by 287
Abstract
Arc stud welding differs from conventional arc welding techniques and is widely used for joining structural steel, stainless steel, aluminum, and copper alloys in various configurations. Achieving a reliable stud weld requires appropriate welding parameters and a suitable process selection, considering factors such [...] Read more.
Arc stud welding differs from conventional arc welding techniques and is widely used for joining structural steel, stainless steel, aluminum, and copper alloys in various configurations. Achieving a reliable stud weld requires appropriate welding parameters and a suitable process selection, considering factors such as stud diameter, base material, and surface condition. This study experimentally compares three arc stud welding techniques—arc welding with a ceramic ferrule (ARC CF), arc welding with shielding gas (ARC SG), and arc welding assisted by a radially symmetric magnetic field (ARC SRM)—applied to structural steel (1.0038) and stainless steel (1.4301). Macrostructural analysis, Vickers hardness testing (HV10), visual inspection, non-destructive testing, and bend tests were performed to evaluate weld quality. Results show that ARC CF achieved the highest penetration and hardness but produced more spatter. ARC SG provided moderate penetration but was more prone to cold welds, while ARC SRM resulted in the cleanest collars with minimal spatter but shallower penetration. All welds met ISO 5817:2014 Quality Level C, confirming acceptable structural integrity. These findings support informed selection and optimization of stud welding techniques for diverse engineering applications. Full article
Show Figures

Figure 1

14 pages, 4484 KiB  
Article
Magnetic Resonance Imaging of Submental and Masticatory Muscle Morphology and Its Relationship with Temporomandibular Joint Structures
by Melisa Öçbe and Mahmut Sabri Medişoğlu
Diagnostics 2025, 15(12), 1535; https://doi.org/10.3390/diagnostics15121535 - 17 Jun 2025
Viewed by 421
Abstract
Introduction: This study aimed to evaluate the submental and masticatory muscles in patients of different age groups using magnetic resonance imaging (MRI) and computed tomography (CT) methods, and investigate potential associations between muscle morphology, temporomandibular joint (TMJ) structures, and disc displacement. Materials [...] Read more.
Introduction: This study aimed to evaluate the submental and masticatory muscles in patients of different age groups using magnetic resonance imaging (MRI) and computed tomography (CT) methods, and investigate potential associations between muscle morphology, temporomandibular joint (TMJ) structures, and disc displacement. Materials and Methods: A total of 185 MRI scans were retrospectively analyzed to assess the thickness of the digastric, geniohyoid, mylohyoid, medial pterygoid, masseter, and lateral pterygoid muscles bilaterally. TMJ hard tissue changes were classified using computed tomography (CT). Correlations between muscle thickness and TMJ structures were analyzed using Pearson correlation coefficients, with statistical significance set at p < 0.05. Results: The study population included 110 females and 75 males, with a mean age of 50.08 ± 20.15 years. The largest age group was 51–75 years (41%), followed by 18–35 years (28%). Significant correlations were observed between muscle thickness and TMJ structures as follows: Right digastric muscle showed a significant association with right disc–condyle position (p = 0.02). Right mylohyoid muscle exhibited a strong correlation with right disc–condyle position (p = 0.004). Left medial pterygoid muscle was significantly correlated with left condyle pathology (p = 0.02). Left masseter muscle showed a significant correlation with left condyle pathology (p = 0.014). Condylar flattening was the most frequent pathology, observed in 58% of right condyles and 53% of left condyles. Disc displacement was present in 41% of right TMJs and 34% of left TMJs. Conclusions: This study highlights the important associations between masticatory and submental muscle morphology and TMJ structures, suggesting that muscle function may play a role in condylar positioning and disc alignment. These findings emphasize the need for comprehensive muscle evaluation in TMJ disorder (TMD) diagnosis and treatment planning. Full article
(This article belongs to the Special Issue Advances in Oral and Maxillofacial Radiology)
Show Figures

Figure 1

20 pages, 2741 KiB  
Article
Sustainable Recovery of Rare Earth Elements from Hard Disks: Grinding NdFeB Magnets and Financial and Environmental Analysis
by Paweł Friebe, Tomasz Suponik, Paweł M. Nuckowski, Marek Kremzer, Rafał Baron, Piotr Matusiak and Daniel Kowol
Materials 2025, 18(12), 2697; https://doi.org/10.3390/ma18122697 - 8 Jun 2025
Viewed by 608
Abstract
Rare earth elements (REEs), particularly neodymium (Nd), dysprosium (Dy), and praseodymium (Pr), are critical in the production of neodymium–iron–boron (NdFeB) magnets used in electronic devices, wind turbines, and electric vehicles. Due to the limited availability of these metals, their recovery from waste electronic [...] Read more.
Rare earth elements (REEs), particularly neodymium (Nd), dysprosium (Dy), and praseodymium (Pr), are critical in the production of neodymium–iron–boron (NdFeB) magnets used in electronic devices, wind turbines, and electric vehicles. Due to the limited availability of these metals, their recovery from waste electronic equipment such as hard disk drives (HDDs) offers a promising solution. The aim of this study was to develop a method to grind NdFeB magnets obtained from the physical recycling of HDD. The recycled magnets were ground using a planetary mill. A review of the literature highlights the limitations of the currently used grinding methods, which require energy-intensive pretreatment processes, specialised conditions, or expensive equipment. This study employed a Fritsch planetary mill, tungsten carbide grinding balls, and ethanol as a grinding medium. NdFeB magnet samples (120 g) were ground for different durations (0.5 h–15 h) at a speed of 300 rpm, using a cyclic operating mode to minimise material heating. The resulting powders were analysed using a laser particle analyser, an optical microscope, and an X-ray diffractometer. The results enable the determination of optimal grinding parameters, achieving an average particle size (d50) below 5 μm, which is essential for further processing and new magnet production. Finally, the economic and environmental aspects of producing the neodymium alloy were analysed. Full article
Show Figures

Figure 1

7 pages, 1778 KiB  
Article
Synthesis, Structure and Magnetic Properties of Sm6−xLaxMn23 (0.5 ≤ x ≤ 4) Alloys
by Ying-Hua Liang, Zhong Zhang, Jihoon Park, Jia-Cheng Lyu, Hong-Liang Ge, Ping-Zhan Si and Chul-Jin Choi
Magnetochemistry 2025, 11(5), 45; https://doi.org/10.3390/magnetochemistry11050045 - 21 May 2025
Viewed by 569
Abstract
The structure and magnetic properties of Sm6−xLaxMn23 (x = 0.5, 1, 2, 3 and 4) alloys have been studied systematically. We found that the Th6Mn23-type Sm6−xLaxMn23 [...] Read more.
The structure and magnetic properties of Sm6−xLaxMn23 (x = 0.5, 1, 2, 3 and 4) alloys have been studied systematically. We found that the Th6Mn23-type Sm6−xLaxMn23 alloys become less stable with increasing La content, and α-Mn becomes the dominant phase at x = 4. More impurities were found to present in Sm5LaMn23 samples prepared by a rapid solidification process than those present in the as-cast ingots. The coercivity of Sm4La2Mn23 induction-melted ingots and Sm5LaMn23 melt-spun ribbons reached up to 0.47 T and 0.53 T, respectively, indicating potential applications of this alloy in hard magnetic materials. The Curie temperature of Sm6−xLaxMn23 falls in the range of 398 K for x = 1 to 438 K for x = 3. The La-substitution results in a reduced saturation magnetization of Sm6−xLaxMn23, owing to a reduced total-magnetic-moment contribution of the Sm-sublattices. This work provides us a deeper understanding of the effect of La-substitution on the structure and magnetic properties of the ternary La-Sm-Mn alloys. Full article
(This article belongs to the Section Magnetic Materials)
Show Figures

Figure 1

24 pages, 3710 KiB  
Review
The Laser Powder Bed Fusion of Nd2Fe14B Permanent Magnets: The State of the Art
by Ivan Pelevin, Maria Lyange, Leonid Fedorenko, Stanislav Chernyshikhin and Irina Tereshina
Condens. Matter 2025, 10(2), 22; https://doi.org/10.3390/condmat10020022 - 24 Apr 2025
Viewed by 2160
Abstract
In recent years, significant effort was made to make the 3D printing of fully dense rare-earth permanent magnets a reality. Since suitable Nd2Fe14B-based initial powder material became available, additive manufacturing implementation spread widely, which led to many studies being [...] Read more.
In recent years, significant effort was made to make the 3D printing of fully dense rare-earth permanent magnets a reality. Since suitable Nd2Fe14B-based initial powder material became available, additive manufacturing implementation spread widely, which led to many studies being focused on using this material in 3D printing. This study shows the principal possibilities of the synthesis of Nd-Fe-B magnets by means of the laser powder bed fusion technique; moreover, this study shows significant progress in increasing their magnetic properties. This progress was made possible by different approaches, such as 3D-printing process optimization, the addition of a second phase (a low-melting eutectic) into the initial powder, the tuning of the main phase’s composition, and exploring different scanning strategies. However, the current level of material magnetic properties obtained via laser powder bed fusion is still far from that of magnets produced by using conventional powder metallurgy methods. The present review aims to capture the current state-of-the-art trials and highlight the main challenges. Full article
(This article belongs to the Section Magnetism)
Show Figures

Figure 1

18 pages, 22450 KiB  
Article
A Mechanism of Argon Arc Remelting of LPBF 18Ni300 Steel Surfaces
by Xiaoping Zeng, Yehui Sun, Hong Zhang, Zhi Jia and Quan Kang
Coatings 2025, 15(4), 481; https://doi.org/10.3390/coatings15040481 - 18 Apr 2025
Cited by 1 | Viewed by 459
Abstract
This study aims to reduce pores, cracks, and other defects on the surface of laser powder bed fusion (LPBF)-fabricated 18Ni300 steel and improve its surface quality. Remelting was carried out on the surface with an argon arc as the heat source. Then, the [...] Read more.
This study aims to reduce pores, cracks, and other defects on the surface of laser powder bed fusion (LPBF)-fabricated 18Ni300 steel and improve its surface quality. Remelting was carried out on the surface with an argon arc as the heat source. Then, the surface layer was characterized using SEM, EDS, XRD, EBSD, and hardness testing. The results showed the following: When the pulse current I increased from 16 A to 20 A, the surface hardness of LPBF 18Ni300 increased due to a decrease in defects and an increase in the martensite phase. The driving forces of convection in the molten pool (such as buoyancy, Lorentz magnetic force, surface tension, and plasma flow force) rose with an increase in current. When the current I exceeded 20 A, the convection became more intense, making it easier for gas to be entrained into the melt pool, forming pores and introducing new defects, resulting in a decrease in surface hardness. The primary factors affecting the hardness of LPBF 18Ni300 after surface argon arc remelting were pore (defect) weakening and phase transformation strengthening, while the secondary factors included grain refinement strengthening and texture strengthening. The solidification mode of the remelted layer was: L → A → M + A′. The phase transition mode of the heat-affected zone was: M + A′ → Areverse → Mtemper. Compared with the base material and heat-affected zone, the grains in the remelted layer formed a stronger <001> texture with a larger average size (2.51 μm) and a lower misorientation angle. The content of the residual austenite A′ was relatively high in the remelted layer. It was distributed in the form of strips along grain boundaries, and it always maintained a shear–coherent relationship with martensite. Full article
Show Figures

Figure 1

14 pages, 7361 KiB  
Article
Improving the Soft Magnetic Characteristics of Nanocrystalline Soft Magnetic Composites Through the Incorporation of Ultrafine FeSiAl Powders
by Yanyan Song, Zhi Zhang, Shaoxiong Zhou, Ruibiao Zhang, Haichen Yu and Xiantao Li
Magnetochemistry 2025, 11(4), 25; https://doi.org/10.3390/magnetochemistry11040025 - 30 Mar 2025
Cited by 1 | Viewed by 1056
Abstract
Nanocrystalline powders, characterized by a biphasic amorphous nanocrystalline structure, demonstrate outstanding soft magnetic characteristics, including reduced coercivity (Hc), enhanced effective permeability (μe), and increased resistivity. However, their high hardness, poor formability, and significant core loss (P [...] Read more.
Nanocrystalline powders, characterized by a biphasic amorphous nanocrystalline structure, demonstrate outstanding soft magnetic characteristics, including reduced coercivity (Hc), enhanced effective permeability (μe), and increased resistivity. However, their high hardness, poor formability, and significant core loss (Pcv) restrict their use in high-performance molded inductors. In this study, FeSiBCuNb/FeSiAl nanocrystalline soft magnetic composites (NSMCs) were fabricated, and the influence of varying the FeSiAl concentration on the microstructure, density, and soft magnetic characteristics of NSMCs was investigated. Then, the underlying mechanisms of these effects were explained. The results demonstrate that FeSiAl exhibits apparent deformation following compression, effectively filling the air gap between the FeSiBCuNb powder particles, thereby enhancing coupling among the magnetic particles. Consequently, the density of the NSMCs was enhanced, leading to a significant improvement in their overall soft magnetic properties. When 50 wt.% FeSiAl is added, the NSMCs display outstanding magnetic properties, including a low Hc of 4.36 Oe, a high μe of 48.7, a low Pcv of 119.35 kW/m3 at 50 mT and 100 kHz, and a high DC-bias performance of 73.29% at 100 Oe. Compared to NSMCs without FeSiAl, μe increased by 59.4% and Pcv decreased by 66.1%. Meanwhile, the incorporation of ultrafine FeSiAl powder was found to significantly improve the material properties, as the deformable FeSiAl particles effectively fill interparticle gaps during compaction, enhancing density and magnetic coupling. The 50 wt.% FeSiAl composition demonstrated exceptional properties. These advances address critical challenges in high-frequency power electronic applications and provide a practical material solution for next-generation power electronics. Full article
(This article belongs to the Section Magnetic Materials)
Show Figures

Figure 1

18 pages, 2968 KiB  
Article
Research on the Mechanical and Photoelectric Properties Regulation of the New-Type Ceramic Material Ta2AlC
by Zhongzheng Zhang, Chunhong Zhang, Xinmao Qin and Wanjun Yan
Crystals 2025, 15(4), 309; https://doi.org/10.3390/cryst15040309 - 26 Mar 2025
Viewed by 376
Abstract
Ta2AlC is an emerging ceramic material characterized by its high melting point, high hardness, excellent thermal stability, and superior mechanical properties, which allow for broad application prospects in aerospace and defense fields. This paper investigates the physical mechanisms underlying the modulation [...] Read more.
Ta2AlC is an emerging ceramic material characterized by its high melting point, high hardness, excellent thermal stability, and superior mechanical properties, which allow for broad application prospects in aerospace and defense fields. This paper investigates the physical mechanisms underlying the modulation of the mechanical and photoelectric properties of Ta2AlC through doping using the first-principles pseudopotential plane-wave method. We specifically calculated the geometric structure, mechanical properties, electronic structure, Mulliken population analysis, and optical properties of Ta2AlC doped with V, Ga, or Si. The results indicate that doping induces significant changes in the structural parameters of Ta2AlC. By applying the Born’s criterion as the standard for mechanical stability, we have calculated that the structures of Ta2AlC, both before and after doping, are stable. The mechanical property calculations revealed that V and Si doping weaken the material’s resistance to deformation while enhancing its plasticity. In contrast, Ga doping increases the material’s resistance to lateral deformation and brittleness. Doping also increases the anisotropy of Ta2AlC. Electronic structure calculations confirmed that Ta2AlC is a conductor with excellent electrical conductivity, which is not diminished by doping. The symmetric distribution of spin-up and spin-down electronic state densities indicates that the Ta2AlC system remains non-magnetic after doping. The partial density of states diagrams successfully elucidated the influence of dopant atoms on the band structure and electronic state density. Mulliken population analysis revealed that V and Ga doping enhance the covalent interactions between C-Ta and Al-Ta atoms, whereas Si doping weakens these interactions. Optical property calculations showed that V and Si doping significantly enhance the electromagnetic energy storage capacity and dielectric loss of Ta2AlC, while Ga doping has minimal effect. The reflectivity of doped and undoped Ta2AlC reaches over 90% in the ultraviolet region, indicating its potential as an anti-ultraviolet coating material. In the visible light region, both doped and undoped Ta2AlC exhibit a similar metallic gray appearance, suggesting its potential as a temperature control coating material. The light loss of Ta2AlC is limited to a narrow energy range, indicating that doping does not affect its use as a light storage material. These results demonstrate that different dopants can effectively modulate the mechanical and photoelectric properties of Ta2AlC. Full article
(This article belongs to the Special Issue Microstructure and Characterization of Crystalline Materials)
Show Figures

Figure 1

24 pages, 4959 KiB  
Article
Feature of Nonlinear Electromagnetic Properties and Local Atomic Structure of Metals in Two Systems of Nanocomposites Cox(MgF2)100−x and (CoFeZr)x(MgF2)100−x
by Evelina Pavlovna Domashevskaya, Sergey Alexandrovich Ivkov, Elena Alexandrovna Ganshina, Lyubov Vladimirovna Guda, Valeriy Grigoryevich Vlasenko and Alexander Victorovich Sitnikov
Nanomaterials 2025, 15(6), 463; https://doi.org/10.3390/nano15060463 - 19 Mar 2025
Viewed by 446
Abstract
Based on modern concepts of the nonlinear percolation mechanisms of electrical and magnetic properties in granular metal–dielectric nanocomposites, the authors present for the first time a comparative analysis of their own results of a comprehensive study of nonlinear electromagnetic properties in two nanocomposite [...] Read more.
Based on modern concepts of the nonlinear percolation mechanisms of electrical and magnetic properties in granular metal–dielectric nanocomposites, the authors present for the first time a comparative analysis of their own results of a comprehensive study of nonlinear electromagnetic properties in two nanocomposite systems: metal–dielectric Cox(MgF2)100−x and alloy–dielectric (CoFeZr)x(MgF2)100−x, obtained by ion-beam sputtering of composite targets in a wide range of different compositions. For the first time, the features of the influence of atomic composition and structural-phase transitions on nonlinear magnetoresistive, magnetic, and magneto-optical properties in two systems are presented in comparison, one of which, Cox(MgF2)100−x, showed soft magnetic properties, and the second, (CoFeZr)x(MgF2)100−x, hard magnetic properties, during the transition from the superparamagnetic to the ferromagnetic state. Moreover, for the first time, the concentration dependences of the oscillating fine structure of XANES K-absorption edges of Co atoms in the first system and Co and Fe atoms in the second system are presented, which undergo changes at the percolation thresholds in each of the two systems and thus confirm the nonlinear nature of the electromagnetic properties changes in each of the two systems at the atomic level. Full article
(This article belongs to the Section Nanocomposite Materials)
Show Figures

Figure 1

22 pages, 4768 KiB  
Review
Recent Research Progress in the Abrasive Machining and Finishing of Additively Manufactured Metal Parts
by Tesfaye Mengesha Medibew, Dawid Zieliński, Sisay Workineh Agebo and Mariusz Deja
Materials 2025, 18(6), 1249; https://doi.org/10.3390/ma18061249 - 12 Mar 2025
Viewed by 1543
Abstract
Additive manufacturing (AM) has revolutionized the production of complex geometrical parts with metals; however, the usual layer-by-layer deposition results in poor surface quality and unpredictable surface integrity. Abrasive machining and finishing techniques play vital roles in counteracting these challenges and qualifying AM parts [...] Read more.
Additive manufacturing (AM) has revolutionized the production of complex geometrical parts with metals; however, the usual layer-by-layer deposition results in poor surface quality and unpredictable surface integrity. Abrasive machining and finishing techniques play vital roles in counteracting these challenges and qualifying AM parts for practical applications. This review aims to present recent research developments concerning the machining of additively manufactured metal parts via both conventional and nonconventional abrasive machining methods. Conventional methods such as grinding, milling, polishing, honing, and sandblasting have been widely investigated for their ability to enhance the surface finish, dimensional accuracy, and mechanical properties of AM metal components. However, the characteristic features of various AM processes, such as porosity, microstructural features, and residual stresses, can significantly influence the machinability of the produced parts. Nonconventional methods such as abrasive flow machining, electrochemical machining, magnetic abrasive finishing, and vibratory bowl finishing, on the other hand, have shown potential in addressing the difficulties associated with internal machining geometries and hard-to-machine material combinations that are typical for many AM parts. This review also highlights some challenges and future trends in the machining of AM metal parts and emphasizes that further research is required in the direction of combinations of various postprocessing techniques, machinability regarding new alloy compositions, and the integration of AI for process optimization. As the demand for high-precision AM parts grows across various industries, the advancement of abrasive machining and finishing techniques is crucial for driving the wider adoption of AM technologies. Full article
Show Figures

Figure 1

21 pages, 11178 KiB  
Review
Material Characterization and Strategies for Optimization of Additively Manufactured Electric Machines—A Review
by Shaheer Ul Hassan, Mazahir Hussain Shah, Luděk Pešek and Miroslav Chomát
Electronics 2025, 14(4), 729; https://doi.org/10.3390/electronics14040729 - 13 Feb 2025
Viewed by 1126
Abstract
With the advent of 3D printing, advancements in optimizing structures and innovations to 3D print new materials for electric machines are being developed. Conventional structures are being replaced by lattice structures which provide better properties. From plastics to metals, recent achievements have been [...] Read more.
With the advent of 3D printing, advancements in optimizing structures and innovations to 3D print new materials for electric machines are being developed. Conventional structures are being replaced by lattice structures which provide better properties. From plastics to metals, recent achievements have been made in the 3D printing of soft and hard magnetic materials. Hard magnetic materials are mostly printed by mixing them with ferrites or using a binder material. This paper focuses on all the different methods and compositions to 3D print metals and soft and hard magnetic materials. Although research is still undergoing to expand the use of different magnetic materials, we still have some limitations in their use in electric machines e.g., mixing hard magnetic materials with other materials for 3D printing weakens their electromagnetic properties. Some 3D printing processes provide a comparatively low mechanical strength. With research being undertaken to overcome these challenges, recent 3D-printed magnetic materials for the use in electric machines are discussed in this paper. Apart from materials, different optimization strategies are also introduced that increase the efficiency of the 3D-printed parts e.g., process optimization, topology optimization, and thermal optimization. Process optimization includes different multi-material strategies to reduce the time taken, print multiple parts in one process, and improve the properties of the part. Topology optimization revolves around optimized designs. The properties of electric machines are enhanced by using optimized shapes of rotor, stator, and coils. During the operation of electric machines, there is always some heat generation. The efficient removal of this heat from the system can increase the efficiency of the part. Thermal optimization to efficiently dissipate the heat to the atmosphere is achieved by using phase-changing materials (PCMs), by installing cooling systems, or by introducing optimized structures with better thermal properties. All these developments are discussed in this paper. Full article
Show Figures

Figure 1

18 pages, 6546 KiB  
Article
Microstructure and Properties of AlxCr1−xCoFeNi High-Entropy Alloys Prepared by Spark Plasma Sintering
by Gang Li, Xiangran Meng, Chunpin Geng, Chongshuo Wang, Haifang Ren, Xiaoying Guo, Sinan Li and Ying Tao
Materials 2025, 18(4), 755; https://doi.org/10.3390/ma18040755 - 8 Feb 2025
Cited by 2 | Viewed by 1044
Abstract
CoCrFeNi high-entropy alloys represent a novel structural material with considerable application potential in a variety of fields, including aerospace, automobiles, ships, machining, energy, soft magnetic materials, and hydrogen storage materials. The present study investigates the impact of the Al element on the structure [...] Read more.
CoCrFeNi high-entropy alloys represent a novel structural material with considerable application potential in a variety of fields, including aerospace, automobiles, ships, machining, energy, soft magnetic materials, and hydrogen storage materials. The present study investigates the impact of the Al element on the structure and properties of the alloy. The preparation of the AlxCr1−xCoFeNi (x = 0.1, 0.2, 0.3, 0.4, 0.5) powders involved the use of a variety of elemental metal powders as raw materials and a mechanical alloying process at 350 rpm for 40 h. The sintering of the alloy powders was subsequently conducted using spark plasma sintering at 1000 °C. The microstructure of the alloys was analyzed using XRD, SEM, and EDS, and the properties were analyzed using a universal testing machine, a hardness measurement, friction and wear measurement, and an electrochemical workstation. The study shows that when x = 0.1, the crystal structure of Al0.1Cr0.9CoFeNi consists of a double FCC phase and a trace amount of σ phase. As the aluminum content increases, part of the FCC phase begins to transform to BCC. When x = 0.2~0.5, the alloy consists of a double FCC phase and a BCC phase and a trace amount of a sigma phase. As the BCC phase in the alloy increases, the tensile strength of the alloy increases, the ability to deform plastically decreases, and the hardness increases. The highest ultimate tensile strength of 1163.14 MPa is exhibited by Al0.5Cr0.5CoFeNi, while the minimum elongation is 26.98% and the maximum hardness value is 412.6 HV. In the initial stage of friction measurement, the wear mechanism of AlxCr1−xCoFeNi is adhesive wear. However, as the test time progresses, an oxide layer begins to form on the alloy’s surface, leading to a gradual increase in the friction coefficient. At this stage, the wear mechanism becomes a combination of both adhesive and abrasive wear. Once the oxidation process and the wear process have reached a dynamic equilibrium, the friction coefficient stabilizes, and the wear mechanism transitions to a state of abrasive wear. The Al0.1Cr0.9CoFeNi alloy demonstrates the lowest friction coefficient and wear rate, exhibiting values of 0.513 and 0.020 × 10−3 mm3/Nm, respectively, while the Al0.5Cr0.5CoFeNi alloy demonstrates the highest performance, with a self-corrosion voltage of 0.202 V in a 3.5 wt.% NaCl solution. The experimental findings demonstrate that, in the presence of a decline in the Cr element within a high-entropy alloy, an augmentation in the Al element can facilitate the transition of the FCC phase to the BCC phase within the alloy, thereby enhancing its mechanical properties. However, in the AlxCr1−xCoFeNi HEAs, the presence of the Cr-rich and Cr-poor phases invariably results in selective corrosion in a neutral NaCl solution. The corrosion resistance of this alloy is weaker than that of a single-phase solid solution alloy with a similar chemical composition that only undergoes pitting corrosion. Full article
(This article belongs to the Special Issue Fabrication, Characterization, and Application of High Entropy Alloy)
Show Figures

Figure 1

15 pages, 8890 KiB  
Article
Application of Magnetic-Assisted Polishing Using Metal-Bonded Grinding Wheels for Machining Silicon Nitride Ball Bearings
by Su-Yeon Han, Seung-Min Lee, Ha-Neul Kim, Jae-Woong Ko and Tae-Soo Kwak
Materials 2025, 18(3), 677; https://doi.org/10.3390/ma18030677 - 3 Feb 2025
Viewed by 948
Abstract
Silicon nitride (Si3N4) is used for high-speed rotating bearings in machine tools, aircraft, and turbo pumps due to its excellent material properties such as high-temperature strength, hardness, and fracture toughness. Grinding with fixed abrasives enables high shape accuracy and [...] Read more.
Silicon nitride (Si3N4) is used for high-speed rotating bearings in machine tools, aircraft, and turbo pumps due to its excellent material properties such as high-temperature strength, hardness, and fracture toughness. Grinding with fixed abrasives enables high shape accuracy and high efficiency in machining brittle materials. However, it is difficult to completely remove surface damage, which limits its use in products requiring a nano surface. These defects also result in reduced reliability and shortened lifespan. Magnetic-assisted polishing (MAP) is a technology that can achieve a fine surface by using a mixture of iron powder and abrasives, but it requires a lot of time due to the low material removal rate (MRR). Therefore, this study developed a hybrid processing technology using a metal-bonded grinding wheel and a slurry with hard abrasives for the high precision of silicon nitride ceramic ball bearings. Experiments were conducted in order to compare and analyze the surface roughness and material removal rate. Through MAP, using a grinding wheel with low grit (#325), high-efficiency machining performance was confirmed with a maximum material removal rate of 1.193 mg/min. In MAP, using a grinding wheel with high grit (#2000), a nano-level surface roughness of 6.5 nm Ra was achieved. Full article
Show Figures

Figure 1

18 pages, 8574 KiB  
Article
Neural Network-Based Evaluation of Hardness in Cold-Rolled Austenitic Stainless Steel Under Various Heat Treatment Conditions
by Milan Smetana, Michal Gala, Daniela Gombarska and Peter Klco
Appl. Sci. 2025, 15(3), 1352; https://doi.org/10.3390/app15031352 - 28 Jan 2025
Cited by 1 | Viewed by 918
Abstract
This study introduces an innovative, non-contact method for classifying the hardness of austenitic stainless steels (grade AISI 304) based on their intrinsic magnetic fields. Utilizing a 3 × 3 matrix sensor system, this research captures weak magnetic fields to produce precise 2D magnetic [...] Read more.
This study introduces an innovative, non-contact method for classifying the hardness of austenitic stainless steels (grade AISI 304) based on their intrinsic magnetic fields. Utilizing a 3 × 3 matrix sensor system, this research captures weak magnetic fields to produce precise 2D magnetic field maps of the samples. A key advancement is the application of a modified GoogleNet convolutional neural network, optimized with the stochastic gradient descent with momentum algorithm, which achieves exceptional classification accuracy, ranging from 95% to 100%, and median accuracies of 97.5% to 99%. This method stands out by revealing a novel correlation between annealing temperature and magnetic field strength, particularly a pronounced decline in magnetic properties at temperatures near 1000 °C. This observation underscores the sensitivity of magnetic profiles to heat treatments, offering a groundbreaking approach to material characterization. By enabling reliable, efficient, and fully automated hardness evaluation based on magnetic signatures, this work has the potential to transform materials engineering and manufacturing, setting a new benchmark for non-destructive material analysis techniques. Full article
(This article belongs to the Special Issue The Advances and Applications of Non-destructive Evaluation)
Show Figures

Figure 1

Back to TopTop