Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (37)

Search Parameters:
Keywords = magnetic flux symmetry

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 10495 KiB  
Article
Revisiting Mn4Al11: Growth of Stoichiometric Single Crystals and Their Structural and Magnetic Properties
by Roman A. Khalaniya, Andrei V. Mironov, Alexander N. Samarin, Alexey V. Bogach, Aleksandr N. Kulchu and Andrei V. Shevelkov
Crystals 2025, 15(8), 714; https://doi.org/10.3390/cryst15080714 - 4 Aug 2025
Viewed by 136
Abstract
Stoichiometric single crystals of Mn4Al11 were synthesized from the elements using Sn as a flux. The crystal structure of Mn4Al11 was investigated using single crystal X-ray diffraction and showed a complex triclinic structure with a relatively small [...] Read more.
Stoichiometric single crystals of Mn4Al11 were synthesized from the elements using Sn as a flux. The crystal structure of Mn4Al11 was investigated using single crystal X-ray diffraction and showed a complex triclinic structure with a relatively small unit cell and interpenetrating networks of Mn and Al atoms. While our results generally agree with the previously reported data in the basic structure features such as triclinic symmetry and structure type, the atomic parameters differ significantly, likely due to different synthetic techniques producing off-stoichiometry or doped crystals used in the previous works. Our structural analysis showed that the view of the Mn substructure as isolated zigzag chains is incomplete. Instead, the Mn chains are coupled in corrugated layers by long Mn-Mn bonds. The high quality of the crystals with the stoichiometric composition also enabled us to study magnetic behavior in great detail and reveal previously unobserved magnetic ordering. Our magnetization measurements showed that Mn4Al11 is an antiferromagnet with TN of 65 K. The presence of the maximum above TN also suggests strong local interactions indicative of low-dimensional magnetic behavior, which likely stems from lowered dimensionality of the Mn substructure. Full article
(This article belongs to the Section Crystalline Metals and Alloys)
Show Figures

Figure 1

19 pages, 5041 KiB  
Article
General Principles of Combinations of Stator Poles and Rotor Teeth for Conventional Flux-Switching Brushless Machines with Prime Phase Numbers
by Chuhan Gao, Xinran Jia, Guishu Zhao, Wei Hua and Ming Cheng
Energies 2025, 18(13), 3322; https://doi.org/10.3390/en18133322 - 24 Jun 2025
Viewed by 699
Abstract
In order to achieve the optimal stator–rotor combinations of conventional flux-switching permanent magnet (FSPM) machines, this paper proposes and analyzes a general principle with prime phase numbers. Based on the coil complementarity concept, the proposed methodology specifically addresses the phase symmetry of back [...] Read more.
In order to achieve the optimal stator–rotor combinations of conventional flux-switching permanent magnet (FSPM) machines, this paper proposes and analyzes a general principle with prime phase numbers. Based on the coil complementarity concept, the proposed methodology specifically addresses the phase symmetry of back electromotive force (back-EMF) and electromagnetic torque optimization, with comprehensive analysis conducted for two-phase, three-phase, and five-phase configurations. Firstly, the coil-EMF vectors and the concept of coil pairs of conventional FSPM machines are introduced. Then, based on the coil-EMF vectors, an analytical model determining the stator pole and rotor teeth combinations is proposed. Further, the combinations for conventional FSPM machines with prime phase numbers are synthesized and summarized on the basis of the results obtained by the proposed model. To validate the model and combination principles, the FSPM machines satisfying the principles have been verified to exhibit a symmetrical phase back-EMF waveform by finite element analysis (FEA) and experiments on prototypes. In addition, the winding factors of the conventional FSPM machines with different stator pole and rotor teeth combinations are calculated. Full article
(This article belongs to the Special Issue Designs and Control of Electrical Machines and Drives)
Show Figures

Figure 1

16 pages, 3301 KiB  
Article
Crystal Chemistry and Thermodynamic Properties of Mineralogically Probable Phosphate Ca2.62Cu1.94Co1.44(PO4)4—Structurally Related to Natural Arsenate Zubkovaite
by Olga Yakubovich, Galina Kiriukhina, Larisa Shvanskaya and Alexander Vasiliev
Minerals 2025, 15(6), 645; https://doi.org/10.3390/min15060645 - 13 Jun 2025
Viewed by 339
Abstract
In this paper, we report the details of the synthesis, single crystal X-ray diffraction study, comparative crystal chemical analysis, and magnetic behavior of a new phosphate variation of the arsenate mineral zubkovaite. The title compound was obtained as a high-temperature flux product in [...] Read more.
In this paper, we report the details of the synthesis, single crystal X-ray diffraction study, comparative crystal chemical analysis, and magnetic behavior of a new phosphate variation of the arsenate mineral zubkovaite. The title compound was obtained as a high-temperature flux product in the form of a partly ordered solid solution and was studied using scanning electron microscopy and microprobe analysis. It possesses a monoclinic symmetry with a P21/n space group; the unit cell parameters are a = 8.8040 (2), b = 4.8970 (1), c = 14.5772 (3), and β = 93.993(2)°. The Ca2.62Cu1.94Co1.44(PO4)4 crystal structure exhibits some statistical disorder. Our refinement showed that two positions are mixed, being occupied by Cu/Co (M1) and Ca/Co (M2) atoms. Two types of layers that are nearly parallel to the (101) plane can be distinguished in the structure. One of them is built by sharing corners of CuO4 squares, M1O5 square pyramids, and PO4 tetrahedra. The second type of layer formed from Ca2+- and M2+-centered polyhedra alternates in the [1¯01] direction to construct a tri-periodic framework. Ca2.62Cu1.94Co1.44(PO4)4 experiences long-range antiferromagnetic ordering at low temperatures, as evidenced by both dc— and ac—magnetic susceptibilities, as well as by the specific heat measurements. Full article
Show Figures

Figure 1

23 pages, 7744 KiB  
Article
Optimization and Design of Built-In U-Shaped Permanent Magnet and Salient-Pole Electromagnetic Hybrid Excitation Generator for Vehicles
by Keqi Chen, Shilun Ma, Changwei Li, Yongyi Wu and Jianwei Ma
Symmetry 2025, 17(6), 897; https://doi.org/10.3390/sym17060897 - 6 Jun 2025
Cited by 1 | Viewed by 402
Abstract
In this paper, the concept of symmetry is utilized to optimize the structural parameters and output characteristics of the generator design—that is, the construction and solution of the equivalent magnetic circuit method for the hybrid excitation generator are symmetrical. To address the issues [...] Read more.
In this paper, the concept of symmetry is utilized to optimize the structural parameters and output characteristics of the generator design—that is, the construction and solution of the equivalent magnetic circuit method for the hybrid excitation generator are symmetrical. To address the issues of high excitation loss and low power density in purely electrically excited generators, as well as the difficulty in adjusting the magnetic field in purely permanent magnet generators, a new topology for a built-in permanent magnet and salient-pole electromagnetic hybrid excitation generator is proposed. Firstly, an equivalent magnetic circuit model of the generator is established. Secondly, expressions are derived to describe the relationships between the dimensions of the salient-pole rotor and the permanent magnets and the generator’s no-load induced electromotive force, cogging torque, and air gap flux density. These expressions are then used to analyze the structural parameters that influence the generator’s performance. Thirdly, optimization targets are selected through sensitivity analysis, with the no-load induced electromotive force, cogging torque, and air gap flux density serving as the optimization objectives. A multi-objective genetic algorithm is employed to optimize these parameters and determine the optimal structural matching parameters for the generator. As a result, the optimized no-load induced electromotive force increased from 18.96 V to 20.14 V, representing a 6.22% improvement; the cogging torque decreased from 177.08 mN·m to 90.52 mN·m, a 48.88% reduction; the air gap flux density increased from 0.789 T to 0.829 T, a 5.07% improvement; and the air gap flux density waveform distortion rate decreased from 6.22% to 2.38%, a 39.3% reduction. Finally, a prototype is fabricated and experimentally tested, validating the accuracy of the simulation analysis, the feasibility of the optimization method, and the rationality of the generator design. Therefore, the proposed topology and optimization method can effectively enhance the output performance of the generator, providing a valuable theoretical reference for the design of hybrid excitation generators for vehicles. Full article
(This article belongs to the Section Engineering and Materials)
Show Figures

Figure 1

19 pages, 9572 KiB  
Article
Logarithmic Separable Solutions of Force-Free Magnetic Fields in Plane-Parallel and Axial Symmetry
by Konstantinos N. Gourgouliatos
Symmetry 2025, 17(2), 175; https://doi.org/10.3390/sym17020175 - 24 Jan 2025
Viewed by 760
Abstract
This work introduces a systematic method for identifying analytical and semi-analytical solutions of force-free magnetic fields with plane-parallel and axial symmetry. The method of separation of variables is used, allowing the transformation of the non-linear partial differential equation, corresponding to force-free magnetic fields, [...] Read more.
This work introduces a systematic method for identifying analytical and semi-analytical solutions of force-free magnetic fields with plane-parallel and axial symmetry. The method of separation of variables is used, allowing the transformation of the non-linear partial differential equation, corresponding to force-free magnetic fields, to a system of decoupled ordinary differential equations, which nevertheless, are in general non-linear. It is then shown that such solutions are feasible for configurations where the electric current has a logarithmic dependence to the magnetic field flux. The properties of the magnetic fields are studied for a variety of physical parameters, through solution of the systems of the ordinary differential equations for various values of the parameters. It is demonstrated that this new logarithmic family of solutions has properties that are highly distinct from the known linear and non-linear equations, as it allows for bounded solutions of magnetic fields, for periodic solutions and for solutions that extend to infinity. Possible applications to astrophysical fields and plasmas are discussed as well as their use in numerical studies, and the overall enrichment of our understanding of force-free configurations. Full article
(This article belongs to the Section Physics)
Show Figures

Figure 1

15 pages, 8086 KiB  
Article
Analysis of Measurements of the Magnetic Flux Density in Steel Blocks of the Compact Muon Solenoid Magnet Yoke with Solenoid Coil Fast Discharges
by Vyacheslav Klyukhin, Benoit Curé, Andrea Gaddi, Antoine Kehrli, Maciej Ostrega and Xavier Pons
Symmetry 2024, 16(12), 1689; https://doi.org/10.3390/sym16121689 - 19 Dec 2024
Viewed by 1135
Abstract
The general-purpose Compact Muon Solenoid (CMS) detector at the Large Hadron Collider (LHC) at CERN is used to study the production of new particles in proton–proton collisions at an LHC center of mass energy of 13.6 TeV. The detector includes a magnet based [...] Read more.
The general-purpose Compact Muon Solenoid (CMS) detector at the Large Hadron Collider (LHC) at CERN is used to study the production of new particles in proton–proton collisions at an LHC center of mass energy of 13.6 TeV. The detector includes a magnet based on a 6 m diameter superconducting solenoid coil operating at a current of 18.164 kA. This current creates a central magnetic flux density of 3.8 T that allows for the high-precision measurement of the momenta of the produced charged particles using tracking and muon subdetectors. The CMS magnet contains a 10,000 ton flux-return yoke of dodecagonal shape made from the assembly of construction steel blocks distributed in several layers. These steel blocks are magnetized with the solenoid returned magnetic flux and wrap the muons escaping the hadronic calorimeters of total absorption. To reconstruct the muon trajectories, and thus to measure the muon momenta, the drift tube and cathode strip chambers are located between the layers of the steel blocks. To describe the distribution of the magnetic flux in the magnet yoke layers, a three-dimensional computer model of the CMS magnet is used. To validate the calculations, special measurements are performed, with the flux loops wound in 22 cross-sections of the flux-return yoke blocks. The measured voltages induced in the flux loops during the CMS magnet ramp-ups and -downs, as well as during the superconducting coil fast discharges, are integrated over time to obtain the initial magnetic flux densities in the flux loop cross-sections. The measurements obtained during the seven standard ramp-downs of the magnet were analyzed in 2018. From that time, three fast discharges occurred during the standard ramp-downs of the magnet. This allows us to single out the contributions of the eddy currents, induced in steel, to the flux loop voltages registered during the fast discharges of the coil. Accounting for these contributions to the flux loop measurements during intentionally triggered fast discharges in 2006 allows us to perform the validation of the CMS magnet computer model with better precision. The technique for the flux loop measurements and the obtained results are presented and discussed. The method for measuring magnetic flux density in steel blocks described in this study is innovative. The experience of 3D modeling and measuring the magnetic field in steel blocks of the magnet yoke, as part of a muon detector system, has good prospects for use in the construction and operation of particle detectors for the Future Circular Electron–Positron Collider and the Circular Electron–Positron Collider. Full article
(This article belongs to the Section Physics)
Show Figures

Figure 1

18 pages, 3941 KiB  
Article
Synergistic Effects of BaTiO3 and MFe2O4 (M = Mn, Ni, Cu, Zn, and Co) Nanoparticles as Artificial Pinning Centers on the Performance of YBa2Cu3Oy Superconductor
by Amjad S. Dair, Yassine Slimani, Essia Hannachi, Faten Ben Azzouz and Munirah A. Almessiere
Nanomaterials 2024, 14(22), 1810; https://doi.org/10.3390/nano14221810 - 12 Nov 2024
Cited by 2 | Viewed by 1068
Abstract
Large-scale superconductor applications necessitate a superconducting matrix with pinning sites (PSs) that immobilize vortices at elevated temperatures and magnetic fields. While previous works focused on the single addition of nanoparticles, the simultaneous inclusion of different nanoparticles into a superconducting matrix can be an [...] Read more.
Large-scale superconductor applications necessitate a superconducting matrix with pinning sites (PSs) that immobilize vortices at elevated temperatures and magnetic fields. While previous works focused on the single addition of nanoparticles, the simultaneous inclusion of different nanoparticles into a superconducting matrix can be an effective way to achieve an improved flux pinning capacity. The purpose of this study is to explore the influence of mixed-nanoparticle pinning, with the co-addition of non-magnetic (BaTiO3; BT) and various types of magnetic spinel ferrite (MFe2O4, abbreviated as MFO, where M = Mn, Co, Cu, Zn, and Ni) nanoparticles, on the superconductivity and flux pinning performances of the high-temperature superconductor YBa2Cu3Oy (YBCO). An analysis of X-Ray diffraction (XRD) data of BT–MFe2O4-co-added YBCO samples showed the formation of an orthorhombic structure with Pmmm symmetry. According to electrical resistivity measurements, the emergence of the superconducting state below Tcoffset (zero-resistivity temperature) was proven for all samples. The highest Tcoffset value was recorded for the Y-BT-MnFO sample, while the minimum value was obtained for the Y-BT-ZnFO sample. Direct current (DC) magnetization results showed good magnetic flux pinning performance for all the co-added samples compared to the pristine sample but with some discrepancies. At 77 K, the values of the self-critical current density (self-Jcm) and maximum pinning force (Fpmax) for the Y-BT-MnFO sample were found to be eight times higher and seventeen times greater than those for the pristine sample, respectively. The results acquired suggested that mixing the BT phase with an appropriate type of spinel ferrite nanoparticles can be a practical solution to the problem of degradation of the critical current density of the YBCO material. Full article
(This article belongs to the Section Nanoelectronics, Nanosensors and Devices)
Show Figures

Figure 1

20 pages, 346 KiB  
Review
Ordered Patterns of (3+1)-Dimensional Hadronic Gauged Solitons in the Low-Energy Limit of Quantum Chromodynamics at a Finite Baryon Density, Their Magnetic Fields and Novel BPS Bounds
by Fabrizio Canfora, Evangelo Delgado and Luis Urrutia
Symmetry 2024, 16(5), 518; https://doi.org/10.3390/sym16050518 - 25 Apr 2024
Cited by 2 | Viewed by 1169
Abstract
In this paper, we will review two analytical approaches to the construction of non-homogeneous Baryonic condensates in the low-energy limit of QCD in (3+1) dimensions. In both cases, the minimal coupling with the Maxwell U(1) gauge field can be taken [...] Read more.
In this paper, we will review two analytical approaches to the construction of non-homogeneous Baryonic condensates in the low-energy limit of QCD in (3+1) dimensions. In both cases, the minimal coupling with the Maxwell U(1) gauge field can be taken explicitly into account. The first approach (which is related to the generalization of the usual spherical hedgehog ansatz to situations without spherical symmetry at a finite Baryon density) allows for the construction of ordered arrays of Baryonic tubes and layers. When the minimal coupling of the Pions to the U(1) Maxwell gauge field is taken into account, one can show that the electromagnetic field generated by these inhomogeneous Baryonic condensates is of a force-free type (in which the electric and magnetic components have the same size). Thus, it is natural to wonder whether it is also possible to analytically describe magnetized hadronic condensates (namely, Hadronic distributions generating only a magnetic field). The idea of the second approach is to construct a novel BPS bound in the low-energy limit of QCD using the theory of the Hamilton–Jacobi equation. Such an approach allows us to derive a new topological bound which (unlike the usual one in the Skyrme model in terms of the Baryonic charge) can actually be saturated. The nicest example of this phenomenon is a BPS magnetized Baryonic layer. However, the topological charge appearing naturally in the BPS bound is a non-linear function of the Baryonic charge. Such an approach allows us to derive important physical quantities (which would be very difficult to compute with other methods), such as how much one should increase the magnetic flux in order to increase the Baryonic charge by one unit. The novel results of this work include an analysis of the extension of the Hamilton–Jacobi approach to the case in which Skyrme coupling is not negligible. We also discuss some relevant properties of the Dirac operator for quarks coupled to magnetized BPS layers. Full article
15 pages, 10546 KiB  
Article
Caloric Effect Due to the Aharonov–Bohm Flux in an Antidot
by Patricia Martínez-Rojas, M. Esperanza Benavides-Vergara, Francisco J. Peña and Patricio Vargas
Nanomaterials 2023, 13(19), 2714; https://doi.org/10.3390/nano13192714 - 6 Oct 2023
Cited by 1 | Viewed by 1403
Abstract
In this work, we report the caloric effect for an electronic system of the antidot type, modeled by combining a repulsive and attractive potential (parabolic confinement). In this system, we consider the action of a perpendicular external magnetic field and the possibility of [...] Read more.
In this work, we report the caloric effect for an electronic system of the antidot type, modeled by combining a repulsive and attractive potential (parabolic confinement). In this system, we consider the action of a perpendicular external magnetic field and the possibility of having an Aharonov–Bohm flux (AB-flux) generated by a current passing through a solenoid placed inside the forbidden zone for the electron. The energy levels are obtained analytically, and the model is known as the Bogachek and Landman model. We propose to control the caloric response of the system by varying only the AB-flux, finding that, in the absence of an external magnetic field, the maximization of the effect always occurs at the same AB-flux intensity, independently of the temperature, while fixing the external magnetic field at a non-zero value breaks this symmetry and changes the point where the caloric phenomenon is maximized and is different depending on the temperature to which the process is carried. Our calculations indicate that using an effective electron mass of GaAs heterostructures and a trap intensity of the order of 2.896 meV, the modification of the AB-flux achieves a variation in temperature of the order of 1 K. Our analysis suggests that increasing the parabolic confinement twofold increases the effect threefold, while increasing the antidot size generates the reverse effect, i.e., a strong decrease in the caloric phenomenon under study. Due to the great diversity in technological applications that have antidots in electronics, the possibility of controlling their thermal response simply by varying the intensity of the internal current inside the solenoid (i.e., the intensity of AB-flux) can be a platform of interest for experimental studies. Full article
Show Figures

Figure 1

32 pages, 6823 KiB  
Article
Numerical and Machine Learning Approach for Fe3O4-Au/Blood Hybrid Nanofluid Flow in a Melting/Non-Melting Heat Transfer Surface with Entropy Generation
by Shaik Jakeer, Sathishkumar Veerappampalayam Easwaramoorthy, Seethi Reddy Reddisekhar Reddy and Hayath Thameem Basha
Symmetry 2023, 15(8), 1503; https://doi.org/10.3390/sym15081503 - 28 Jul 2023
Cited by 10 | Viewed by 2176
Abstract
The physiological system loses thermal energy to nearby cells via the bloodstream. Such energy loss can result in sudden death, severe hypothermia, anemia, high or low blood pressure, and heart surgery. Gold and iron oxide nanoparticles are significant in cancer treatment. Thus, there [...] Read more.
The physiological system loses thermal energy to nearby cells via the bloodstream. Such energy loss can result in sudden death, severe hypothermia, anemia, high or low blood pressure, and heart surgery. Gold and iron oxide nanoparticles are significant in cancer treatment. Thus, there is a growing interest among biomedical engineers and clinicians in the study of entropy production as a means of quantifying energy dissipation in biological systems. The present study provides a novel implementation of an intelligent numerical computing solver based on an MLP feed-forward backpropagation ANN with the Levenberg–Marquard algorithm to interpret the Cattaneo–Christov heat flux model and demonstrate the effect of entropy production and melting heat transfer on the ferrohydrodynamic flow of the Fe3O4-Au/blood Powell–Eyring hybrid nanofluid. Similarity transformation studies symmetry and simplifies PDEs to ODEs. The MATLAB program bvp4c is used to solve the nonlinear coupled ordinary differential equations. Graphs illustrate the impact of a wide range of physical factors on variables, including velocity, temperature, entropy generation, local skin friction coefficient, and heat transfer rate. The artificial neural network model engages in a process of data selection, network construction, training, and evaluation through the use of mean square error. The ferromagnetic parameter, porosity parameter, distance from origin to magnetic dipole, inertia coefficient, dimensionless Curie temperature ratio, fluid parameters, Eckert number, thermal radiation, heat source, thermal relaxation parameter, and latent heat of the fluid parameter are taken as input data, and the skin friction coefficient and heat transfer rate are taken as output data. A total of sixty data collections were used for the purpose of testing, certifying, and training the ANN model. From the results, it is found that the fluid temperature declines when the thermal relaxation parameter is improved. The latent heat of the fluid parameter impacts the entropy generation and Bejan number. There is a less significant impact on the heat transfer rate of the hybrid nanofluid over the sheet on the melting heat transfer parameter. Full article
(This article belongs to the Special Issue Advances in Heat and Mass Transfer with Symmetry)
Show Figures

Figure 1

13 pages, 2581 KiB  
Article
Synthesis, Crystal Structure, Local Structure, and Magnetic Properties of Polycrystalline and Single-Crystalline Ce2Pt6Al15
by Kyugo Ota, Yuki Watabe, Yoshinori Haga, Fabio Iesari, Toshihiro Okajima and Yuji Matsumoto
Symmetry 2023, 15(8), 1488; https://doi.org/10.3390/sym15081488 - 27 Jul 2023
Cited by 3 | Viewed by 2024
Abstract
Asymmetry, such as non-centrosymmetry in the crystal or chiral structure and local symmetry breaking, plays an important role in the discovery of new phenomena. The honeycomb structure is an example of an asymmetric structure. Ce2Pt6Al15 is a candidate [...] Read more.
Asymmetry, such as non-centrosymmetry in the crystal or chiral structure and local symmetry breaking, plays an important role in the discovery of new phenomena. The honeycomb structure is an example of an asymmetric structure. Ce2Pt6Al15 is a candidate for a frustrated system with honeycomb Ce-layers, which have been reported to show near the quantum critical point. However, the ground state of Ce2Pt6Al15 depends on the sample, and analysis of the crystal structure is difficult due to the presence of stacking disorder. We synthesized polycrystalline Ce2Pt6Al15 using arc melting method (AM-Ce2Pt6Al15) and single-crystalline Ce2Pt6Al15 using flux method (F-Ce2Pt6Al15). The prepared samples were characterized by electron probe micro-analysis (EPMA), single and powder X-ray diffraction methods, measured magnetic properties and X-ray absorption spectroscopy (XAS). The composition ratio of AM-Ce2Pt6Al15 was stoichiometric, although it contained a small amount (i.e., a few percent) of the impurity Ce2Pt9Al16. Meanwhile, the composition ratio of F-Ce2Pt6Al15 deviated from stoichiometry. The X-ray absorption fine structure (XAFS) spectrum of AM-Ce2Pt6Al15 at the Ce L3-edge was similar to that of CeF3, which possesses the Ce3+ configuration, indicating that the valence of Ce in Ce2Pt6Al15 is trivalent; this result is consistent with that for the magnetic susceptibility. To determine the precise structure, we analyzed the extended X-ray absorption fine structure (EXAFS) spectra of Ce L3- and Pt L3-edges for Ce2Pt6Al15, and found that the EXAFS spectra of Ce2Pt6Al15 can be explained not as a hexagonal Sc0.6Fe2Si4.9-type structure but, instead, as an orthorhombic structure with honeycomb structure. Full article
(This article belongs to the Special Issue X-ray Absorption Fine Structure and Symmetry)
Show Figures

Figure 1

20 pages, 8119 KiB  
Article
Crystal Structure of Bismuth-Containing Samarium Iron–Aluminium Borates Sm1−xBixFe3−yAly(BO3)4 (x = 0.05–0.07, y = 0–0.28) in the Temperature Range of 25–500 K
by Ekaterina S. Smirnova, Olga A. Alekseeva, Vladimir V. Artemov, Timofei A. Sorokin, Dmitry N. Khmelenin, Ekaterina V. Sidorova, Kirill V. Frolov and Irina A. Gudim
Crystals 2023, 13(7), 1128; https://doi.org/10.3390/cryst13071128 - 19 Jul 2023
Cited by 2 | Viewed by 1500
Abstract
Structural features of new mixed bismuth-containing samarium iron–aluminium borate single crystals Sm1−xBixFe3−yAly(BO3)4 (x = 0.05–0.07, y = 0–0.28) were studied using X-ray diffraction analysis based on aluminium content and [...] Read more.
Structural features of new mixed bismuth-containing samarium iron–aluminium borate single crystals Sm1−xBixFe3−yAly(BO3)4 (x = 0.05–0.07, y = 0–0.28) were studied using X-ray diffraction analysis based on aluminium content and temperature in the range 25–500 K. The crystals were grown using the solution-in-melt technique with Bi2Mo3O12 in a flux. The composition of the single crystals was analyzed using energy-dispersive X-ray fluorescence and energy-dispersive X-ray elemental analysis. Temperature dependencies of Sm1−xBixFe3−yAly(BO3)4 unit-cell parameters were studied. Negative thermal expansion was identified below 100 K and represented by characteristic surfaces of the thermal expansion tensor. (Sm,Bi)–O, (Sm,Bi)–(Fe,Al), (Fe,Al)–(Fe,Al), and (Fe,Al)–O interatomic distances decreased with the addition of aluminium atoms. An increase in the (Fe,Al)–(Fe,Al) intrachain bond length at low temperatures in the magnetically ordered state weakened this bond, whereas a decrease in the (Fe,Al)–(Fe,Al) interchain distance strengthened super-exchange paths between different chains. It was found that the addition of aluminium atoms influenced interatomic distances in Sm1−xBixFe3−yAly(BO3)4 much more than lowering the temperature from 293 K to 25 K. The effect of aluminium doping on magnetoelectric properties and structural symmetry of rare-earth iron borates is also discussed. Full article
Show Figures

Figure 1

12 pages, 2557 KiB  
Article
Development of the CMS Magnetic Field Map
by Nicola Amapane and Vyacheslav Klyukhin
Symmetry 2023, 15(5), 1030; https://doi.org/10.3390/sym15051030 - 6 May 2023
Cited by 1 | Viewed by 1515
Abstract
This article focuses on pioneering work on the performance of the three-dimensional (3D) magnetic field map in the entire volume of the Compact Muon Solenoid (CMS) detector at the Large Hadron Collider at CERN. In the CMS heterogeneous magnetic system, the magnetic flux [...] Read more.
This article focuses on pioneering work on the performance of the three-dimensional (3D) magnetic field map in the entire volume of the Compact Muon Solenoid (CMS) detector at the Large Hadron Collider at CERN. In the CMS heterogeneous magnetic system, the magnetic flux is created by a superconducting solenoid coil enclosed in a steel flux-return yoke. To describe the CMS magnetic flux distribution, a system of the primitive 3D volumes containing the values of the magnetic flux density measured inside the superconducting coil inner volume and modelled outside the coil across a special mesh of reference nodes was developed. This system, called the CMS magnetic field map, follows the geometric features of the yoke and allows the interpolation of the magnetic flux density between the nodes to obtain the magnetic field values at any spatial point inside a cylinder of 18 m in diameter and 48 m in length, where all the CMS sub-detectors are located. The geometry of the volumes is described inside one 30° azimuthal sector of the CMS magnet. To obtain the values of the magnetic flux density components across the entire azimuth angle of the CMS detector, rotational symmetry is applied. Full article
(This article belongs to the Section Physics)
Show Figures

Figure 1

25 pages, 4088 KiB  
Article
Asymmetric Twisting of Coronal Loops
by Gabriele Cozzo, Paolo Pagano, Antonino Petralia and Fabio Reale
Symmetry 2023, 15(3), 627; https://doi.org/10.3390/sym15030627 - 2 Mar 2023
Cited by 3 | Viewed by 1911
Abstract
The bright solar corona entirely consists of closed magnetic loops rooted in the photosphere. Photospheric motions are important drivers of magnetic stressing, which eventually leads to energy release into heat. These motions are chaotic and obviously different from one footpoint to the other, [...] Read more.
The bright solar corona entirely consists of closed magnetic loops rooted in the photosphere. Photospheric motions are important drivers of magnetic stressing, which eventually leads to energy release into heat. These motions are chaotic and obviously different from one footpoint to the other, and in fact, there is strong evidence that loops are finely stranded. One may also expect strong transient variations along the field lines, but at a glance, coronal loops ever appear more or less uniformly bright from one footpoint to the other. We aim to understand how much coronal loops can preserve their own symmetry against asymmetric boundary motions that are expected to occur at loop footpoints. We investigate this issue by time-dependent 2.5D MHD modelling of a coronal loop, including its rooting and beta-variation in the photosphere. We assume that the magnetic flux tube is stressed by footpoint rotation but also that the rotation has a different pattern from one footpoint to the other. In this way, we force strong asymmetries because we expect independent evolution along different magnetic strands. We found that until the Alfvén crossing-travel time relative to the entire loop length is much lower than the twisting period, the loop’s evolution depends only on the relative velocity between the boundaries, and the symmetry is efficiently preserved. We conclude that the very high Alfvén velocities that characterise the coronal environment can explain why coronal loops can maintain a very high degree of symmetry even when they are subjected to asymmetric photospheric motions for a long time. Full article
(This article belongs to the Special Issue Solar Physics and Plasma Physics: Topics and Advances)
Show Figures

Figure 1

24 pages, 1824 KiB  
Article
A Hybrid Analytical Model for the Electromagnetic Analysis of Surface-Mounted Permanent-Magnet Machines Considering Stator Saturation
by Wenbiao Lu, Jie Zhu, Youtong Fang and Pierre-Daniel Pfister
Energies 2023, 16(3), 1300; https://doi.org/10.3390/en16031300 - 26 Jan 2023
Cited by 4 | Viewed by 2135
Abstract
This article presents the process of building a hybrid analytical model (HAM) for surface-mounted permanent-magnet machines. The HAM couples a reluctance network (RN) model in the stator region with a magnetic scalar potential analytical model in the air gap and magnets regions. This [...] Read more.
This article presents the process of building a hybrid analytical model (HAM) for surface-mounted permanent-magnet machines. The HAM couples a reluctance network (RN) model in the stator region with a magnetic scalar potential analytical model in the air gap and magnets regions. This hybrid model can deal with the slotting effect with straight teeth, and takes magnetic saturation into account in the stator iron material using the RN model. It is calculated under open-circuit and loaded conditions. The magnetic flux density, flux linkage, back electromotive force (EMF), and torque of the machines are also calculated. This hybrid model is compared with the subdomain method. It is also compared with the finite element method (FEM) both in terms of the size of the matrix that needs to be calculated and in terms of the torque error. We analyzed this method for two surface-mounted permanent-magnet machines, one with a symmetry factor of four and another with a symmetry factor of three. In both cases, HAM reduced the size of the matrix that needed to be solved compared to FEM. In the machine with a symmetry factor of three, when the matrix size of both FEM and HAM was around 1700 × 1700, the torque error of FEM was 2.62% compared to the high-mesh-density FEM simulation, while the torque error of HAM was only 0.17% compared to the same simulation. HAM also had significant advantages over the subdomain method, as it reduced the torque error from 16.8% to 0.08% in the case of high magnetic saturation. The HAM can, hence, play a significant role in the design and optimization of surface-mounted permanent-magnet machines, especially in cases where magnetic saturation is present. Full article
Show Figures

Figure 1

Back to TopTop