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Abstract: This article presents the process of building a hybrid analytical model (HAM) for surface-
mounted permanent-magnet machines. The HAM couples a reluctance network (RN) model in the
stator region with a magnetic scalar potential analytical model in the air gap and magnets regions.
This hybrid model can deal with the slotting effect with straight teeth, and takes magnetic saturation
into account in the stator iron material using the RN model. It is calculated under open-circuit and
loaded conditions. The magnetic flux density, flux linkage, back electromotive force (EMF), and
torque of the machines are also calculated. This hybrid model is compared with the subdomain
method. It is also compared with the finite element method (FEM) both in terms of the size of the
matrix that needs to be calculated and in terms of the torque error. We analyzed this method for
two surface-mounted permanent-magnet machines, one with a symmetry factor of four and another
with a symmetry factor of three. In both cases, HAM reduced the size of the matrix that needed to
be solved compared to FEM. In the machine with a symmetry factor of three, when the matrix size
of both FEM and HAM was around 1700 × 1700, the torque error of FEM was 2.62% compared to
the high-mesh-density FEM simulation, while the torque error of HAM was only 0.17% compared
to the same simulation. HAM also had significant advantages over the subdomain method, as it
reduced the torque error from 16.8% to 0.08% in the case of high magnetic saturation. The HAM can,
hence, play a significant role in the design and optimization of surface-mounted permanent-magnet
machines, especially in cases where magnetic saturation is present.

Keywords: hybrid model; permanent-magnet machine; reluctance network; analytical model;
magnetic saturation

1. Introduction

Much research has been performed on efficient and accurate modeling approaches of
magnetic fields for different types of electrical machine topologies. Those approaches can
mainly be divided into numerical and analytical.

1.1. Numerical Methods

With the variety in commercial software, the finite element method (FEM) provides
a convenient way to perform simulations and obtain precise results. It is, hence, widely
used for analyzing the electromagnetic performance of machines. However, it requires
high computational time due to the meshing of the geometry. When many geometrical
parameters need to be optimized at the initial stage of designing a machine, the time
consumption can be prohibitive [1].

Another numerical technique is the reluctance network (RN). One way to build the
network is on the basis of the predicted probable magnetic flux path [2,3]. In practice, flux
paths change due to saturation, and paths in small areas are often uncertain and overlooked.
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Moreover, in many models, flux paths in the air gap are assumed to only be in the radial
direction, and the circumferential fluxes are neglected. All these shortcomings determine
the inaccuracy of this model.

Another way to build an RN is to mesh the machine into small regular elements, each
node being connected by a magnetic reluctance. This does not require predicting flux paths.
This method has the advantage that, if multiple simulations are needed as a function of the
rotor position, the same reluctance network can be used [4]. Nevertheless, this method is
not efficient for modeling the fields in the air gap, as it needs a high number of nodes in
order to not sacrifice precision.

1.2. Analytical Methods

Analytical methods have received significant attention because they aid in under-
standing the physics of the machine and typically require low computational time. Several
techniques are used, such as conformal mapping, subdomain, and exact subdomain [5].
These models are based on the Fourier series of the magnetic scalar potential or magnetic
vector potential; thus, they are also called Fourier models. An overview of those Fourier-
based models and the available techniques is found in [6]. The limit of most Fourier models
is that they are based on assumptions, such as idealized geometries and the absence of
magnetic saturation. Researchers have made great efforts to consider the saturation of
iron parts in Fourier models. In [7,8], global saturation is calculated as the same value
as that of permeability in one region. In [9], the permeability distribution in a region is
expressed as a Fourier series, so that the permeability can be directly redefined. However,
such improvements render the methods very complicated and time-consuming.

1.3. Hybrid Methods

In 1995, a hybrid method [10] was proposed that uses a Fourier model in air gaps and
magnets while using finite element analysis in other regions, which is useful in brushless
direct-current permanent-magnet (PM) machines. After that, other works combining
numerical and analytical methods were published. Y. Laoubi et al. coupled the RN and
scalar potential analytical model in a linear permanent-magnet machine in [11]. They
also modeled the flux-switching permanent-magnet machine in open-circuit conditions by
meshing the stator and rotor into RNs, and connecting them by introducing the harmonics
of the scalar potential in the air gap [12]. However, their study only focused on linear
machines. L. J. Wu et al. combined the complex permeance method (CPM) with nonlinear
RN by transforming magnetic potential distribution in the stator into the equivalent current
on the stator bore in the surface-mounted PM machines, and calculated the iron saturation
in open-circuit and on-loaded conditions [13,14]. Z. K. Li et al. considered the local
saturation of tooth tips on the basis of a combination of CPM and RN [15]. According
to [16], the CPM can lead to an error when the slot opening is large, which is a limitation
of [13–15]. The methods in [17] use a subdomain to calculate the fields in the slots, so
the shape of the slots that can be modeled is limited. H. Yin et al. built an RN model
in the stator core and coupled the subdomain model on the stator bore by introducing
equivalent current sheets into the slots to solve the nonlinearity effect of the stator for
surface-mounted permanent-magnet machines [18]. Y. Zhu et al. combined the subdomain
method and an RN to calculate permanent-magnet Vernier machines [19]. The methods
in [18,19] used equivalent current sheets to resolve the saturation effect, which does not
allow for the calculation of local saturation. B. L. Chikouche et al. built a hybrid model in
flat permanent-magnet linear machines, and combined the exact subdomain in the air, slots,
and PMs with RN in the teeth and rotor [20]. However, in [20], the calculation is performed
for two specific permeabilities of iron and not for actual nonlinear iron. Ouagued et al.
combined the analytical method and an RN for calculations in other types of machines,
namely, tubular linear machines and flat linear machines [21,22].
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1.4. This Article

In this article, a hybrid analytical model based on the scalar potential analytical model
and nonlinear RN model is presented for inner-rotor surface-mounted permanent-magnet
machines. The rotor and the air gap are modeled with an analytical model, while the stator
and slots are modeled with an RN model. The RN can be adapted to different slot types.
Different from the subdomain method and other hybrid methods, the method that we
propose uses sector-shaped and rectangular elements to deal with the shape of the slots
and the shape of straight teeth, respectively. Contrary to [13,17,19], the current in the slots
in our study is characterized by an equivalent magnetomotive force (MMF) in the teeth
and slots, and the nonlinearity effect of the stator is solved through updating and iterating
the permeability of each branch in the RN model.

In [13,17,18], the saturation is modeled only in relatively large areas because there
is only one magnetic reluctance in the transverse direction of each tooth. However, the
method that we propose allows for the choice of dense or sparse magnetic reluctance, which
can take local saturation into account.

The coupling of the two models is direct, and the topology of the network does not
change with the motion of the rotor. The whole model has the advantages of the analytical
model and of the nonlinear RN model: high calculation speed and accuracy, and taking
into consideration of the stator saturation. The whole model uses the symmetry factor to
reduce the size of the matrix and speed up the calculation.

The model allows for predicting the magnetic flux density, flux linkage, back EMF,
and torque in surface-mounted permanent-magnet machines. The number of elements in
the RN can be changed depending on the accuracy needed under saturation conditions.
Two types of surface-mounted permanent-magnet machines were modeled to validate the
accuracy and speed of this type of model.

The two types of machines were modeled through 18 different HAM simulations and
63 FEM simulations to better understand the relationship between the accuracy and speed
of this type of model compared to FEM. In previous articles, we did not find a comparison
between hybrid models and FEM, where different levels of precision were calculated for
both types of models.

In summary, this article’s contributions include the consideration of local saturation
and the comparison of different HAM to FEM simulations in terms of the size of the matrix
and torque error.

2. Hybrid Model

The geometry and some parameters of the machine are shown in Figure 1. As there is
no saturation in the rotor yoke iron, it is assumed to have infinite permeability. The PM and
air gap areas are modeled using an analytical model based on the magnetic scalar potential
in the cylindrical coordinate system. The permeability of the air between the magnets is
assumed to be the same as that of the magnets. The stator is meshed into a reluctance
network that is also based on the magnetic scalar potential. As a result, the whole machine
is calculated on the basis of a hybrid model that combines the analytical and RN models.
The modeled area is divided into three regions (starting from the center): PM (Region I), air
gap (Region II), and stator (Region RN). The end effect in the axial direction is neglected.
Therefore, the magnetic scalar potential is invariant in the z direction.
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Figure 1. Geometry and parameters of the machine.

2.1. Analytical Model in PMs and Air Gap

The general expressions of the scalar potential distributions in the PM (Region I) and
the air gap (Region II) can be expressed as follows [23]:

UI = ∑
k

[(
A1krqk + B1kr−qk + PCk(r)

)
cos(qkϕ)

+
(

C1krqk + D1kr−qk + PSk(r)
)

sin(qkϕ)
] (1)

UII = ∑
k

[(
A2krqk + B2kr−qk

)
cos(qkϕ)

+
(

C2krqk + D2kr−qk
)

sin(qkϕ)
]
,

(2)

in which

PCk(r) =

{ BRCkr ln r
2µ1

qk = 1
BRCkr

µ1(1−q2k2)
otherwise

(3)

PSk(r) =

{ BRSkr ln r
2µ1

qk = 1
BRSkr

µ1(1−q2k2)
otherwise,

(4)

with
BRk = BRrk + qkBRϕk (5)

BRCk = BRk cos(qkΩt + qkϕ0) (6)

BRSk = BRk sin(qkΩt + qkϕ0), (7)

where q is the order of the rotational symmetry of the machine that is equal to the greatest
common divisor (GCD) between the number of slots Ns and the number of pole pairs p,
assuming that the rotational symmetry also includes the winding. Parameter µ1 is the
permeability of the PMs, Ω is the rotational velocity of the PM area, ϕ0 is the PMs’ initial
position. A1k, B1k, C1k, D1k, A2k, B2k, C2k, and D2k are constants. BRrk and BRϕk is the radial
and tangential remanent magnetic flux density at the kth harmonic number. For parallel
magnetization, we have:
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BRrk =

{
BRαp( f1k + f2k) k/p = 1, 3, 5 . . .
0 otherwise

(8)

BRϕk =

{
BRαp( f1k − f2k) k/p = 1, 3, 5 . . .
0 otherwise

(9)

with

f1k =
sin
(
(qk + 1)αp

π
2p

)
(qk + 1)αp

π
2p

(10)

f2k =


1 qk = 1
sin
(
(qk−1)αp

π
2p

)
(qk−1)αp

π
2p

else,
(11)

where BR is the remanent magnetization of the PM, αp is the PM span ratio, and p is the
pole pair number of the machine. The harmonic number k is taken within a finite range for
the calculation of the result.

2.2. Reluctance Network Model in Stator
2.2.1. Calculation of Reluctances

The stator part is divided into a mesh-based reluctance network where fluxes flow
among different elements through the reluctances. In each element, the radial and cir-
cumferential components of fluxes are considered. So, each element that contains four
reluctances (two in each direction) is connected by a node at its midpoint. Each element
is identified by node number i. Each reluctance of magnetic material has its permeability
(µ) and is characterized by a nonlinear B(H) curve. Two typical kinds of mesh elements
are illustrated in Figure 2. Elements in a cylindrical layer (Figure 2a) are used in the slots
and the stator yoke, where r+i and r−i are the outer and inner radii of element i, respec-
tively. Variable r0

i , which represents the radius of node i, is the average value of r+i and r−i .
Variables ∆ϕ+

i , ∆ϕ−i , and ∆ϕ0
i are the span angles at the corresponding radii. As shown in

Appendix B, the reluctance formulas are expressed as follows:

Ri1 =

(
r0

i − r−i
)

µla
(
r0

i ∆ϕ−i − r−i ∆ϕ0
i
) ln

(
r0

i ∆ϕ−i
r−i ∆ϕ0

i

)
(12)

Ri3 =

(
r+i − r0

i
)

µla
(
r+i ∆ϕ0

i − r0
i ∆ϕ+

i
) ln

(
r+i ∆ϕ0

i
r0

i ∆ϕ+
i

)
(13)

Ri2 = Ri4 =

(
r+i ∆ϕ−i − r−i ∆ϕ+

i
)

2µla
(
r+i − r−i

) 1

ln
(

r+i ∆ϕ−i
r−i ∆ϕ+

i

) . (14)

The stator yoke is meshed into sector-shaped elements. Thus, the above span angles
are equal

(
∆ϕ+

i = ∆ϕ−i = ∆ϕ0
i
)
. Figure 2b shows the rectangular element in the teeth, of

which the reluctances depend on the mesh size (wi and hi) and are expressed as follows:

Ri1 = Ri3 =
hi

2µlawi
(15)

Ri2 = Ri4 =
wi

2µlahi
. (16)

If the tooth’s shape is changed into a sector, we can use the reluctance elements of the
cylindrical layer. For the slots, we only modify ∆ϕ−i and ∆ϕ+

i in (12) to (14).
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Figure 2. Two typical mesh elements: (a) bidirectional reluctances in a cylindrical layer and (b) rect-
angular bidirectional reluctances.

2.2.2. Arrangement of Mesh Elements

A periodical boundary condition is used to decrease the computing time. Only 1/q of
the stator geometry is modeled into a reluctance network, as we have q symmetric parts.
To apply the boundary conditions, the magnetic potential on the two sides is equal, and
the fluxes are continuous from one side to another, which means that the two sides are
connected. The stator is meshed into different elements. Figure 3 illustrates the arrangement
of the elements. The fluxes are assumed to not cross the outer surface of the stator yoke. The
fluxes are, hence, along the circumferential direction on the surface, so the radial reluctance
connected with the external air is infinitely large.

φ=0φ=2π/q

Figure 3. Reluctance network in the stator.

The mesh element numbers in the radial and circumferential directions are nr and nc,
respectively. The size of the mesh elements is adjustable. Proper size is necessary for good
accuracy and reasonable computation time.

Besides the nodes at the midpoint of the mesh element, there are additional nc nodes
on the internal surrounding of the stator that connect the two regions as shown in Figure 3.
Hence, the total number of nodes is ncnr + nc. The nodes are connected by branches that
consist of the reluctance of the adjacent elements. The total number of branches is 2ncnr.

In this article, the nodes are numbered from inner to outer along the counterclockwise
direction. As shown in Figure 4, the node and branch numbers are marked in normal and
bold lettering, respectively, and the default directions of fluxes are specified.
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i

i−1

i+1

i−nr−1i+nr+1

2i−3

2i−2
2i−1

2i+2nr

Figure 4. Node- and branch-numbering rule.

2.2.3. Calculation of Magnetic Source

The effects of the armature reaction are represented by magnetic potential sources in
certain elements. In this article, the magnetic potential sources are distributed in the teeth
and slots elements according to their areas, and only in the radial branches, as shown in
Figure 2. They are given by:

Fi1 = Fi3 =
hi
2h

Fmt, (17)

where h is the height of the tooth, Fmt is the total MMF of the column where the ith node is
located, and Fi1 and Fi3 are shown in Figure 2.

In this article, the structures used concentrated winding, so according to Ampère’s
law, the total MMF for each column in the teeth is:

Fmt = Nit, (18)

where it is the current in the coil of tth tooth, and N is the number of turns of the whole coil.
The total MMF for each column in the slot is only partially generated by the external coil:

Fmt =
∆ϕ0 − ∆ϕi

∆ϕ0
Nit, (19)

where ∆ϕ0 is the span of a half slot, and ∆ϕi is the span of element i toward the tooth. So,
the specific value of Fmt in one tooth and slots beside it is calculated as shown in Figure 5.
Then, Fmt in different teeth is obtained in the same way by varying the current.

Figure 5. Total magnetic potential sources in the tooth and slots beside it in the radial direction.

2.2.4. Nodal Potential Equation

The magnetic circuit is equivalent to the electric circuit, since both satisfy Kirchhoff’s
law, so the reluctance network can be solved with the nodal potential equation. The total
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amount of magnetic flux flowing into and out of any node is zero at any time, and the
equation in matrix form is expressed accordingly as follows:

A ·Φ = 0, (20)

where A with ncnr + nc rows and 2ncnr columns is the association matrix of branches and
nodes. Figure 4 illustrates the ith node; hence, the ith row of matrix A is expressed as

Ai,{2i−3,2i−2,2i−1,2i+2nr} = {−1,−1, 1, 1}. (21)

The matrix Φ contains the list of branch fluxes. The relationship among the branch
permeance, magnetic potential drop, and fluxes is

Φ = Y ·UB (22)

with

Y =


1

R1
1

R2
. . .

1
R2ncnr

 (23)

where Y is a diagonal matrix consisting of branch permeances, Ri is the total reluctances
of ith branch, and UB is the list of branch magnetic potential drops that can be expressed
as follows:

UB = AT ·UN + US, (24)

where US is the list of branch magnetic sources, UN is the list of node magnetic potential.
The nodal potential equation can be deduced as follows:

A · Y ·AT ·UN + A · Y ·US = 0. (25)

2.3. Coupling of the Two Models

In this section, we explain how the RN model in the stator is connected with the
analytical scalar potential distribution in the air gap.

2.3.1. Harmonic Form of Nodal Magnetic Potential

The nodal magnetic potential in the RN model is discrete values. Thus, the magnetic
potential on the boundary is a sequence of discrete data. The number of data equals the
number of nodes on the boundary. Instead of interpolation, the step function shown in
Figure 6 is used.

U

φ

U
RN

Real

Approximate

Figure 6. Approximate function of magnetic potential on the boundary.

We take the Fourier series of URN:

URN|r=r3 = ∑
k

[
CFS

k cos(qkϕ) + SFS
k sin(qkϕ)

]
. (26)
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with CFS
k and SFS

k , the kth coefficients of FS, and is calculated as follows:

CFS
k =

q
π

nc

∑
i=1

ϕi2ˆ

ϕi1

URN
i cos(qkϕ)dϕ (27)

SFS
k =

q
π

nc

∑
i=1

ϕi2ˆ

ϕi1

URN
i sin(qkϕ)dϕ, (28)

where ϕi1 and ϕi2 are the two angle positions where element i is located, as shown in
Figure 7. Variable k is finite in the calculation, and its maximal value is the same as that
in the analytical model. According to Nyquist–Shannon’s theorem, the number of nodes
should not be less than twice the total harmonic number in order to avoid errors in the
calculation of the flux density at the middle of the air gap of machines.

i

j

φ
i1

φ
i2

ϕ
ij

Figure 7. The element on the boundary.

2.3.2. Boundary Conditions at r3

The two boundary conditions at r3 are:(−→
B FS |r=r3 −

−→
B II |r=r3

)
· −→n = 0 (29)

(−→
H FS |r=r3 −

−→
H II |r=r3

)
· −→t = 0. (30)

The first boundary condition, (29), implies that the fluxes through the boundary are
continuous. On node i,

Pij
(
Ui −Uj

)
= −µ0lar3

ϕi2ˆ

ϕi1

∂UII

∂r
|r=r3 dϕ. (31)

The final expression is

Pij
(
Ui −Uj

)
+ µ0lar3 ∑

k
A2kqkrqk−1

3

ϕi2ˆ

ϕi1

cos(qkϕ)dϕ

+µ0lar3 ∑
k

B2k(−qk)r−qk−1
3

ϕi2ˆ

ϕi1

cos(qkϕ)dϕ

+µ0lar3 ∑
k

C2kqkrqk−1
3

ϕi2ˆ

ϕi1

sin(qkϕ)dϕ

+µ0lar3 ∑
k

D2k(−qk)r−qk−1
3

ϕi2ˆ

ϕi1

sin(qkϕ)dϕ = 0.

(32)
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From the second boundary condition, (30), the following expression is obtained:

∂URN

∂ϕ
|r=r3=

∂UII

∂ϕ
|r=r3 , (33)

which means that, for each harmonic k,

CFS
k = A2krqk

3 + B2kr−qk
3 (34)

SFS
k = C2krqk

3 + D2kr−qk
3 . (35)

Lastly, the following expressions are derived:

A2krqk
3 + B2kr−qk

3 =
nc

∑
i=1

URN
i

q
π

ϕi2ˆ

ϕi1

cos(qkϕ)dϕ (36)

C2krqk
3 + D2kr−qk

3 =
nc

∑
i=1

URN
i

q
π

ϕi2ˆ

ϕi1

sin(qkϕ)dϕ. (37)

2.4. Matrix Form

In the analytical model, nH is the total considered harmonic number. For each har-
monic in each area, four constants need to be calculated. In the PM and the air gap,
4× nH × 2 = 8nH constants are unknown in total.

In the RN model, the machine is meshed into nc elements in the circumferential
direction and nr elements in the radial direction. Each element has a node. There are
additional nc nodes on the boundary. The potential of each node needs to be calculated.
Thus, ncnr + nc constants are unknown. We have nc ≥ 2nH.

Therefore, the total number of unknowns is 8nH + ncnr + nc. In the analytical model,
the boundary conditions on r1 and r2 give 2nH and 4nH equations, respectively. In the
RN model, Kirchhoff’s law gives ncnr equations. (36), (37) and (32) give nH, nH, nc equa-
tions, respectively. Then, a set of 8nH + ncnr + nc dimensional equations are established.
Equation (38) shows the matrix form of the equations. The expression of the matrices is
given in Appendix A.

G
0

M

0 Q A · Y ·AT


·


K

UN


=


−T

−A · Y ·US


(38)

2.5. Nonlinear Analysis

Considering the magnetic nonlinearity of the stator material, the permeability of
the iron part is related to the magnetic field. The branch magnetic field strength can be
calculated as follows:

H =
UB
4l

, (39)

where UB is the potential drop in a branch, and4l the equivalent length of the branch path.
According to the obtained magnetic strength in each step, an interpolation is performed
on the magnetization curve of the lamination material to obtain the relative permeabilities
of all the nonlinear branches, which are used to update the matrix equation until it is



Energies 2023, 16, 1300 11 of 24

convergent. This procedure to deal with the nonlinear system is illustrated as a flowchart
in Figure 8. At the beginning of the program, the relative permeabilities are initialized
as µ0. For step m (m = 1, 2,. . . , N0, with N0 being the maximal iteration steps given),
Ym−1 is calculated, and Equation (38) is solved. The permeabilities are then updated as
µm = µ

(
Hm−1). The iteration finishes once it converges to ‖µm − µm−1‖ < ε, with ε being

the given accuracy.

μ0, ϵ, N0

m=1,2,...,N0

 Ym-1, Hm-1

 
μm=μ(Hm-1)

Yes

||μm-μm-1||<ϵ

No

Accuracy is not 
met after N0 steps

m<N0

m=m+1 Output μmYes

No

Input

Calculate

Figure 8. Iteration process.

2.6. Post-Processing

Once the nonlinear system is solved, the magnetic potential on each node on the stator
side, and the harmonics of magnetic potential in the air gap and PMs are obtained. Then,
the back EMF and torque of the machine can be derived through postprocessing. In RN
regions, the magnetic strength is calculated using Equation (39). In the air gap and PM
regions, it can be expressed as the derivatives of magnetic potential [24]:

Hr = −
∂U
∂r

, (40)

Hϕ = −1
r

∂U
∂ϕ

. (41)

Once the magnetic field is obtained, the flux linkage in each coil can be calculated from

Ψi(t) = µ0r3laN
ˆ βi+τ/2

βi−τ/2
κξi Hr(r3, ϕ, t)dϕ, (42)
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where N is the number of turns of each coil ( κ = 1 or −1 depending on the direction of
winding), ξi is the coefficient that approximates the flux leakage in the slots where the coil
conductors are placed and are expressed as a function of ϕ,

ξi =

{
1 if |ϕ− βi| ≤ δ

2
τ−2|ϕ−βi |

τ−δ if δ
2 ≤ |ϕ− βi| ≤ τ

2 ,
(43)

where βi is the angle of the axis of coil i, and δ and τ are the span angles of the innermost
and outermost conductors of a coil, respectively, as shown in Figure 9.

βi 

τ/2 

δ/2 

Figure 9. Sectional view of coil i.

The phase flux linkage can be calculated by summing up all the coil flux linkages in
each phase:

Ψph(t) = ∑
coil i∈ph

Ψi(t), with ph = A, B, and C. (44)

Instead of predicting the flux leakage via an approximative coefficient, the authors
in [13] provided a method that obtained the flux leakage from the RN side. After obtaining
the flux linkages at different rotor positions by rotating a small step in ∆t time, which can
be regarded as a time-varying function, the back EMF can be deduced with

Eph =
∆Ψph

∆t
(45)

where ∆Ψph is the difference of the flux linkage of any phase in one step.
By integrating the Maxwell stress tensor along a circle in the air gap, the instantaneous

electromagnetic torque can be calculated using the radial and circumferential components
of flux strength. Torque

T = µ0lar2
ˆ 2π

0
Hr Hϕdϕ, (46)

can be expended as follows:

T = µ0larq2π

∑
k

k2
[(

A2krqk−1 − B2kr−qk−1
)(

C2krqk + D2kr−qk
)
−(

A2krqk + B2kr−qk
)(

C2krqk−1 − D2kr−qk−1
)]

,

(47)

where r is any radial value in the air gap.
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3. Validation

Two surface-mounted permanent-magnet machines were selected as examples for
modeling calculation. To illustrate the advantage of the hybrid analytical method in dealing
with the nonlinear problem of ferromagnetic materials, the saturation of the stator of the
two machines is different: one is not highly saturated, and the other is highly saturated.

The main design specification of the machines is summarized in Table 1, the geometric
dimensions are illustrated in Figure 10, and the B–H curves for lamination material are
shown in Figure 11. As we wanted to verify the correctness in high-saturation conditions,
the teeth of Machine II were designed to be very narrow.

Table 1. Main design specification of the machines.

Parameter Machine I Machine II Unit

Pole pair number 16 3 -
Slot number 36 9 -

Number of turns 113 50 -
Lamination length 140 54 mm
Outer stator radius 180 41 mm
Inner stator radius 134.2 22.3 mm
Outer rotor radius 133.1 21.8 mm
Inner rotor radius 114.5 - mm

Stator yoke thickness 22 3 mm
Stator tooth width 10.7 3 mm

PM thickness 6.4 2.5 mm
PM span angle 9.2 50 deg

Lamination material 50W470 50W800 -
PM remanent magnetic density 1.32 1.20 T

Permeability of PM 1.31× 10−6 1.42× 10−6 H/m

The topology and winding distribution of Machines I and II are shown in Figure 12a,b,
respectively. An example of RN for the two machines is given in Figure 13. A precise 2D
FEM simulation was used to validate the proposed method. More details are in the next
section. Meanwhile, the two machines were modeled with the subdomain method, so the
comparison between the results shows the characteristics of different methods.

Figure 10. Design parameters of the machines.
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Figure 11. B–H curves for the lamination materials used in Machines I and II.

(a) (b)

Figure 12. Machine topology: (a) Machine I. (b) Machine II.

Figure 13. Example of reluctance network for (left) Machine I and (right) Machine II.

3.1. Fields

The magnetic flux density distributions of both machines were obtained with the
HAM, FEM, and subdomain method. The calculation process for the subdomain method
was presented in [5]. Open-circuit and loaded condition validations were performed.

Figures 14–17 show a comparison of the magnetic flux density distribution at the
middle of the air gap in each machine among the HAM, FEM, and subdomain method.
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Phase currents were 0.34, −0.98, and 0.64 A in Machine I, and 0, −6.12, and 6.12 A in
Machine II, respectively. The curves show a great agreement between the HAM and
the FEM for the radial and circumferential components of magnetic flux density. The
difference between the HAM and the subdomain method in Machine I is small because of
the low saturation.
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(a) (b)

Figure 14. Comparison of the flux density at the middle of the air gap of Machine I in open-circuit
condition: (a) radial component; (b) circumferential component.

(a) (b)

Figure 15. Comparison of the flux density at the middle of the air gap of Machine II in open-circuit
condition: (a) radial component; (b) circumferential component.
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Figure 16. Comparison of the flux density at the middle of the air gap of Machine I with a current of
1 A (maximal amplitude): (a) radial component; (b) circumferential component.
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(a) (b)

Figure 17. Comparison of the flux density at the middle of the air gap of Machine II with a current of
7 A (maximal amplitude): (a) radial component; (b) circumferential component.

In Machine II, the results calculated with the subdomain model differ from those
calculated by HAM and FEM due to the high saturation.

The highly coincidental results between HAM and FEM show that the HAM is valid in
both open-circuit and loaded conditions, even when the material in the machine is saturated.

The mesh parameters in HAM were chosen to be nH = 90, nc = 180, nr = 12 in
Machine I, and nH = 45, nc = 90, nr = 11 in Machine II, resulting in matrix sizes of
3060 × 3060 and 1440 × 1440, respectively, to be solved. In the FEM, the sizes of the
matrices were 16,626 × 16,626 and 8929 × 8929 including the rotor and air gap parts. To
guarantee a fair comparison, the FEM of these two machines use the same symmetry. In
the HAM above, the amount of computation was reduced by 70% compared with FEM
while keeping the error below 1% in the results of torque.

3.2. Flux and Back EMF

The magnetic fluxes of the two machines were also calculated with the three methods
and are presented in Figure 18a,b. Compared with the FEM, the average errors of the flux
results of the HAM and the subdomain method were 0.32% and 4.90% in Machine I, and
1.10% and 22.57% in Machine II, respectively.

The back-EMF results of the two machines are presented in Figure 19a,b. Compared
with the FEM, the average errors of the HAM and the subdomain method were 0.22% and
5.02% in Machine I, and 3.32% and 23.64% in Machine II, which were similar to the flux
results. As the HAM has high accuracy in calculating the magnetic field, the prediction
of the magnetic fluxes and back EMF thereby also shows excellent accuracy, while the
subdomain method has obvious differences.

HAM Subdomain FEM
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Figure 18. The magnetic flux of Phase A under open-circuit condition: (a) Machine I and (b) Machine II.
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Figure 19. Comparison of back-EMF waveforms between Terminals A and B: (a) Machine I and
(b) Machine II.

3.3. Torque

The relationship between the maximal output torque and the applied direct current is
shown in Figure 20a,b. The curve shows that the calculated value of the torque from the
HAM was very consistent with the FEM, and the subdomain method was higher. As the
iron in the stator of Machine I did not reach high saturation, the torque–current curve is
a relatively straight line. Compared with the FEM, the average errors of the torque results
of the HAM and the subdomain method were 0.32% and 5.97% in Machine I, and 0.49%
and 19.84% in Machine II, respectively.
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Figure 20. Comparison of electromagnetic torque as a function of the maximal current in the winding:
(a) Machine I and (b) Machine II.

The torque pulsation and cogging torque of the two machines calculated with three
methods are presented in Figures 21 and 22. The following errors were calculated using
the FEM as a reference. For Machine I with a current of 4 A (maximal amplitude), the
average errors given by the HAM and by the subdomain method were 0.27% and 5.41%,
respectively. For Machine II with a current of 20 A (maximal amplitude), the average errors
of the HAM and the subdomain method were 1.54% and 48.2%, respectively. Therefore,
the HAM works well for torque pulsation calculation. In the case of the cogging torque,
there is no current; hence, there is minimal saturation. Although in the case with little
saturation the benefit of HAM was less obvious, we can still see that for Machines I and II,
HAM gave better results than those of the subdomain. There were some errors between
HAM and FEM in the cogging torque results of Machine I. The reason is that, contrary to
Machine II where the whole tooth saturated, the location of magnetic saturation in Machine
I was mainly at the stator tooth tip corners. For the calculation in Figure 21b, the mesh of
HAM was denser than the mesh used for the other calculations, as described in Section 3.1.
A further increase in mesh density would further diminish the error shown in Figure 21b.
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Figure 21. Comparison of torque pulsation of Machine I: (a) torque ripple with a current of 4 A
(maximal amplitude); (b) cogging torque.
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Figure 22. Comparison of torque pulsation of Machine II: (a) torque ripple with a current of 20 A
(maximal amplitude); (b) cogging torque.

Because the magnetic saturation in Machine I was not very high, the differences among
HAM, FEM, and the subdomain method were small. The differences in the field results
(Figures 14 and 16) are not important. Nevertheless, we can see a slight difference in the
flux linkage (Figure 18a), back-EMF (Figure 19a), and torque (Figure 20a) results. As the
current increased, the HAM gave results that were more accurate compared to those of the
subdomain method. The difference was more significant for Machine II, as its magnetic
saturation was higher than that of Machine I.

3.4. Multiple FEM and HAM Simulations

To verify the accuracy of the HAM, the RN of Machines I and II were created with
different densities of elements. The calculated torque was compared with that of a high-
precision FEM. Meanwhile, the torque results of FEMs modeled with different mesh
precision for Machines I and II were compared with the high-precision FEM results. The
sizes of the matrix in the high precision FEM of Machines I and II were 31,140 × 31,140 and
26,463 × 26,463, respectively. The main changes in the different FEMs were the mesh size
of the air gap and the PMs, taking a low mesh density for the rest of the machine, as those
parts affect the precision less.

Figure 23a,b show that, as the number of divisions of RN increased, the matrix size
increased, and the HAM calculation results became increasingly accurate. In Figure 23a,
some points of the FEM results are on the left-hand side of the HAM results trend line,
which means that the HAM for Machine I did not have a clear advantage. However, for
Machine II (Figure 23b), all points of the FEM results are on the right-handd side of the
HAM results trend line, which means the HAM is valuable and offers a good advantage.
The average torque error of 15 FEM simulations with a matrix size of around 1700 × 1700
was 2.62%, and HAM could reduce the error to 0.17% at the same matrix size. The reason
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for the different results presented by Machines I and II is that Machine I has 9 slots in
a symmetrical part, while Machine II only has 3 slots in a symmetrical part. This renders the
matrix of Machine I larger than that of Machine II in the HAM calculation, but the minimal
number of nodes in the FEM was similar in the two machines. In addition, Figure 23a also
shows random errors in the calculation of the FEM, while the HAM had good stability.

FEM

HAM

0 5000 10,000 15,000 20,000
0

0.5

1

1.5

2

2.5

3

3.5

Number of rows or columns in the matrix (n)

E
rr
or

[%
]

FEM

HAM

0 5000 10,000750025001700
0

1

2

3

4

5

Number of rows or columns in the matrix (n)

E
rr
or

[%
]

(a) (b)

Figure 23. Torque error for different divisions in the HAM and FEM as a function of the sizes of
the matrix (n × n): (a) Machine I with a current of 4 A (maximal amplitude). (b) Machine II with
a current of 10 A (maximal amplitude).

In Machine I, the HAM could reduce the torque error from 5.27% in the subdomain
method to 0.03% in the HAM with the densest division. In the same way, the HAM
could reduce the torque error from 16.8% to 0.08% for Machine II. This verifies that the
two machines had different saturation levels, and HAM had a clear advantage over the
subdomain method.

4. Conclusions

In this article, an effective and accurate hybrid analytical model that couples a scalar
potential analytical model with RN was used to calculate and analyze surface-mounted
permanent-magnet machines. The modeling was divided into two parts according to
whether saturation exists—the magnets and air gap regions were modeled with an analyti-
cal model, while the stator region was modeled with an RN model. Many aspects were
taken into account in this model: circuit armature reaction, slotting effect, and especially
magnetic saturation. The HAM results for the magnetic flux density, flux linkage, back
EMF, torque, and error were compared with those of the FEM and the subdomain method.
The size of the matrix could be adjusted according to the number of elements of the RN,
depending on the needed accuracy, and different HAM and FEM simulations were com-
pared in terms of the size of the matrix and torque error. Compared with the subdomain
method, the calculation results of the HAM show excellent accuracy, and the advantages of
the HAM are that saturation in the stator is considered and there is no restriction on the
slot type. The HAM can reduce torque error and has great advantages over the subdomain
method. Compared with the FEM, the HAM can reduce the size of the matrix that needs
to be calculated, which means that the calculation time can be reduced significantly. For
a machine with a high number of slots in its symmetrical part, this method has advantages
compared to the subdomain method, but not compared to the FEM in its present form,
although further optimization of the RN may bring advantages in the HAM. Although in
this article the slot per pole per phase is fractional for Machines I and II both, the model
can also be applied to machines with an integer ratio. The application of the method can
also be extended to other types of machine structures, such as semiopen slot structures
and surface-inset permanent-magnet structures. Furthermore, a three-dimensional hybrid
analytical model can be built to consider the axial inhomogeneity of the machine.
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Appendix A

Composition of matrices in Equation (38):

G =



G11 G12
G23 G24

G31 G32 G35 G36
G43 G44 G47 G48

G51 G52 G55 G56
G63 G64 G67 G68

G75 G76
G87 G88


G11 = G23 = diag

{
rq

1, · · · , rqk
1 , · · · , rqnH

1

}
G12 = G24 = diag

{
r−q

1 , · · · , r−qk
1 , · · · , r−qnH

1

}
G31 = G43 = −G35 = −G47 = diag

{
rq

2, · · · , rqk
2 , · · · , rqnH

2

}
G32 = G44 = −G36 = −G48 = diag

{
r−q

2 , · · · , r−qk
2 , · · · , r−qnH

2

}
G51 = G63 =

µ1

µ0
q · diag

{
rq−1

2 , · · · , krqk−1
2 , · · · , nHrqnH−1

2

}
G52 = G64 = −µ1

µ0
q · diag

{
r−q−1

2 , · · · , kr−qk−1
2 , · · · , nHr−qnH−1

2

}
G55 = G67 = −q · diag

{
rq−1

2 , · · · , krqk−1
2 , · · · , nHrqnH−1

2

}
G56 = G68 = q · diag

{
r−q−1

2 , · · · , kr−qk−1
2 , · · · , nHr−qnH−1

2

}
G75 = G87 = diag

{
rq

3, · · · , rqk
3 , · · · , rqnH

3

}
G76 = G88 = diag

{
r−q

3 , · · · , r−qk
3 , · · · , r−qnH

3

}
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T =
[

T1 T2 T3 T4 T5 T6 01×nH 01×nH

]T

T1 =
{

PCq(r1), · · · , PCqk(r1), · · · , PCqnH(r1)
}

T2 =
{

PSq(r1), · · · , PSqk(r1), · · · , PSqnH(r1)
}

T3 =
{

PCq(r2), · · · , PCqk(r2), · · · , PCqnH(r2)
}

T4 =
{

PSq(r2), · · · , PSqk(r2), · · · , PSqnH(r2)
}

T5 =
{

µ1
µ0

dPCq(r)
dr − BRCq

µ0
, · · · , µ1

µ0

dPCqk(r)
dr − BRCqk

µ0
,

· · · , µ1
µ0

dPCqnH (r)
dr − BRCqnH

µ0

}∣∣∣∣
r=r2

T6 =
{

µ1
µ0

dPSq(r)
dr − BRSq

µ0
, · · · , µ1

µ0

dPSqk(r)
dr − BRSqk

µ0
,

· · · , µ1
µ0

dPSqnH (r)
dr − BRSqnH

µ0

}∣∣∣∣
r=r2

Q =
[
Q1 Q2 Q3 Q4

]
For i ≤ nc, k ≤ nH,

Q1{(i−1)(nr+1)+1}{k} = µ0laqkrqk
3

ϕi2ˆ

ϕi1

cos(qkϕ)dϕ

Q2{(i−1)(nr+1)+1}{k} = −µ0laqkr−qk
3

ϕi2ˆ

ϕi1

cos(qkϕ)dϕ

Q3{(i−1)(nr+1)+1}{k} = µ0laqkrqk
3

ϕi2ˆ

ϕi1

sin(qkϕ)dϕ

Q4{(i−1)(nr+1)+1}{k} = −µ0laqkr−qk
3

ϕi2ˆ

ϕi1

sin(qkϕ)dϕ

M =

[
M1
M2

]
For i ≤ nc, k ≤ nH,

M1{k}{(i−1)(nr+1)+1} = −
q
π

ϕi2ˆ

ϕi1

cos(qkϕ)dϕ

M2{k}{(i−1)(nr+1)+1} = −
q
π

ϕi2ˆ

ϕi1

sin(qkϕ)dϕ

K =
[
A1 B1 C1 D1 A2 B2 C2 D2

]
A1 =

{
A11, A12, · · · , A1k, · · · , A1nH

}T

B1 =
{

B11, B12, · · · , B1k, · · · , B1nH

}T

C1 =
{

C11, C12, · · · , C1k, · · · , C1nH

}T
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D1 =
{

D11, D12, · · · , D1k, · · · , D1nH

}T

A2 =
{

A21, A22, · · · , A2k, · · · , A2nH

}T

B2 =
{

B21, B22, · · · , B2k, · · · , B2nH

}T

C2 =
{

C21, C22, · · · , C2k, · · · , C2nH

}T

D2 =
{

D21, D22, · · · , D2k, · · · , D2nH

}T

UN =
{

U1, U2, · · · , Ui, · · · , Unc(nr+1)

}T

Appendix B

Figure 2 shows the magnetic reluctances in sector-shaped elements. The angle of sector
∆ϕi(r) varies with the value of radius r and can be expressed as follows:

∆ϕi(r) =
∆ϕ+

i − ∆ϕ−i
∆r+i − ∆r−i

(
r− r−i

)
+ ∆ϕ−i .

It can be simplified into
∆ϕi(r) = kr + b,

in which

k =
∆ϕ+

i − ∆ϕ−i
∆r+i − ∆r−i

,

b =
r+i ∆ϕ−i − r−i ∆ϕ+

i
r+i − r−i

.

The whole magnetic reluctance in radial direction Rirad can be expressed as follows:

Rirad =

ˆ r+i

r0
i

1
µla · r · ∆ϕi(r)

dr

=
1

µla
·
ˆ r++

r−i

1
(kr + b) · r dr

=
1

µla

[
1
b

ln r− 1
b

ln(kr + b)
]∣∣∣∣r+i

r−i

=
1

µla · b
ln

r
∆ϕi(r)

∣∣∣∣r+i
r−i

=

(
r+i − r−i

)
µla
(
r+i ∆ϕ−i − r−i ∆ϕ+

i
) ln

(
r+i ∆ϕ−i
r−i ∆ϕ+

i

)
.

The radius of sector Ri1 varies from r−i to r0
i , and the radius of sector Ri3 varies from

r0
i to r+i , so the equations of Ri1 and Ri3 can be expressed as:

Ri3 =

(
r+i − r0

i
)

µla
(
r+i ∆ϕ0

i − r0
i ∆ϕ+

i
) ln

(
r+i ∆ϕ0

i
r0

i ∆ϕ+
i

)
,

Ri1 =

(
r0

i − r−i
)

µla
(
r0

i ∆ϕ−i − r−i ∆ϕ0
i
) ln

(
r0

i ∆ϕ−i
r−i ∆ϕ0

i

)
.
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In the circumferential direction, the micro-element of the magnetic permeance can be
expressed as:

dΛ =
µla · dr
r∆ϕi(r)

.

The whole magnetic permeance Λicirc is:

Λicirc =

ˆ r+i

r−i

µla

r · (kr + b)
dr

= µla

[
1
b

ln r− 1
b

ln(kr + b)
]∣∣∣∣r+i

r−i

= µla
1
b

ln
r

∆ϕi(r)

∣∣∣∣r+i
r−i

= µla

(
r+i − r−i

)(
r+i ∆ϕ−i − r−i ∆ϕ+

i
) ln

(
r+i ∆ϕ−i
r−i ∆ϕ+

i

)
.

The magnetic reluctances Ri2 and Ri4 can, hence, be expressed as follows:

Ri2 = Ri4 =
1

2Λicirc
=

(
r+i ∆ϕ−i − r−i ∆ϕ+

i
)

2µla
(
r+i − r−i

) 1

ln
(

r+i ∆ϕ−i
r−i ∆ϕ+

i

) .
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