Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (77)

Search Parameters:
Keywords = magnetic fly ash

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 4574 KiB  
Article
Mössbauer Research and Magnetic Properties of Dispersed Microspheres from High-Calcium Fly Ash
by Elena V. Fomenko, Yuriy V. Knyazev, Galina V. Akimochkina, Sergey V. Semenov, Vladimir V. Yumashev, Leonid A. Solovyov, Natalia N. Anshits, Oleg A. Bayukov and Alexander G. Anshits
Magnetochemistry 2025, 11(9), 72; https://doi.org/10.3390/magnetochemistry11090072 (registering DOI) - 23 Aug 2025
Abstract
High-calcium fly ash (HCFA), produced from the lignite combustion, has emerged as a global concern due to its fine particle size and adverse environmental impacts. This study presents the characteristics of dispersed microspheres from HCFA obtained using modern techniques, such as XRD, SEM-EDS, [...] Read more.
High-calcium fly ash (HCFA), produced from the lignite combustion, has emerged as a global concern due to its fine particle size and adverse environmental impacts. This study presents the characteristics of dispersed microspheres from HCFA obtained using modern techniques, such as XRD, SEM-EDS, 57Fe Mössbauer spectroscopy, DSC-TG, particle size analysis, and magnetic measurements. It is found that an increase in microsphere size is likely due to the growth of the silicate glass-like phase, while the magnetic crystalline phase content remains stable. According to the 57Fe Mössbauer spectroscopy, there are two substituted Ca-based ferrites—CaFe2O4 and Ca2Fe2O5 with a quite different magnetic behavior. Besides, the magnetic ordering temperature of the brownmillerite (Ca2Fe2O5) phase increases with the average diameter of the microspheres. FORC analysis reveals enhanced magnetic interactions as microsphere size increases, indicating an elevation in the concentration of magnetic microparticles, primarily on the microsphere surface, as supported by electron microscopy data. The discovered the magnetic crystallographic phases distribution on the microsphere’s surface claims the accessibility for further enrichment of the magnetically active particles and the possible application of fly ashes as a cheap source for magnetic materials synthesis. Full article
17 pages, 1308 KiB  
Article
Dual-Functional AgNPs/Magnetic Coal Fly Ash Composite for Wastewater Disinfection and Azo Dye Removal
by Lei Gong, Jiaxin Li, Rui Jin, Menghao Li, Jiajie Peng and Jie Zhu
Molecules 2025, 30(15), 3155; https://doi.org/10.3390/molecules30153155 - 28 Jul 2025
Viewed by 376
Abstract
In this study, we report the development of a novel magnetized coal fly ash-supported nano-silver composite (AgNPs/MCFA) for dual-functional applications in wastewater treatment: the efficient degradation of methyl orange (MO) dye and broad-spectrum antibacterial activity. The composite was synthesized via a facile impregnation–reduction–sintering [...] Read more.
In this study, we report the development of a novel magnetized coal fly ash-supported nano-silver composite (AgNPs/MCFA) for dual-functional applications in wastewater treatment: the efficient degradation of methyl orange (MO) dye and broad-spectrum antibacterial activity. The composite was synthesized via a facile impregnation–reduction–sintering route, utilizing sodium citrate as both a reducing and stabilizing agent. The AgNPs/MCFA composite was systematically characterized through multiple analytical techniques, including Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), and vibrating sample magnetometry (VSM). The results confirmed the uniform dispersion of AgNPs (average size: 13.97 nm) on the MCFA matrix, where the formation of chemical bonds (Ag-O-Si) contributed to the enhanced stability of the material. Under optimized conditions (0.5 g·L−1 AgNO3, 250 °C sintering temperature, and 2 h sintering time), AgNPs/MCFA exhibited an exceptional catalytic performance, achieving 99.89% MO degradation within 15 min (pseudo-first-order rate constant ka = 0.3133 min−1) in the presence of NaBH4. The composite also demonstrated potent antibacterial efficacy against Escherichia coli (MIC = 0.5 mg·mL−1) and Staphylococcus aureus (MIC = 2 mg·mL−1), attributed to membrane disruption, intracellular content leakage, and reactive oxygen species generation. Remarkably, AgNPs/MCFA retained >90% catalytic and antibacterial efficiency after five reuse cycles, enabled by its magnetic recoverability. By repurposing industrial waste (coal fly ash) as a low-cost carrier, this work provides a sustainable strategy to mitigate nanoparticle aggregation and environmental risks while enhancing multifunctional performance in water remediation. Full article
Show Figures

Graphical abstract

24 pages, 3701 KiB  
Article
Multifunctional REE Selective Hybrid Membranes Based on Ion-Imprinted Polymers and Modified Multiwalled Carbon Nanotubes: A Physicochemical Characterization
by Aleksandra Rybak, Aurelia Rybak, Sławomir Boncel, Anna Kolanowska, Waldemar Kaszuwara, Mariusz Nyc, Rafał Molak, Jakub Jaroszewicz and Spas D. Kolev
Int. J. Mol. Sci. 2025, 26(15), 7136; https://doi.org/10.3390/ijms26157136 - 24 Jul 2025
Viewed by 367
Abstract
A novel type of multifunctional hybrid membranes combining modified chitosan, functionalized multi-walled carbon nanotubes (MWCNTs), and rare earth element ion-imprinted polymers (REEIIPs) were designed and characterized. The synthesized materials were characterized by thermogravimetric analysis (TGA), scanning electron microscopy (SEM), vibrating sample magnetometry (VSM), [...] Read more.
A novel type of multifunctional hybrid membranes combining modified chitosan, functionalized multi-walled carbon nanotubes (MWCNTs), and rare earth element ion-imprinted polymers (REEIIPs) were designed and characterized. The synthesized materials were characterized by thermogravimetric analysis (TGA), scanning electron microscopy (SEM), vibrating sample magnetometry (VSM), X-ray diffraction (XRD), X-ray micro-tomography, and Fourier transform infrared spectroscopy (FTIR). The hybrid membranes were also studied in terms of their mechanical and rheological properties. The key element of the proper preparation of hybrid membranes using the casting method in an external magnetic field was to synthesize membrane components with appropriate magnetic properties. It was found that they showed tunable weak ferromagnetic properties, and the increase in modified nanotube addition caused the rise in the membrane’s saturation magnetization, which for Nd-selective hybrid membranes reached 0.44 emu/g. Also, the increase in thermooxidative stability was noted after introducing functionalized nanotubes into polymer matrices, which, in the case of Gd-selective membranes, were stable even up to 730 °C. The rise in the modified MWCNT addition and selection of appropriate REE ion-imprinted polymers improved mechanical (Rm and E values increase even twice) and rheological parameters (almost double growth of E′ and E″ values) of the tested membranes. Synthesized hybrid membranes showed a high rejection of matrix components and an increase in retention ratio with rising MWCNT-REEIIP addition, ultimately reaching 94.35%, 92.12%, and 90.11% for Nd, Pr, and Gd, respectively. The performed analysis confirmed homogeneous dispersion, phase compatibility, network integration, formation of a complex 3D microstructure, and improved operational stability of created hybrid membranes, which is significant for their future applications in Nd, Pr, and Gd recovery from coal fly ash extracts. Full article
Show Figures

Graphical abstract

19 pages, 3711 KiB  
Article
Sustainable Strategy to Reduce Winter Energy Consumption: Incorporating PCM Aggregates and Rice Husk Ash–Fly Ash Matrix into Concrete
by Mingming Zhang, Shan Gao, Jin Xu, Lidong Wang, Mengyan Xu and Honghao Ying
Buildings 2025, 15(12), 2086; https://doi.org/10.3390/buildings15122086 - 17 Jun 2025
Viewed by 339
Abstract
This study improved the thermal damping of concrete with rice husk ash (RHA)–fly ash (FA) matrix and three phase-change material (PCM) aggregates with phase change temperatures between −15 and 5 °C, which are expected to reduce winter energy consumption in cold regions when [...] Read more.
This study improved the thermal damping of concrete with rice husk ash (RHA)–fly ash (FA) matrix and three phase-change material (PCM) aggregates with phase change temperatures between −15 and 5 °C, which are expected to reduce winter energy consumption in cold regions when used as building envelope structures. Firstly, the strength of concrete was studied. Secondly, the dynamic and transient thermal response of concrete was evaluated through thermal conductivity and thermal diffusivity. Based on nuclear magnetic resonance experiments, the changes in the pore volume and fractal dimension of RHA–FA matrix and PCM aggregate added to concrete were studied. Through correlation analysis, a macroscopic performance prediction model based on pore characteristics was obtained. The results indicated that the incorporation of PCM aggregate reduced concrete strength, while an appropriate RHA–FA matrix contributed to enhancing concrete strength. Both the PCM aggregate and RHA–FA matrix were beneficial for improving the thermal damping properties of concrete. For 15% RHA–30% FA 100% PCM concrete, the thermal conductivity can be reduced by 53%, the thermal diffusivity can be reduced by 64%, the limiting temperature decreased by 5.5 °C, and the thermal damping coefficient increased by 48%. The nuclear magnetic resonance test results showed that PCM aggregate increased the pore volume and decreased the fractal dimension, while an appropriate RHA–FA matrix helped to reduce the pore volume. The macroscopic properties of RHA–FA–PCM aggregate concrete were highly correlated with the capillary pore volume and fractal dimension. A two-parameter prediction model based on pore characteristics can effectively predict the macroscopic properties of concrete. Full article
(This article belongs to the Section Building Materials, and Repair & Renovation)
Show Figures

Figure 1

23 pages, 35270 KiB  
Article
Dispersed PM10 Microspheres from Coal Fly Ash: Fine Fraction Separation, Characterisation, and Glass–Ceramic Preparation
by Elena V. Fomenko, Galina V. Akimochkina and Natalia N. Anshits
Molecules 2025, 30(12), 2600; https://doi.org/10.3390/molecules30122600 - 15 Jun 2025
Viewed by 504
Abstract
Developing resource-efficient technologies for producing ceramic materials with specific properties and performance characteristics is one of the most important tasks in modern materials science. As natural resources face depletion, the use of anthropogenic wastes, including fly ash from coal combustion, for the development [...] Read more.
Developing resource-efficient technologies for producing ceramic materials with specific properties and performance characteristics is one of the most important tasks in modern materials science. As natural resources face depletion, the use of anthropogenic wastes, including fly ash from coal combustion, for the development of new compositions and the production of ceramics with an improved microstructure is of particular significance. The use of PM10 fly ash microspheres in ceramic production will help to reduce particulate matter emissions. In this study, fine narrow fractions of PM10 microspheres were successfully separated from coal fly ash using aerodynamic and magnetic separation. Glass–ceramic materials with a homogeneous microstructure, an open porosity of 0.4–37%, a compressive strength of 5–159 MPa, and acid resistance of up to 99.9% were obtained using narrow fractions. The materials obtained are promising for application as highly porous ceramics, effective microfiltration membranes, and fine-structured technical ceramics, which can be used in installations operating in aggressive media and/or at high temperatures. The ceramic membranes were characterised by high liquid permeability values up to 1194 L·m−2·h−1·bar−1. Filtration tests showed that the retention coefficient for dispersed microsilica particles with dav = 1.9 μm is 0.99. Full article
Show Figures

Figure 1

22 pages, 5676 KiB  
Article
Research on Rheological Behavior and Strength Characteristics of Cement-Based Grouting Materials
by Xuewei Liu, Hao Qu, Bin Liu, Yuan Zhou, Jinlan Li, Wei Deng and Weilong Tao
Buildings 2025, 15(11), 1796; https://doi.org/10.3390/buildings15111796 - 23 May 2025
Viewed by 468
Abstract
The mechanical properties of grouting materials and their cured grouts significantly impact the reinforcement effectiveness in deep coal mine roadways. This study employed shear rheology tests of slurry, structural tests, NMR (nuclear magnetic resonance), and uniaxial compression tests to comparatively analyze the mechanical [...] Read more.
The mechanical properties of grouting materials and their cured grouts significantly impact the reinforcement effectiveness in deep coal mine roadways. This study employed shear rheology tests of slurry, structural tests, NMR (nuclear magnetic resonance), and uniaxial compression tests to comparatively analyze the mechanical characteristics of a composite cement-based grouting material (HGC), ordinary Portland cement (OPC), and sulfated aluminum cement (SAC) slurry and their cured grouts. The HGC (High-performance Grouting Composite) slurry is formulated with 15.75% sulfated aluminum cement (SAC), 54.25% ordinary Portland cement (OPC), 10% fly ash, and 20% mineral powder, achieving a water/cement ratio of 0.26. The results indicate that HGC slurry more closely follows power-law flow characteristics, while OPC and SAC slurries fit better with the Bingham model. The structural recovery time for HGC slurry after high-strain disturbances is 52 s, significantly lower than the 312 s for OPC and 121 s for SAC, indicating that HGC can quickly produce hydration products that re-bond the flocculated structure. NMR T2 spectra show that HGC cured grouts have the lowest porosity, predominantly featuring inter-nanopores, whereas OPC and SAC have more super-nanopores. Uniaxial compression tests show that the uniaxial compressive strength of HGC, SAC, and OPC samples at various curing ages gradually decreases. Compared to traditional cementitious materials, HGC exhibits a rapid increase in uniaxial compressive strength within the first seven days, with an increase rate of approximately 77.97%. Finally, the relationship between micropore distribution and strength is analyzed, and the micro-mechanisms underlying the strength differences of different grouting materials are discussed. This study aids in developing a comparative analysis system of mechanical properties for deep surrounding rock grouting materials, providing a reference for selecting grouting materials for various engineering fractured rock masses. Full article
(This article belongs to the Special Issue Trends and Prospects in Cementitious Material)
Show Figures

Figure 1

16 pages, 6566 KiB  
Article
Study on the Properties of Alkali-Excited Concrete Modified by Nano-SiO2 Based on Response Surface Methodology
by Qiao Sun, Xin Wei, Renjie Cai and Dongwei Li
Materials 2025, 18(10), 2292; https://doi.org/10.3390/ma18102292 - 15 May 2025
Cited by 1 | Viewed by 477
Abstract
To enhance the mechanical properties and low-carbon characteristics of industrial solid waste concrete, this paper proposes a synergistic modification strategy using nano-SiO2 and sodium silicate. The nano-SiO2 sol and sodium silicate activator were prepared using magnetic heating and stirring technology, and [...] Read more.
To enhance the mechanical properties and low-carbon characteristics of industrial solid waste concrete, this paper proposes a synergistic modification strategy using nano-SiO2 and sodium silicate. The nano-SiO2 sol and sodium silicate activator were prepared using magnetic heating and stirring technology, and a quadratic regression model (R2 = 0.9575, p < 0.0001) for compressive strength with three factors and three levels was established using the response surface method (RSM-CCD). The modification mechanism was verified through optimization of the mix ratio using a desirability function, along with microscopic characterization via SEM and XRD. The results indicate the following: (1) the content of nano-SiO2 (2.4%) contributed the most to the compressive strength of the concrete, and its interaction with sodium silicate (2.1%) significantly promoted the formation of C-S-H gel; (2) the optimized fly ash substitution rate (21.7%) can achieve a 28-day compressive strength of 34.8 MPa, with the model prediction error controlled within 5%; (3) microscopic analysis showed that the synergistic effect of multiple components lowered the volume porosity of the cementitious phase, forming a densified network structure. The multi-factor synergistic optimization approach for nano-SiO2-modified alkali-activated concrete (NS-AAC) proposed in this study offers a reference for multi-objective mix design optimization of industrial waste-based concrete. Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Figure 1

18 pages, 14183 KiB  
Article
Integrated Utilization Strategies for Red Mud: Iron Extraction, Sintered Brick Production, and Non-Calcined Cementitious Binder Development for Environmental Sustainability
by Bin Li, Fang Xu, Yan Ding, Fei Zheng and Junpeng Zou
Coatings 2025, 15(5), 522; https://doi.org/10.3390/coatings15050522 - 27 Apr 2025
Viewed by 559
Abstract
Red mud (RM), a highly alkaline waste from alumina production, poses severe environmental threats due to massive stockpiling (>350 million tons in China) and groundwater contamination. This study evaluates three scalable strategies to repurpose RM: iron recovery via magnetic separation, sintered brick production [...] Read more.
Red mud (RM), a highly alkaline waste from alumina production, poses severe environmental threats due to massive stockpiling (>350 million tons in China) and groundwater contamination. This study evaluates three scalable strategies to repurpose RM: iron recovery via magnetic separation, sintered brick production using RM–fly ash–granulated blast furnace slag (6:1:3 ratio), and non-calcined cementitious binders combining RM and phosphogypsum (PG). Industrial-scale iron extraction achieved 23.85% recovery of iron concentrate (58% Fe2O3 grade) and consumed 3.6 million tons/year of RM, generating CNY 31 million annual profit. Sintered bricks exhibited 10–15 MPa compressive strength, meeting ASTM C62-23 standard while reducing material costs by 30%. The RM–PG binder achieved 40 MPa compressive strength at 28 days without cement or calcination, leveraging RM’s alkalinity (21.95% Na2O) and PG’s sulfate activation. Collectively, these approaches reduced landfill reliance by 50% and CO2 emissions by 35%–40% compared to conventional practices. The results demonstrate RM’s potential as a secondary resource, offering economically viable and environmentally sustainable pathways for the alumina industry. Full article
Show Figures

Figure 1

19 pages, 15634 KiB  
Article
Environmental Profile Assessment in a Highly Industrialized Area Through Magnetic Susceptibility Spatial Variations and Morphological Study of Magnetic Particles: The Case of Sarigiol Basin (Greece)
by Chrysoula Chrysakopoulou, Elina Aidona, Dimitrios Vogiatzis, Alexandros Drakoulis, Lambrini Papadopoulou and Nikolaos Kantiranis
Pollutants 2025, 5(1), 4; https://doi.org/10.3390/pollutants5010004 - 17 Feb 2025
Cited by 1 | Viewed by 1472
Abstract
Two sets of sediment samples were collected from the Sarigiol basin, Greece, aiming to evaluate the environmental consequences of the industrial activity in the area by assessing their magnetic properties with the magnetic susceptibility method. Chemical composition and morphological characteristics of magnetic particles [...] Read more.
Two sets of sediment samples were collected from the Sarigiol basin, Greece, aiming to evaluate the environmental consequences of the industrial activity in the area by assessing their magnetic properties with the magnetic susceptibility method. Chemical composition and morphological characteristics of magnetic particles were defined by EDX analysis and scanning electron microscopy, respectively. Based on the results, most of the study area shows positive values of the difference between XLF values of the samples, indicating the influence of fly ash dispersion from Agios Dimitrios and Kardia power plants and the conveyor belt, down to a depth of 50 cm. Negative values in the NE, W and S parts of the study area are attributed to ophiolite complexes. Anthropogenic and lithogenic magnetic particles were identified at a 50 cm depth, in the form of spheres and octahedrons, respectively. Fe is the dominant element while Al, Si, Mg and Ca were found in minor amounts. Cr increases with depth, pointing mainly to a lithogenic source, while Ti decreases, suggesting a relationship with the dispersed fly ash particles. Mn and Zn were found in limited magnetic spheres. These findings highlight the need for effective environmental management strategies and are valuable keys for soil pollution control. Full article
(This article belongs to the Section Soil Pollution)
Show Figures

Figure 1

19 pages, 9170 KiB  
Article
Experiment and Analytical Model for Pore Structure of Early-Age Composite Cement Pastes by LF-NMR
by Jincheng Wu, Guo Yang, Bin Hong and Xiaolin Liu
Appl. Sci. 2025, 15(3), 1650; https://doi.org/10.3390/app15031650 - 6 Feb 2025
Viewed by 955
Abstract
This study investigated mineral admixtures that are often utilized as replacements for cement in high-performance concrete with a view to enhancing their durability and workability. The properties of concrete are closely related to the structure of its pores. This research employed low-field nuclear [...] Read more.
This study investigated mineral admixtures that are often utilized as replacements for cement in high-performance concrete with a view to enhancing their durability and workability. The properties of concrete are closely related to the structure of its pores. This research employed low-field nuclear magnetic resonance technology to explore the influence of water-to-cement ratio, curing time, and mineral admixture content on the pore structure of early-age cement pastes. The findings indicated that the pore size distribution curves of all composite cement pastes display a distinct bimodal nature. The size of gel pores increases with a higher water-to-cement ratio, but decreases as the curing period extends. Fly ash, slag, and silica fume improve the pore structure at 14 days, 7 days, and 3 days, respectively. The addition of admixtures has little effect on the most probable pore diameter, but raises the proportion of gel pores with increasing content. In order to better fit the experimental data, a bimodal model integrating Shimomura and Maekawa’s model with the Weibull distribution function was introduced to describe the pore structure of cement pastes with or without fly ash, slag, and silica fume. Full article
(This article belongs to the Special Issue Sustainable Asphalt Pavement Technologies)
Show Figures

Figure 1

27 pages, 11136 KiB  
Article
Dry Magnetic Separation and the Leaching Behaviour of Aluminium, Iron, Titanium, and Selected Rare Earth Elements (REEs) from Coal Fly Ash
by Amanda Qinisile Vilakazi, Alan Shemi and Sehliselo Ndlovu
Minerals 2025, 15(2), 119; https://doi.org/10.3390/min15020119 - 25 Jan 2025
Viewed by 1478
Abstract
Coal fly ash (CFA) is a commercially viable source of alumina comparable to traditional bauxite deposits. Due to its high silica content and alumina in the refractory mullite phase, the most suitable processing technique is the sinter-H2SO4 leach process. However, [...] Read more.
Coal fly ash (CFA) is a commercially viable source of alumina comparable to traditional bauxite deposits. Due to its high silica content and alumina in the refractory mullite phase, the most suitable processing technique is the sinter-H2SO4 leach process. However, this process is energy-intensive, has low selectivity for Al, and generates a secondary solid waste residue. To develop a sustainable process that is economically attractive, Al can be extracted with REEs, Ti, and Fe as saleable products, while secondary solid waste is regenerated for further applications to achieve high-value and high-volume utilisation of CFA. This study focused on the potential extraction of selected REEs (Ce, La, Nd, Y, and Sc), Al, Ti, and Fe, using dry magnetic separation and the sinter-H2SO4 leach process. XRD analysis showed that CFA is predominantly amorphous with crystalline mullite, quartz, and magnetite/hematite. Further analysis using SEM-EDS and TIMA showed Al-Si-rich grains as the predominant phase, with discrete REE-bearing grains (phosphates and silicates) and Fe-oxide (magnetite/hematite) grains. Traces of REEs, Ti, Ca, Si, and Fe were also found in the Al-Si-rich grains. Discrete Fe-oxide was recovered using dry magnetic separation, and up to 65.9% Fe was recovered at 1.05 T as the magnetic fraction (MF). The non-magnetic fraction (non-MF) containing quartz, mullite, and amorphous phase was further processed for preliminary leaching studies. The leaching behaviour of Al, Ti, Fe, and the selected REEs was investigated using the direct H2SO4 and sinter-H2SO4 leaching processes. The maximum extraction efficiency was observed using the sinter-H2SO4 leach process at 6 M H2SO4, a 1:5 solid-to-liquid ratio, 70 °C, and a residence time of 10 h, yielding 77.9% Al, 62.1% Fe, 52.3% Ti, and 56.7% Sc extractions. The extraction efficiencies for Ce, La, Nd, and Y were relatively lower at 23.2%, 27.6%, 11.3%, and 11.2%, respectively. Overall, the results demonstrate that the extraction of REEs using the sinter-H2SO4 leach process is strongly influenced by the complex CFA phase composition and the possible formation of insoluble calcium sulphates. Appreciable extraction of Al, Fe, Ti, and Sc was also observed, suggesting a potential two-step leaching process for the extraction of REEs as a feasible option for the industrial recovery of multiple saleable products. Full article
(This article belongs to the Special Issue Recycling of Mining and Solid Wastes)
Show Figures

Figure 1

27 pages, 22816 KiB  
Article
Aqueous Carbonation of Waste Incineration Residues: Comparing BA, FA, and APCr Across Production Scenarios
by Quentin Wehrung, Davide Bernasconi, Enrico Destefanis, Caterina Caviglia, Nadia Curetti, Sara Di Felice, Erica Bicchi, Alessandro Pavese and Linda Pastero
Minerals 2024, 14(12), 1269; https://doi.org/10.3390/min14121269 - 13 Dec 2024
Cited by 1 | Viewed by 2309
Abstract
This study investigates the reactivity of municipal solid waste incineration residues to aqueous carbonation, focusing on CO2 absorption rates, uptakes, and heavy metal (HM) leachability. Various combinations of boiler, electrofilter, and bag filter residues were assessed under typical incineration conditions. Bag filter [...] Read more.
This study investigates the reactivity of municipal solid waste incineration residues to aqueous carbonation, focusing on CO2 absorption rates, uptakes, and heavy metal (HM) leachability. Various combinations of boiler, electrofilter, and bag filter residues were assessed under typical incineration conditions. Bag filter residues from lime-sorbent plants exhibited the highest CO2 uptake (244.5 gCO2/kg), while bottom ash (BA) fine fraction, boiler/electrofilter fly ash (FA), and other mixed air pollution control residue (APCr) demonstrated uptakes of 101, 0, 93, and 167 gCO2/kg, respectively. Carbonation kinetics revealed that high calcium content FA and APCr, followed similar CO2 absorption trends. Notably, BA carbonation was predominantly driven by Ca-aluminates rather than lime. Carbonation reduces leaching of Al, As, Cd, Co, Cu, Ni, Pb and Zn compared to water washing, though significant concerns arise with anions such as Sb and Cr. In BA, critical behaviours of Cr, Mn, and Fe were observed, with Cr leaching likely controlled by Fe-Mn-Cr oxide particle dissolution. These findings highlight the potential of integrating enhanced metal recovery (EMR) through density or magnetic separation in BA prior to carbonation to reduce HM leaching and recycle critical metals (Ag, Cu, Cr, Ni, Mn, etc). Full article
(This article belongs to the Special Issue CO2 Mineralization and Utilization)
Show Figures

Figure 1

13 pages, 2876 KiB  
Article
Influence of Fly Ash Content on Macroscopic Properties and Microstructure of High-Performance Concrete
by Mengxin Kang, Yabo Jia, Peng Guo, Yanzhong Ju and Hongji Zhang
Buildings 2024, 14(12), 3844; https://doi.org/10.3390/buildings14123844 - 30 Nov 2024
Cited by 2 | Viewed by 1011
Abstract
To investigate the influence of the fly ash (FA) content on the performance of high-performance concrete (HPC), seven groups of tests were conducted, aiming to evaluate both the macroscopic properties (workability and compressive strength) and microscopic pore structure. Low-field nuclear magnetic resonance (NMR) [...] Read more.
To investigate the influence of the fly ash (FA) content on the performance of high-performance concrete (HPC), seven groups of tests were conducted, aiming to evaluate both the macroscopic properties (workability and compressive strength) and microscopic pore structure. Low-field nuclear magnetic resonance (NMR) technology and SEM images were employed to analyze the changes in the internal pore structure of the concrete. The results showed that the workability of HPC initially increased and then decreased with the increase in the FA content. When the FA content was 15%, the slump of HPC reached a maximum of 264 mm, and the 28-day compressive strength exhibited a 23.2% increase compared to the 7-day compressive strength. The pore size distribution of the concrete varied with different fly ash content. At 15% FA content, secondary hydration of the FA was sufficient, refining the pores to between 0 and 0.1 µm. Excessive FA substitution deteriorated the internal structure of the HPC matrix and reduced the workability and mechanical properties of the HPC. When the content of FA was 35%, the slump of HPC decreased to 176 mm, while the macropores within the matrix significantly increased, resulting in porosity of 6.81%. Full article
(This article belongs to the Special Issue Sustainable and Low-Carbon Building Materials and Structures)
Show Figures

Figure 1

20 pages, 11422 KiB  
Article
Modified Fly Ash as an Adsorbent for the Removal of Pharmaceutical Residues from Water
by Marija Vukčević, Dušan Trajković, Marina Maletić, Miljana Mirković, Aleksandra Perić Grujić and Dragana Živojinović
Separations 2024, 11(12), 337; https://doi.org/10.3390/separations11120337 - 26 Nov 2024
Cited by 1 | Viewed by 1601
Abstract
In this work, different methods for fly ash modification were applied to obtain an adsorbent for the efficient removal of selected pharmaceuticals from a multiclass aqueous solution. Morphological and surface properties of the modified fly ash samples were analyzed by scanning electron microscopy, [...] Read more.
In this work, different methods for fly ash modification were applied to obtain an adsorbent for the efficient removal of selected pharmaceuticals from a multiclass aqueous solution. Morphological and surface properties of the modified fly ash samples were analyzed by scanning electron microscopy, X-ray fluorescence, X-ray diffraction, Fourier transform infrared spectroscopy, and point of zero charge, and the influence of the applied modifications was determined by comparison with the results obtained for unmodified fly ash. Experimental parameters of the adsorption of the pharmaceutical onto the modified fly ash were optimized, and special attention was paid to the influence of different parameters on the adsorption capacities. Multivariate methods of analysis, such as artificial neural networks, applied to the obtained results showed that the contact time, the initial concentration of the pharmaceutical solution, and the pH value had the strongest influence on the adsorption process. Fly ash modified with chitosan and magnetic iron oxide showed the best adsorption properties (removal efficiency above 80% for the majority of the selected pharmaceuticals), and artificial neural networks confirmed its susceptibility to the modeling process. Full article
(This article belongs to the Special Issue Materials from Biomass and Waste for Adsorption Applications)
Show Figures

Figure 1

13 pages, 3871 KiB  
Article
The Influence of Particle Size and Calcium Content on Performance Characteristics of Metakaolin- and Fly-Ash-Based Geopolymer Gels
by Yefan Li, Yanhui Dong, Mohamed R. El-Naggar, Fucheng Wang and Yixin Zhao
Gels 2024, 10(10), 639; https://doi.org/10.3390/gels10100639 - 7 Oct 2024
Cited by 12 | Viewed by 2472
Abstract
This research systematically investigates the influence of raw material particle size and calcium content on the geopolymerization process to gain insight into the physical and mechanical properties of geopolymer gels, including setting time, fluidity, pore structure, compressive strength, and leaching characteristics of encapsulated [...] Read more.
This research systematically investigates the influence of raw material particle size and calcium content on the geopolymerization process to gain insight into the physical and mechanical properties of geopolymer gels, including setting time, fluidity, pore structure, compressive strength, and leaching characteristics of encapsulated Cr3+ heavy metal ions. Utilizing a diverse range of particle sizes of metakaolin (MK; 3.75, 7.5, and 12 µm) and fly ash (FA; 18, 45, and 75 µm), along with varied calcium levels, this study assesses the dual impact of these factors on the final properties of both metakaolin- and fly-ash-based geopolymers. Employing sophisticated analytical techniques such as Scanning Electron Microscopy (SEM), Fourier Transform Infrared Spectroscopy (FTIR), and Nuclear Magnetic Resonance (NMR), the research meticulously documents alterations in chemical bonding, micro-morphology, and pore structures. Key findings reveal that reducing the size of MK and FA particles to 3.75 and 18 µm, respectively, enhances the compressive strength of their matrices by 128.37 and 297.58%, respectively, compared to their original values (63.59 and 33.87 MPa, respectively) at larger particle sizes. While smaller particle sizes significantly bolster compressive strength, they adversely affect slurry flow and reduce the leaching rates of Cr3+ from MK- and FA-based matrices, reaching 0.42 and 0.75 mg/L at 3.75 and 18 µm, respectively. Conversely, increased calcium content markedly enhances setting times and contributes to the formation of dense microstructures through the production of calcium aluminate silicate hydrate (C-A-S-H) gels, thus improving the overall curing performance and durability of the materials. These insights underline the importance of fine-tuning particle size and calcium content to optimize geopolymer formulations, offering substantial benefits for varied engineering applications and promoting more sustainable construction practices. Full article
(This article belongs to the Special Issue Physical and Mechanical Properties of Polymer Gels (2nd Edition))
Show Figures

Figure 1

Back to TopTop