Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (68)

Search Parameters:
Keywords = magnetic resonance spectroscopic imaging

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
41 pages, 3816 KiB  
Review
Updates on the Advantages and Disadvantages of Microscopic and Spectroscopic Characterization of Magnetotactic Bacteria for Biosensor Applications
by Natalia Lorela Paul, Catalin Ovidiu Popa and Rodica Elena Ionescu
Biosensors 2025, 15(8), 472; https://doi.org/10.3390/bios15080472 - 22 Jul 2025
Viewed by 408
Abstract
Magnetotactic bacteria (MTB), a unique group of Gram-negative prokaryotes, have the remarkable ability to biomineralize magnetic nanoparticles (MNPs) intracellularly, making them promising candidates for various biomedical applications such as biosensors, drug delivery, imaging contrast agents, and cancer-targeted therapies. To fully exploit the potential [...] Read more.
Magnetotactic bacteria (MTB), a unique group of Gram-negative prokaryotes, have the remarkable ability to biomineralize magnetic nanoparticles (MNPs) intracellularly, making them promising candidates for various biomedical applications such as biosensors, drug delivery, imaging contrast agents, and cancer-targeted therapies. To fully exploit the potential of MTB, a precise understanding of the structural, surface, and functional properties of these biologically produced nanoparticles is required. Given these concerns, this review provides a focused synthesis of the most widely used microscopic and spectroscopic methods applied in the characterization of MTB and their associated MNPs, covering the latest research from January 2022 to May 2025. Specifically, various optical microscopy techniques (e.g., transmission electron microscopy (TEM), scanning electron microscopy (SEM), and atomic force microscopy (AFM)) and spectroscopic approaches (e.g., localized surface plasmon resonance (LSPR), surface-enhanced Raman scattering (SERS), and X-ray photoelectron spectroscopy (XPS)) relevant to ultrasensitive MTB biosensor development are herein discussed and compared in term of their advantages and disadvantages. Overall, the novelty of this work lies in its clarity and structure, aiming to consolidate and simplify access to the most current and effective characterization techniques. Furthermore, several gaps in the characterization methods of MTB were identified, and new directions of methods that can be integrated into the study, analysis, and characterization of these bacteria are suggested in exhaustive manner. Finally, to the authors’ knowledge, this is the first comprehensive overview of characterization techniques that could serve as a practical resource for both younger and more experienced researchers seeking to optimize the use of MTB in the development of advanced biosensing systems and other biomedical tools. Full article
(This article belongs to the Special Issue Material-Based Biosensors and Biosensing Strategies)
Show Figures

Figure 1

36 pages, 1925 KiB  
Review
Deep Learning-Enhanced Spectroscopic Technologies for Food Quality Assessment: Convergence and Emerging Frontiers
by Zhichen Lun, Xiaohong Wu, Jiajun Dong and Bin Wu
Foods 2025, 14(13), 2350; https://doi.org/10.3390/foods14132350 - 2 Jul 2025
Viewed by 1446
Abstract
Nowadays, the development of the food industry and economic recovery have driven escalating consumer demands for high-quality, nutritious, and safe food products, and spectroscopic technologies are increasingly prominent as essential tools for food quality inspection. Concurrently, the rapid rise of artificial intelligence (AI) [...] Read more.
Nowadays, the development of the food industry and economic recovery have driven escalating consumer demands for high-quality, nutritious, and safe food products, and spectroscopic technologies are increasingly prominent as essential tools for food quality inspection. Concurrently, the rapid rise of artificial intelligence (AI) has created new opportunities for food quality detection. As a critical branch of AI, deep learning synergizes with spectroscopic technologies to enhance spectral data processing accuracy, enable real-time decision making, and address challenges from complex matrices and spectral noise. This review summarizes six cutting-edge nondestructive spectroscopic and imaging technologies, near-infrared/mid-infrared spectroscopy, Raman spectroscopy, fluorescence spectroscopy, hyperspectral imaging (spanning the UV, visible, and NIR regions, to simultaneously capture both spatial distribution and spectral signatures of sample constituents), terahertz spectroscopy, and nuclear magnetic resonance (NMR), along with their transformative applications. We systematically elucidate the fundamental principles and distinctive merits of each technological approach, with a particular focus on their deep learning-based integration with spectral fusion techniques and hybrid spectral-heterogeneous fusion methodologies. Our analysis reveals that the synergy between spectroscopic technologies and deep learning demonstrates unparalleled superiority in speed, precision, and non-invasiveness. Future research should prioritize three directions: multimodal integration of spectroscopic technologies, edge computing in portable devices, and AI-driven applications, ultimately establishing a high-precision and sustainable food quality inspection system spanning from production to consumption. Full article
(This article belongs to the Section Food Quality and Safety)
Show Figures

Figure 1

15 pages, 3542 KiB  
Article
Longitudinal Overlap and Metabolite Analysis in Spectroscopic MRI-Guided Proton Beam Therapy in Pediatric High-Grade Glioma
by Abinand C. Rejimon, Anuradha G. Trivedi, Vicki Huang, Karthik K. Ramesh, Natia Esiashvilli, Eduard Schreibmann, Hyunsuk Shim, Kartik Reddy and Bree R. Eaton
Tomography 2025, 11(6), 71; https://doi.org/10.3390/tomography11060071 - 19 Jun 2025
Viewed by 473
Abstract
Background: Pediatric high-grade glioma (pHGG) is a highly aggressive cancer with unique biology distinct from adult high-grade glioma, limiting the effectiveness of standard treatment protocols derived from adult research. Objective: The purpose of this report is to present preliminary results from an ongoing [...] Read more.
Background: Pediatric high-grade glioma (pHGG) is a highly aggressive cancer with unique biology distinct from adult high-grade glioma, limiting the effectiveness of standard treatment protocols derived from adult research. Objective: The purpose of this report is to present preliminary results from an ongoing pilot study integrating spectroscopic magnetic resonance imaging (sMRI) to guide proton beam therapy and longitudinal imaging analysis in pediatric patients with high-grade glioma (pHGG). Methods: Thirteen pediatric patients under 21 years old with supratentorial WHO grade III-IV glioma underwent baseline and serial whole-brain spectroscopic MRI alongside standard structural MRIs. Radiation targets were defined using T1-weighted contrast enhanced, T2-FLAIR, and Cho/NAA ≥ 2X maps. Longitudinal analyses included voxel-level metabolic change maps and spatial overlap metrics comparing pre-proton therapy and post-. Results: Six patients had sufficient longitudinal data; five received sMRI-guided PBT. Significant positive correlation (R2 = 0.89, p < 0.0001) was observed between T2-FLAIR and Cho/NAA ≥ 2X volumes. Voxel-level difference maps of Cho/NAA and Choline revealed dynamic metabolic changes across follow-up scans. Analyzing Cho/NAA and Cho changes over time allowed differentiation between true progression and pseudoprogression, which conventional MRI alone struggles to achieve. Conclusions: Longitudinal sMRI enhanced metabolic tracking in pHGG, detects early tumor changes, and refines RT targeting beyond structural imaging. This first in-kind study highlights the potential of sMRI biomarkers in tracking treatment effects and emphasizes the complementary roles of metabolic and radiographic metrics in evaluating therapy response in pHGG. Full article
(This article belongs to the Section Cancer Imaging)
Show Figures

Figure 1

17 pages, 3206 KiB  
Article
Circadian Alterations in Brain Metabolism Linked to Cognitive Deficits During Hepatic Ischemia-Reperfusion Injury Using [1H-13C]-NMR Metabolomics
by Yijing Li, Yanbo Liu, Zhigang He, Zhixiao Li and Hongbing Xiang
Biomedicines 2024, 12(11), 2536; https://doi.org/10.3390/biomedicines12112536 - 6 Nov 2024
Viewed by 1456
Abstract
Background: Hepatic ischemia-reperfusion injury (HIRI) is known to affect cognitive functions, with particular concern for its impact on brain metabolic dynamics. Circadian rhythms, as a crucial mechanism for internal time regulation within organisms, significantly influence metabolic processes in the brain. This study [...] Read more.
Background: Hepatic ischemia-reperfusion injury (HIRI) is known to affect cognitive functions, with particular concern for its impact on brain metabolic dynamics. Circadian rhythms, as a crucial mechanism for internal time regulation within organisms, significantly influence metabolic processes in the brain. This study aims to explore how HIRI affects hippocampal metabolism and its circadian rhythm differences in mice, and to analyze how these changes are associated with cognitive impairments. Methods: A C57BL/6 male mouse model was used, simulating HIRI through hepatic ischemia-reperfusion surgery, with a sham operation conducted for the control group. Cognitive functions were evaluated using open field tests, Y-maze tests, and novel object recognition tests. Magnetic resonance spectroscopic imaging (MRSI) technology, combined with intravenous injection of [2-13C]-acetate and [1-13C]-glucose, was utilized to analyze metabolic changes in the hippocampus of HIRI mice at different circadian time points (Zeitgeber Time ZT0, 8:00 and ZT12, 20:00). Circadian rhythms regulate behavioral, physiological, and metabolic rhythms through transcriptional feedback loops, with ZT0 at dawn (lights on) and ZT12 at dusk (lights off). Results: HIRI mice exhibited significant cognitive impairments in behavioral tests, particularly in spatial memory and learning abilities. MRSI analysis revealed significant circadian rhythm differences in the concentration of metabolites in the hippocampus, with the enrichment concentrations of lactate, alanine, glutamate, and taurine showing different trends at ZT0 compared to ZT12, highlighting the important influence of circadian rhythms on metabolic dysregulation induced by HIRI. Conclusions: This study highlights the significant impact of HIRI on brain metabolic dynamics in mice, especially in the hippocampal area, and for the first time reveals the differences in these effects within circadian rhythms. These findings not only emphasize the association between HIRI-induced cognitive impairments and changes in brain metabolism but also point out the crucial role of circadian rhythms in this process, offering new metabolic targets and timing considerations for therapeutic strategies against HIRI-related cognitive disorders. Full article
Show Figures

Figure 1

19 pages, 6090 KiB  
Article
1H and 31P Magnetic Resonance Spectroscopic Metabolomic Imaging: Assessing Mitogen-Activated Protein Kinase Inhibition in Melanoma
by Pradeep Kumar Gupta, Stepan Orlovskiy, Fernando Arias-Mendoza, David S. Nelson and Kavindra Nath
Cells 2024, 13(14), 1220; https://doi.org/10.3390/cells13141220 - 19 Jul 2024
Cited by 2 | Viewed by 1451
Abstract
The MAPK signaling pathway with BRAF mutations has been shown to drive the pathogenesis of 40–60% of melanomas. Inhibitors of this pathway’s BRAF and MEK components are currently used to treat these malignancies. However, responses to these treatments are not always successful. Therefore, [...] Read more.
The MAPK signaling pathway with BRAF mutations has been shown to drive the pathogenesis of 40–60% of melanomas. Inhibitors of this pathway’s BRAF and MEK components are currently used to treat these malignancies. However, responses to these treatments are not always successful. Therefore, identifying noninvasive biomarkers to predict treatment responses is essential for personalized medicine in melanoma. Using noninvasive 1H magnetic resonance spectroscopy (1H MRS), we previously showed that BRAF inhibition reduces lactate and alanine tumor levels in the early stages of effective therapy and could be considered as metabolic imaging biomarkers for drug response. The present work demonstrates that these metabolic changes observed by 1H MRS and those assessed by 31P MRS are also found in preclinical human melanoma models treated with MEK inhibitors. Apart from 1H and 31P MRS, additional supporting in vitro biochemical analyses are described. Our results indicate significant early metabolic correlations with response levels to MEK inhibition in the melanoma models and are consistent with our previous study of BRAF inhibition. Given these results, our study supports the potential clinical utility of noninvasive MRS to objectively image metabolic biomarkers for the early prediction of melanoma’s response to MEK inhibition. Full article
(This article belongs to the Collection Tumor Microenvironment: Interaction and Metabolism)
Show Figures

Figure 1

15 pages, 5563 KiB  
Article
Combining Dipole and Loop Coil Elements for 7 T Magnetic Resonance Studies of the Human Calf Muscle
by Veronika Cap, Vasco Rafael Rocha dos Santos, Kostiantyn Repnin, David Červený, Elmar Laistler, Martin Meyerspeer and Roberta Frass-Kriegl
Sensors 2024, 24(11), 3309; https://doi.org/10.3390/s24113309 - 22 May 2024
Cited by 1 | Viewed by 1760
Abstract
Combining proton and phosphorus magnetic resonance spectroscopy offers a unique opportunity to study the oxidative and glycolytic components of metabolism in working muscle. This paper presents a 7 T proton calf coil design that combines dipole and loop elements to achieve the high [...] Read more.
Combining proton and phosphorus magnetic resonance spectroscopy offers a unique opportunity to study the oxidative and glycolytic components of metabolism in working muscle. This paper presents a 7 T proton calf coil design that combines dipole and loop elements to achieve the high performance necessary for detecting metabolites with low abundance and restricted visibility, specifically lactate, while including the option of adding a phosphorus array. We investigated the transmit, receive, and parallel imaging performance of three transceiver dipoles with six pair-wise overlap-decoupled standard or twisted pair receive-only coils. With a higher SNR and more efficient transmission decoupling, standard loops outperformed twisted pair coils. The dipoles with standard loops provided a four-fold-higher image SNR than a multinuclear reference coil comprising two proton channels and 32% more than a commercially available 28-channel proton knee coil. The setup enabled up to three-fold acceleration in the right–left direction, with acceptable g-factors and no visible aliasing artefacts. Spectroscopic phantom measurements revealed a higher spectral SNR for lactate with the developed setup than with either reference coil and fewer restrictions in voxel placement due to improved transmit homogeneity. This paper presents a new use case for dipoles and highlights their advantages for the integration in multinuclear calf coils. Full article
(This article belongs to the Special Issue Sensors in Magnetic Resonance Imaging)
Show Figures

Figure 1

14 pages, 3265 KiB  
Article
Peak Resembling N-acetylaspartate (NAA) on Magnetic Resonance Spectroscopy of Brain Metastases
by Jelena Ostojic, Dusko Kozic, Milana Panjkovic, Biljana Georgievski-Brkic, Dusan Dragicevic, Aleksandra Lovrenski and Jasmina Boban
Medicina 2024, 60(4), 662; https://doi.org/10.3390/medicina60040662 - 19 Apr 2024
Viewed by 4022
Abstract
Background and Objectives: Differentiating between a high-grade glioma (HGG) and solitary cerebral metastasis presents a challenge when using standard magnetic resonance imaging (MRI) alone. Magnetic resonance spectroscopy (MRS), an advanced MRI technique, may assist in resolving this diagnostic dilemma. N-acetylaspartate (NAA), an [...] Read more.
Background and Objectives: Differentiating between a high-grade glioma (HGG) and solitary cerebral metastasis presents a challenge when using standard magnetic resonance imaging (MRI) alone. Magnetic resonance spectroscopy (MRS), an advanced MRI technique, may assist in resolving this diagnostic dilemma. N-acetylaspartate (NAA), an amino acid found uniquely in the central nervous system and in high concentrations in neurons, typically suggests HGG over metastatic lesions in spectra from ring-enhancing lesions. This study investigates exceptions to this norm. Materials and Methods: We conducted an MRS study on 49 histologically confirmed and previously untreated patients with brain metastases, employing single-voxel (SVS) techniques with short and long echo times, as well as magnetic resonance spectroscopic imaging (MRSI). Results: In our cohort, 44 out of 49 (90%) patients demonstrated a typical MR spectroscopic profile consistent with secondary deposits: a Cho peak, very low or absent Cr, absence of NAA, and the presence of lipids. A peak at approximately 2 ppm, termed the “NAA-like peak”, was present in spectra obtained with both short and long echo times. Among the MRS data from 49 individuals, we observed a peak at 2.0 ppm in five brain metastases from mucinous carcinoma of the breast, mucinous non-small-cell lung adenocarcinoma, two metastatic melanomas, and one metastatic non-small-cell lung cancer. Pathohistological verification of mucin in two of these five cases suggested this peak likely represents N-acetyl glycoproteins, indicative of mucin expression in cancer cells. Conclusions: The identification of a prominent peak at 2.0 ppm could be a valuable diagnostic marker for distinguishing single ring-enhancing lesions, potentially associated with mucin-expressing metastases, offering a new avenue for diagnostic specificity in challenging cases. Full article
(This article belongs to the Section Oncology)
Show Figures

Figure 1

11 pages, 2882 KiB  
Article
Test–Retest Reproducibility of Reduced-Field-of-View Density-Weighted CRT MRSI at 3T
by Nicholas Farley, Antonia Susnjar, Mark Chiew and Uzay E. Emir
Tomography 2024, 10(4), 493-503; https://doi.org/10.3390/tomography10040038 - 29 Mar 2024
Viewed by 1188
Abstract
Quantifying an imaging modality’s ability to reproduce results is important for establishing its utility. In magnetic resonance spectroscopic imaging (MRSI), new acquisition protocols are regularly introduced which improve upon their precursors with respect to signal-to-noise ratio (SNR), total acquisition duration, and nominal voxel [...] Read more.
Quantifying an imaging modality’s ability to reproduce results is important for establishing its utility. In magnetic resonance spectroscopic imaging (MRSI), new acquisition protocols are regularly introduced which improve upon their precursors with respect to signal-to-noise ratio (SNR), total acquisition duration, and nominal voxel resolution. This study has quantified the within-subject and between-subject reproducibility of one such new protocol (reduced-field-of-view density-weighted concentric ring trajectory (rFOV-DW-CRT) MRSI) by calculating the coefficient of variance of data acquired from a test–retest experiment. The posterior cingulate cortex (PCC) and the right superior corona radiata (SCR) were selected as the regions of interest (ROIs) for grey matter (GM) and white matter (WM), respectively. CVs for between-subject and within-subject were consistently around or below 15% for Glx, tCho, and Myo-Ins, and below 5% for tNAA and tCr. Full article
(This article belongs to the Section Brain Imaging)
Show Figures

Figure 1

14 pages, 2842 KiB  
Article
Enhancing Whole-Brain Magnetic Field Homogeneity for 3D-Magnetic Resonance Spectroscopic Imaging with a Novel Unified Coil: A Preliminary Study
by Archana Vadiraj Malagi, Xinqi Li, Na Zhang, Yucen Liu, Yuheng Huang, Fardad Michael Serry, Ziyang Long, Chia-Chi Yang, Yujie Shan, Yubin Cai, Jeremy Zepeda, Nader Binesh, Debiao Li, Hsin-Jung Yang and Hui Han
Cancers 2024, 16(6), 1233; https://doi.org/10.3390/cancers16061233 - 21 Mar 2024
Cited by 1 | Viewed by 2015
Abstract
The spectral quality of magnetic resonance spectroscopic imaging (MRSI) can be affected by strong magnetic field inhomogeneities, posing a challenge for 3D-MRSI’s widespread clinical use with standard scanner-equipped 2nd-order shim coils. To overcome this, we designed an empirical unified shim–RF head coil (32-ch [...] Read more.
The spectral quality of magnetic resonance spectroscopic imaging (MRSI) can be affected by strong magnetic field inhomogeneities, posing a challenge for 3D-MRSI’s widespread clinical use with standard scanner-equipped 2nd-order shim coils. To overcome this, we designed an empirical unified shim–RF head coil (32-ch RF receive and 51-ch shim) for 3D-MRSI improvement. We compared its shimming performance and 3D-MRSI brain coverages against the standard scanner shim (2nd-order spherical harmonic (SH) shim coils) and integrated parallel reception, excitation, and shimming (iPRES) 32-ch AC/DC head coil. We also simulated a theoretical 3rd-, 4th-, and 5th-order SH shim as a benchmark to assess the UNIfied shim–RF coil (UNIC) improvements. In this preliminary study, the whole-brain coverage was simulated by using B0 field maps of twenty-four healthy human subjects (n = 24). Our results demonstrated that UNIC substantially improves brain field homogeneity, reducing whole-brain frequency standard deviations by 27% compared to the standard 2nd-order scanner shim and 17% compared to the iPRES shim. Moreover, UNIC enhances whole-brain coverage of 3D-MRSI by up to 34% compared to the standard 2nd-order scanner shim and up to 13% compared to the iPRES shim. UNIC markedly increases coverage in the prefrontal cortex by 147% and 47% and in the medial temporal lobe and temporal pole by 29% and 13%, respectively, at voxel resolutions of 1.4 cc and 0.09 cc for 3D-MRSI. Furthermore, UNIC effectively reduces variations in shim quality and brain coverage among different subjects compared to scanner shim and iPRES shim. Anticipated advancements in higher-order shimming (beyond 6th order) are expected via optimized designs using dimensionality reduction methods. Full article
(This article belongs to the Special Issue Advanced Imaging in Brain Tumor Patient Management)
Show Figures

Figure 1

16 pages, 5375 KiB  
Article
The Utility of Spectroscopic MRI in Stereotactic Biopsy and Radiotherapy Guidance in Newly Diagnosed Glioblastoma
by Abinand C. Rejimon, Karthik K. Ramesh, Anuradha G. Trivedi, Vicki Huang, Eduard Schreibmann, Brent D. Weinberg, Lawrence R. Kleinberg, Hui-Kuo G. Shu, Hyunsuk Shim and Jeffrey J. Olson
Tomography 2024, 10(3), 428-443; https://doi.org/10.3390/tomography10030033 - 20 Mar 2024
Cited by 4 | Viewed by 2820
Abstract
Current diagnostic and therapeutic approaches for gliomas have limitations hindering survival outcomes. We propose spectroscopic magnetic resonance imaging as an adjunct to standard MRI to bridge these gaps. Spectroscopic MRI is a volumetric MRI technique capable of identifying tumor infiltration based on its [...] Read more.
Current diagnostic and therapeutic approaches for gliomas have limitations hindering survival outcomes. We propose spectroscopic magnetic resonance imaging as an adjunct to standard MRI to bridge these gaps. Spectroscopic MRI is a volumetric MRI technique capable of identifying tumor infiltration based on its elevated choline (Cho) and decreased N-acetylaspartate (NAA). We present the clinical translatability of spectroscopic imaging with a Cho/NAA ≥ 5x threshold for delineating a biopsy target in a patient diagnosed with non-enhancing glioma. Then, we describe the relationship between the undertreated tumor detected with metabolite imaging and overall survival (OS) from a pilot study of newly diagnosed GBM patients treated with belinostat and chemoradiation. Each cohort (control and belinostat) were split into subgroups using the median difference between pre-radiotherapy Cho/NAA ≥ 2x and the treated T1-weighted contrast-enhanced (T1w-CE) volume. We used the Kaplan–Meier estimator to calculate median OS for each subgroup. The median OS was 14.4 months when the difference between Cho/NAA ≥ 2x and T1w-CE volumes was higher than the median compared with 34.3 months when this difference was lower than the median. The T1w-CE volumes were similar in both subgroups. We find that patients who had lower volumes of undertreated tumors detected via spectroscopy had better survival outcomes. Full article
(This article belongs to the Special Issue Progress in the Use of Advanced Imaging for Radiation Oncology)
Show Figures

Figure 1

15 pages, 3037 KiB  
Article
A Comparison of 7 Tesla MR Spectroscopic Imaging and 3 Tesla MR Fingerprinting for Tumor Localization in Glioma Patients
by Philipp Lazen, Pedro Lima Cardoso, Sukrit Sharma, Cornelius Cadrien, Thomas Roetzer-Pejrimovsky, Julia Furtner, Bernhard Strasser, Lukas Hingerl, Alexandra Lipka, Matthias Preusser, Wolfgang Marik, Wolfgang Bogner, Georg Widhalm, Karl Rössler, Siegfried Trattnig and Gilbert Hangel
Cancers 2024, 16(5), 943; https://doi.org/10.3390/cancers16050943 - 26 Feb 2024
Cited by 1 | Viewed by 1945
Abstract
This paper investigated the correlation between magnetic resonance spectroscopic imaging (MRSI) and magnetic resonance fingerprinting (MRF) in glioma patients by comparing neuro-oncological markers obtained from MRSI to T1/T2 maps from MRF. Data from 12 consenting patients with gliomas were analyzed by defining hotspots [...] Read more.
This paper investigated the correlation between magnetic resonance spectroscopic imaging (MRSI) and magnetic resonance fingerprinting (MRF) in glioma patients by comparing neuro-oncological markers obtained from MRSI to T1/T2 maps from MRF. Data from 12 consenting patients with gliomas were analyzed by defining hotspots for T1, T2, and various metabolic ratios, and comparing them using Sørensen–Dice similarity coefficients (DSCs) and the distances between their centers of intensity (COIDs). The median DSCs between MRF and the tumor segmentation were 0.73 (T1) and 0.79 (T2). The DSCs between MRSI and MRF were the highest for Gln/tNAA (T1: 0.75, T2: 0.80, tumor: 0.78), followed by Gly/tNAA (T1: 0.57, T2: 0.62, tumor: 0.54) and tCho/tNAA (T1: 0.61, T2: 0.58, tumor: 0.45). The median values in the tumor hotspot were T1 = 1724 ms, T2 = 86 ms, Gln/tNAA = 0.61, Gly/tNAA = 0.28, Ins/tNAA = 1.15, and tCho/tNAA = 0.48, and, in the peritumoral region, were T1 = 1756 ms, T2 = 102 ms, Gln/tNAA = 0.38, Gly/tNAA = 0.20, Ins/tNAA = 1.06, and tCho/tNAA = 0.38, and, in the NAWM, were T1 = 950 ms, T2 = 43 ms, Gln/tNAA = 0.16, Gly/tNAA = 0.07, Ins/tNAA = 0.54, and tCho/tNAA = 0.20. The results of this study constitute the first comparison of 7T MRSI and 3T MRF, showing a good correspondence between these methods. Full article
(This article belongs to the Section Methods and Technologies Development)
Show Figures

Figure 1

21 pages, 4482 KiB  
Article
In Vitro MRS of Cells Treated with Trastuzumab at 1.5 Tesla
by Wiesław Guz, Rafal Podgórski, Zuzanna Bober, David Aebisher, Adrian Truszkiewicz, Marcin Olek, Agnieszka Machorowska Pieniążek, Aleksandra Kawczyk-Krupka and Dorota Bartusik-Aebisher
Int. J. Mol. Sci. 2024, 25(3), 1719; https://doi.org/10.3390/ijms25031719 - 31 Jan 2024
Cited by 1 | Viewed by 1874
Abstract
The aim of the study was to investigate the effect of Trastuzumab on the MCF-7 and CRL-2314 breast cancer cell lines. Additionally, an attempt was made to optimize magnetic resonance spectroscopy (MRS) for cell culture studies, with particular emphasis on the impact of [...] Read more.
The aim of the study was to investigate the effect of Trastuzumab on the MCF-7 and CRL-2314 breast cancer cell lines. Additionally, an attempt was made to optimize magnetic resonance spectroscopy (MRS) for cell culture studies, with particular emphasis on the impact of treatment with Trastuzumab. The research materials included MCF-7 and CRL-2314 breast cancer cell lines. The study examined the response of these cell lines to treatment with Trastuzumab. The clinical magnetic resonance imaging (MRI) system, OPTIMA MR360 manufactured by GEMS, with a magnetic field induction of 1.5 T, was used. Due to the nature of the tested objects, their size and shape, it was necessary to design and manufacture additional receiving coils. They were used to image the tested cell cultures and record the spectroscopic signal. The spectra obtained by MRS were confirmed by NMR using a 300 MHz NMR Fourier 300 with the TopSpin 3.1 system from Bruker. The designed receiving coils allowed for conducting experiments with the cell lines in a satisfactory manner. These tests would not be possible using factory-delivered coils due to their parameters and the size of the test objects, whose volume did not exceed 1 mL. MRS studies revealed an increase in the metabolite at 1.9 ppm, which indicates the induction of histone acetylation. Changes in histone acetylation play a very important role in both cell development and differentiation processes. The use of Trastuzumab therapy in breast cancer cells increases the levels of acetylated histones. MRS studies and spectra obtained from the 300 MHz NMR system are consistent with the specificity inherent in both systems. Full article
(This article belongs to the Special Issue 25th Anniversary of IJMS: Advances in Biochemistry)
Show Figures

Figure 1

13 pages, 3236 KiB  
Article
Brain Temperature as an Indicator of Cognitive Function in Traumatic Brain Injury Patients
by Maho Kitagawa, Kagari Abiko, Sulaiman Sheriff, Andrew A. Maudsley, Xinnan Li, Daisuke Sawamura, Sinyeob Ahn and Khin Khin Tha
Metabolites 2024, 14(1), 17; https://doi.org/10.3390/metabo14010017 - 27 Dec 2023
Cited by 1 | Viewed by 2650
Abstract
Whether brain temperature noninvasively extracted by magnetic resonance imaging has a role in identifying brain changes in the later phases of mild to moderate traumatic brain injury (TBI) is not known. This prospective study aimed to evaluate if TBI patients in subacute and [...] Read more.
Whether brain temperature noninvasively extracted by magnetic resonance imaging has a role in identifying brain changes in the later phases of mild to moderate traumatic brain injury (TBI) is not known. This prospective study aimed to evaluate if TBI patients in subacute and chronic phases had altered brain temperature measured by whole-brain magnetic resonance spectroscopic imaging (WB-MRSI) and if the measurable brain temperature had any relationship with cognitive function scores. WB-MRSI was performed on eight TBI patients and fifteen age- and sex-matched control subjects. Brain temperature (T) was extracted from the brain’s major metabolites and compared between the two groups. The T of the patients was tested for correlation with cognitive function test scores. The results showed significantly lower brain temperature in the TBI patients (p < 0.05). Brain temperature derived from N-acetylaspartate (TNAA) strongly correlated with the 2 s paced auditory serial addition test (PASAT-2s) score (p < 0.05). The observation of lower brain temperature in TBI patients may be due to decreased metabolic activity resulting from glucose and oxygen depletion. The correlation of brain temperature with PASAT-2s may imply that noninvasive brain temperature may become a noninvasive index reflecting cognitive performance. Full article
Show Figures

Graphical abstract

14 pages, 3305 KiB  
Article
MD Simulations to Calculate NMR Relaxation Parameters of Vanadium(IV) Complexes: A Promising Diagnostic Tool for Cancer and Alzheimer’s Disease
by Rodrigo Mancini Santos, Camila Assis Tavares, Taináh Martins Resende Santos, Hassan Rasouli and Teodorico Castro Ramalho
Pharmaceuticals 2023, 16(12), 1653; https://doi.org/10.3390/ph16121653 - 27 Nov 2023
Viewed by 3516
Abstract
Early phase diagnosis of human diseases has still been a challenge in the medicinal field, and one of the efficient non-invasive techniques that is vastly used for this purpose is magnetic resonance imaging (MRI). MRI is able to detect a wide range of [...] Read more.
Early phase diagnosis of human diseases has still been a challenge in the medicinal field, and one of the efficient non-invasive techniques that is vastly used for this purpose is magnetic resonance imaging (MRI). MRI is able to detect a wide range of diseases and conditions, including nervous system disorders and cancer, and uses the principles of NMR relaxation to generate detailed internal images of the body. For such investigation, different metal complexes have been studied as potential MRI contrast agents. With this in mind, this work aims to investigate two systems containing the vanadium complexes [VO(metf)2]·H2O (VC1) and [VO(bpy)2Cl]+ (VC2), being metformin and bipyridine ligands of the respective complexes, with the biological targets AMPK and ULK1. These biomolecules are involved in the progression of Alzheimer’s disease and triple-negative breast cancer, respectively, and may act as promising spectroscopic probes for detection of these diseases. To initially evaluate the behavior of the studied ligands within the aforementioned protein active sites and aqueous environment, four classical molecular dynamics (MD) simulations including VC1 + H2O (1), VC2 + H2O (2), VC1 + AMPK + H2O (3), and VC2 + ULK1 + H2O (4) were performed. From this, it was obtained that for both systems containing VCs and water only, the theoretical calculations implied a higher efficiency when compared with DOTAREM, a famous commercially available contrast agent for MRI. This result is maintained when evaluating the system containing VC1 + AMPK + H2O. Nevertheless, for the system VC2 + ULK1 + H2O, there was observed a decrease in the vanadium complex efficiency due to the presence of a relevant steric hindrance. Despite that, due to the nature of the interaction between VC2 and ULK1, and the nature of its ligands, the study gives an insight that some modifications on VC2 structure might improve its efficiency as an MRI probe. Full article
Show Figures

Figure 1

15 pages, 647 KiB  
Review
The Risk Factors and Screening Uptake for Prostate Cancer: A Scoping Review
by Seidu Mumuni, Claire O’Donnell and Owen Doody
Healthcare 2023, 11(20), 2780; https://doi.org/10.3390/healthcare11202780 - 20 Oct 2023
Cited by 11 | Viewed by 5924
Abstract
Objectives: The purpose of this scoping review was to identify the risk factors and screening uptake for prostate cancer. Design: Scoping review. Methods: Arksey and O’Malley’s framework guided this review; five databases (Cumulative Index to Nursing and Allied Health Literature (CINAHL), MEDLINE, PsycINFO, [...] Read more.
Objectives: The purpose of this scoping review was to identify the risk factors and screening uptake for prostate cancer. Design: Scoping review. Methods: Arksey and O’Malley’s framework guided this review; five databases (Cumulative Index to Nursing and Allied Health Literature (CINAHL), MEDLINE, PsycINFO, Academic Search Complete and Cochrane Library) and grey literature were searched. Screening was undertaken against predetermined inclusion criteria for articles published before July 2023 and written in English. This review is reported in line with PRISMA-Sc. Results: 10,899 database results were identified; 3676 papers were removed as duplicates and 7115 papers were excluded at title and abstract review. A total of 108 papers were full-text reviewed and 67 were included in the review. Grey literature searching yielded no results. Age, family history/genetics, hormones, race/ethnicity, exposure to hazards, geographical location and diet were identified as risk factors. Prostatic antigen test (PSA), digital rectal examination (DRE), transrectal ultrasound (TRUS), magnetic resonance imaging (MRI), magnetic resonance spectroscopic imaging (MRSI) and prostate biopsy were identified as screening/diagnostic methods. The evidence reviewed highlights moderate knowledge and screening uptake of prostate cancer with less than half of men reporting for PSA screening. On the other hand, there is a year-to-year increase in PSA and DRE screening, but factors such as poverty, religion, culture, communication barriers, language and costs affect men’s uptake of prostate cancer screening. Conclusion: As prostate cancer rates increase globally, there is a need for greater uptake of prostate cancer screening and improved health literacy among men and health workers. There is a need to develop a comprehensive prostate cancer awareness and screening programme that targets men and addresses uptake issues so as to provide safe, quality care. Strengths and limitations of this study: (1) A broad search strategy was utilised incorporating both databases and grey literature. (2) The PRISMA reporting guidelines were utilised. (3) Only English language papers were included, and this may have resulted in relevant articles being omitted. Full article
Show Figures

Figure 1

Back to TopTop