Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (413)

Search Parameters:
Keywords = magnesium oxide (MgO)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
11 pages, 1745 KiB  
Article
Comprehensive Investigation of Structural and Photocatalytic Properties of Cobalt and Nickel Co-Doped Magnesium Oxide Nanoparticles
by Shafaq Arif, Amna Sarwar and M. S. Anwar
Condens. Matter 2025, 10(3), 41; https://doi.org/10.3390/condmat10030041 - 4 Aug 2025
Viewed by 146
Abstract
Cobalt and Nickel (Co, Ni) co-doped magnesium oxide (MgO) nanoparticles (NPs) have been synthesized using the coprecipitation method. The structural, chemical, and optical properties of the as-synthesized NPs are systematically investigated using X-ray Diffraction (XRD), Fourier Transform Infrared Spectroscopy (FTIR), and UV-visible spectroscopy. [...] Read more.
Cobalt and Nickel (Co, Ni) co-doped magnesium oxide (MgO) nanoparticles (NPs) have been synthesized using the coprecipitation method. The structural, chemical, and optical properties of the as-synthesized NPs are systematically investigated using X-ray Diffraction (XRD), Fourier Transform Infrared Spectroscopy (FTIR), and UV-visible spectroscopy. It is found that the optical bandgap of co-doped MgO NPs reduces from 2.30 to 1.98 eV (14%) with increasing Ni dopant concentrations up to 7%. The Co0.05Ni0.07Mg0.88O NPs exhibit a high photocatalytic degradation efficiency of 93% for methylene blue dye (MB) under natural sunlight irradiation for 240 min. Our findings indicate that the Co0.05NixMg0.95−xO NPs have strong potential for use as photocatalysts in industrial wastewater treatment. Full article
Show Figures

Figure 1

24 pages, 6760 KiB  
Article
Influence of Microstructure and Heat Treatment on the Corrosion Resistance of Mg-1Zn Alloy Produced by Laser Powder Bed Fusion
by Raúl Reyes-Riverol, Ángel Triviño-Peláez, Federico García-Galván, Marcela Lieblich, José Antonio Jiménez and Santiago Fajardo
Metals 2025, 15(8), 853; https://doi.org/10.3390/met15080853 - 30 Jul 2025
Viewed by 289
Abstract
The corrosion behavior of an additively manufactured Mg-1Zn alloy was investigated in both the transverse and longitudinal directions relative to the build direction, in the as-built condition and after annealing at 350 °C for 24 h under high vacuum. Microstructural characterization using XRD [...] Read more.
The corrosion behavior of an additively manufactured Mg-1Zn alloy was investigated in both the transverse and longitudinal directions relative to the build direction, in the as-built condition and after annealing at 350 °C for 24 h under high vacuum. Microstructural characterization using XRD and SEM revealed the presence of magnesium oxide (MgO) and the absence of intermetallic second-phase particles. Optical microscopy (OM) images and Electron Backscatter Diffraction (EBSD) maps showed a highly complex grain morphology with anomalous, anisotropic shapes and a heterogeneous grain size distribution. The microstructure includes grains with a pronounced columnar morphology aligned along the build direction and is therefore characterized by a strong crystallographic texture. Electrochemical techniques, including PDP and EIS, along with gravimetric H2 collection, concluded that the transverse plane exhibited greater corrosion resistance compared to the longitudinal plane. Additionally, an increase in cathodic kinetics was observed when comparing as-built with heat-treated samples. Full article
(This article belongs to the Section Corrosion and Protection)
Show Figures

Figure 1

12 pages, 1500 KiB  
Article
Influence of Oxyanions on the Structural Memory Effect of Layered Double Hydroxides Under Aqueous Condition
by Jingchao Li, Yide Xu, Tingting Chen, Yijun Cao and Guixia Fan
Minerals 2025, 15(8), 772; https://doi.org/10.3390/min15080772 - 22 Jul 2025
Viewed by 175
Abstract
The structural memory effect is normally considered one of the most important properties of LDHs. However, certain anions can have adverse effects on it. In this study, three types of CLDHs (Mg2Al1-CLDH, Mg2Al0.5Fe0.5-CLDH, Mg2Fe1-CLDH) were obtained and used to observe their regeneration behaviors [...] Read more.
The structural memory effect is normally considered one of the most important properties of LDHs. However, certain anions can have adverse effects on it. In this study, three types of CLDHs (Mg2Al1-CLDH, Mg2Al0.5Fe0.5-CLDH, Mg2Fe1-CLDH) were obtained and used to observe their regeneration behaviors in the presence of sulfate, silicate, and phosphate, respectively, at initial pH values of 10 and 13. The samples were characterized by X-ray diffraction (XRD), thermogravimetric analysis (TGA-DTG), scanning electron microscope (SEM), and N2 adsorption–desorption isotherm (BET). The results suggested that silicate and phosphate have significant impacts on the regeneration of CLDHs, while sulfate does not. Specifically, phosphate and silicate reacted with MgO to generate magnesium silicate and magnesium phosphate dibasic, which were covered on the surface of particles and hindered the hydroxylation of metal oxides. However, a higher pH can suppress the formation of new substances and promote the regeneration of LDHs. Moreover, the CLDHs with high specific surface area had a stronger anti-interference performance regarding the effects of phosphate and silicate. Full article
Show Figures

Figure 1

18 pages, 2652 KiB  
Article
The Use of a Composite of Modified Construction Aggregate and Activated Carbon for the Treatment of Groundwater Contaminated with Heavy Metals and Chlorides
by Katarzyna Pawluk, Marzena Lendo-Siwicka, Grzegorz Wrzesiński, Sylwia Szymanek and Osazuwa Young Osawaru
Materials 2025, 18(15), 3437; https://doi.org/10.3390/ma18153437 - 22 Jul 2025
Viewed by 227
Abstract
The treatment of contaminants from road infrastructure poses significant challenges due to their variable composition and the high concentrations of chloride ions, heavy metals, and oil-derived substances. Traditional methods for protecting groundwater environments are often insufficient. A promising alternative is permeable reactive barrier [...] Read more.
The treatment of contaminants from road infrastructure poses significant challenges due to their variable composition and the high concentrations of chloride ions, heavy metals, and oil-derived substances. Traditional methods for protecting groundwater environments are often insufficient. A promising alternative is permeable reactive barrier (PRB) technology, which utilizes recycled materials and construction waste as reactive components within the treatment zone of the ground. This paper delves into the potential of employing a composite (MIX) consisting of modified construction aggregate (as recycled material) and activated carbon (example of reactive material) to address environmental contamination from a mixture of heavy metals and chloride. The research involved chemical modifications of the road aggregate, activated carbon, and their composite, followed by laboratory tests in glass reactors and non-flow batch tests to evaluate the kinetics and chemical equilibrium of the reactions. The adsorption process was stable and conformed to the pseudo-second-order kinetics and Langmuir, Toth, and Redlich–Peterson isotherm models. Studies using MIX from a heavy metal model solution showed that monolayer adsorption was a key mechanism for removing heavy metals, with strong fits to the Langmuir (R2 > 0.80) and Freundlich models, and optimal efficiencies for Cd and Ni (R2 > 0.90). The best fit, at Cd, Cu, Ni = 0.96, however, was with the Redlich–Peterson isotherm, indicating a mix of physical and chemical adsorption on heterogeneous surfaces. The Toth model was significant for all analytes, fitting Cl and Cd well and Pb and Zn moderately. The modifications made to the composite significantly enhanced its effectiveness in removing the contaminant mixture. The test results demonstrated an average reduction of chloride by 85%, along with substantial removals of heavy metals: lead (Pb) by 90%, cadmium (Cd) by 86%, nickel (Ni) by 85%, copper (Cu) by 81%, and zinc (Zn) by 79%. Further research should focus on the removal of other contaminants and the optimization of magnesium oxide (MgO) dosage. Full article
(This article belongs to the Special Issue Recovered or Recycled Materials for Composites and Other Materials)
Show Figures

Figure 1

21 pages, 10536 KiB  
Article
Synthesis, Phase Formation, and Raman Spectroscopy of Ni and Zn(Mg) Codoped Bismuth Stibate Pyrochlore
by Nadezhda A. Zhuk, Sergey V. Nekipelov, Olga V. Petrova, Boris A. Makeev, Sergey I. Isaenko, Maria G. Krzhizhanovskaya, Kristina N. Parshukova, Roman I. Korolev and Ruslana A. Simpeleva
Chemistry 2025, 7(4), 110; https://doi.org/10.3390/chemistry7040110 - 30 Jun 2025
Cited by 1 | Viewed by 464
Abstract
Complex antimony pyrochlores Bi2.7M0.46Ni0.70Sb2O10+Δ (M = Zn, Mg) were synthesized from oxide precursors, using the solid-state reaction method. For each composition variant, the pyrochlore phase formation process was studied during solid-state synthesis in the [...] Read more.
Complex antimony pyrochlores Bi2.7M0.46Ni0.70Sb2O10+Δ (M = Zn, Mg) were synthesized from oxide precursors, using the solid-state reaction method. For each composition variant, the pyrochlore phase formation process was studied during solid-state synthesis in the range of 500–1050 °C. The influence of zinc and magnesium on the phase formation process was established. The interaction of oxide precursors occurs at a temperature of 600 °C and higher, resulting in the formation of bismuth stibate (Bi3SbO7) as a binary impurity phase. Oxide precursors, including bismuth(III) and antimony(III,V) oxides, are fixed in the samples up to 750 °C, at which point the intermediate cubic phase Bi3M2/3Sb7/3O11 (sp. gr. Pn-3, M = Zn, Ni) is formed in the zinc system. Interacting with transition element oxides, it is transformed into pyrochlore. An intermediate phase with the Bi4.66Ca1.09VO10.5 structure (sp. gr. Pnnm) was found in the magnesium system. The unit cell parameter of pyrochlore for two samples has a minimum value at 800 °C, which is associated with the onset of high-temperature synthesis of pyrochlore. The synthesis of phase-pure pyrochlores is confirmed by high-resolution Raman spectroscopy. The data interpretation showed that the cations in Ni/Zn pyrochlore are more likely to be incorporated into bismuth positions than in Ni/Mg pyrochlore. The nickel–magnesium pyrochlore is characterized by a low-porosity microstructure, with grain sizes of up to 3 μm, according to SEM data. Zinc oxide has a sintering effect on ceramics. Therefore, the grain size in ceramics is large and varies from 2 to 7 μm. Full article
(This article belongs to the Section Inorganic and Solid State Chemistry)
Show Figures

Figure 1

18 pages, 1871 KiB  
Article
Magnesia Partially Stabilized Zirconia/Hydroxyapatite Biocomposites: Structural, Morphological and Microhardness Properties
by Liliana Bizo, Adriana-Liana Bot, Marieta Mureșan-Pop, Lucian Barbu-Tudoran, Claudia Andreea Cojan and Réka Barabás
Crystals 2025, 15(7), 608; https://doi.org/10.3390/cryst15070608 - 30 Jun 2025
Viewed by 484
Abstract
Hydroxyapatite (HAP) is the most widely accepted biomaterial for repairing bone tissue defects, demonstrating excellent biocompatibility and bioactivity that promote new bone formation. Zirconia (ZrO2), known for its strength and fracture toughness, is commonly used to reinforce ceramics. In this study, [...] Read more.
Hydroxyapatite (HAP) is the most widely accepted biomaterial for repairing bone tissue defects, demonstrating excellent biocompatibility and bioactivity that promote new bone formation. Zirconia (ZrO2), known for its strength and fracture toughness, is commonly used to reinforce ceramics. In this study, magnesium oxide (MgO) served as a stabilizer for zirconia, resulting in magnesia partially stabilized zirconia (Mg-PSZ). Both Mg-PSZ and HAP were synthesized via coprecipitation and mixed in specific ratios to create composites through a ceramic method involving mixing, compaction, and sintering at 1100 °C. The samples were characterized using techniques such as X-ray powder diffraction (XRPD), Fourier-transform infrared spectroscopy (FTIR), and scanning electron microscopy/energy-dispersive X-ray spectroscopy (SEM/EDS). Structural analyses confirmed the presence of both monoclinic and tetragonal zirconia phases. Besides, the increased wt.% HAP in the composites produced distinct peaks for hexagonal HAP. Crystallite sizes ranged from 27.45 nm to 31.5 nm, and surface morphology was homogeneous with small pores. Elements such as calcium, phosphorus, magnesium, zirconium, and oxygen were detected in all samples. This research also examined microhardness changes in the materials. The findings revealed enhancement in microhardness for the biocomposite with higher zirconia content, 90Mg-PSZ/10HAP sample, with the smallest average pore size, highlighting its potential for biomedical applications. Full article
Show Figures

Figure 1

18 pages, 14557 KiB  
Article
A Full Chain of Applying Struvite Recovered from Biogas Slurry to Promote Vegetable Growth
by Yunhan Li, Wei Wang, Linhe Sun, Jian Cui, Xiaojing Liu, Jixiang Liu, Yajun Chang and Dongrui Yao
Agriculture 2025, 15(13), 1352; https://doi.org/10.3390/agriculture15131352 - 25 Jun 2025
Viewed by 344
Abstract
The expansion of the livestock industry has led to an increase in biogas slurry discharge, which contains high levels of nitrogen (N) and phosphorous (P). Struvite precipitation is an effective method for the recovery of N and P from biogas slurry, and the [...] Read more.
The expansion of the livestock industry has led to an increase in biogas slurry discharge, which contains high levels of nitrogen (N) and phosphorous (P). Struvite precipitation is an effective method for the recovery of N and P from biogas slurry, and the recovered N and P can be applied as a slow-release fertilizer in agricultural production. To form an industrial chain for struvite recovery and application in agriculture, we investigated the factors affecting struvite recovery from biogas slurry generated on a pig farm and evaluated its efficacy as a fertilizer. The N and P recovery efficiency was higher when magnesium chloride (MgCl2) was used as a magnesium (Mg) source compared with magnesium oxide (MgO), and the optimal reaction conditions were pH 10, a reaction time of 20 min, a stirring rate of 200 rpm, and a Mg/P/N ratio of 1.2:1.0:1.0, which achieved N and P recovery rates of 81.83% and 99.67%, respectively. To further investigate the commercial utility of using struvite recovered from biogas slurry as a fertilizer, the growth and content of nutrients in two common vegetables in China were measured. The vegetable quality-related parameters of bock choy (Brassica chinensis) improved as the proportion of struvite in the fertilizer increased. Fresh weight, soluble sugar, and soluble protein increased by 194.47%, 46.13%, and 82.42%, respectively. The quality-related parameters of water celery (Oenanthe javanica (Blume) DC.) increased with an increasing proportion of struvite (27.90 mg·g−1 soluble sugar and 42.20 mg·g−1 soluble protein). The application of struvite precipitated from biogas slurry in plant cultivation shows great potential and lays a solid foundation for the resourceful recovery and utilization of biogas slurry. Full article
(This article belongs to the Section Agricultural Soils)
Show Figures

Graphical abstract

15 pages, 8310 KiB  
Article
An Architectural Battery Designed by Substituting Lithium with Second Main Group Metals (Be, Mg, Ca/Cathode) and Hybrid Oxide of Fourth Group Ones (Si, Ge, Sn/Anode) Nanomaterials Towards H2 Adsorption: A Computational Study
by Fatemeh Mollaamin and Majid Monajjemi
Nanomaterials 2025, 15(13), 959; https://doi.org/10.3390/nano15130959 - 20 Jun 2025
Viewed by 487
Abstract
Germanium/tin-containing silicon oxide [SiO–(GeO/SnO)] nanoclusters have been designed with different Si/Ge/Sn particles and characterized as electrodes for magnesium-ion batteries (MIBs) due to forming MgBe [SiO–GeO], MgBe [SiO–SnO], MgCa [SiO–GeO], and MgCa [SiO–SnO] complexes. In this work, alkaline earth metals of magnesium (Mg), beryllium [...] Read more.
Germanium/tin-containing silicon oxide [SiO–(GeO/SnO)] nanoclusters have been designed with different Si/Ge/Sn particles and characterized as electrodes for magnesium-ion batteries (MIBs) due to forming MgBe [SiO–GeO], MgBe [SiO–SnO], MgCa [SiO–GeO], and MgCa [SiO–SnO] complexes. In this work, alkaline earth metals of magnesium (Mg), beryllium (Be), and calcium (Ca) have been studied in hybrid Mg-, Be-, and Ca-ion batteries. An expanded investigation on H capture by MgBe [SiO–(GeO/SnO)] or MgCa [SiO–(GeO/SnO)] complexes was probed using computational approaches due to density state analysis of charge density differences (CDD), total density of states (TDOS), and electron localization function (ELF) for hydrogenated hybrid clusters of MgBe [SiO–GeO], MgBe [SiO–SnO], MgCa [SiO–GeO], and MgCa [SiO–SnO]. Replacing Si by Ge/Sn content can increase battery capacity through MgBe [SiO–GeO], MgBe [SiO–SnO], MgCa [SiO–GeO], and MgCa [SiO–SnO] nanoclusters for hydrogen adsorption processes and could improve the rate performances by enhancing electrical conductivity. A small portion of Mg, Be, or Ca entering the Si–Ge or Si–Sn layer to replace the alkaline earth metal sites could improve the structural stability of the electrode material at high multiplicity, thereby improving the capacity retention rate. In fact, the MgBe [SiO–GeO] remarks a small enhancement in charge transfer before and after hydrogen adsorption, confirming the good structural stability. In addition, [SiO–(GeO/SnO)] anode material could augment the capacity owing to higher surface capacitive impacts. Full article
(This article belongs to the Section Theory and Simulation of Nanostructures)
Show Figures

Graphical abstract

13 pages, 1716 KiB  
Article
Suppressing Calcium Deactivation in Selective Catalytic Reduction of NOx from Diesel Engines Using Antimony
by Ibrahim Aslan Resitoglu, Ali Keskin, Bugra Karaman and Himmet Ozarslan
Processes 2025, 13(6), 1914; https://doi.org/10.3390/pr13061914 - 17 Jun 2025
Cited by 1 | Viewed by 389
Abstract
The selective catalytic reduction (SCR) of NOx emissions by hydrocarbons (HCs) using a silver (Ag)-based catalyst offers significant advantages over conventional SCR systems that rely on ammonia reductants and vanadium-based catalysts. However, the conversion rate of SCR is influenced by several factors, [...] Read more.
The selective catalytic reduction (SCR) of NOx emissions by hydrocarbons (HCs) using a silver (Ag)-based catalyst offers significant advantages over conventional SCR systems that rely on ammonia reductants and vanadium-based catalysts. However, the conversion rate of SCR is influenced by several factors, among which catalyst poisoning is a major concern. Toxic metals such as sodium (Na), potassium (K), magnesium (Mg), and calcium (Ca) can degrade catalyst activity and lead to deactivation. Poisoned catalysts suffer from reduced conversion rates and premature deactivation before reaching their intended operational lifespan. In particular, calcium poisoning results in the formation of CaO (calcium oxide), which reacts to produce a CaWO4 compound that severely impairs SCR performance. This study investigates the role of antimony (Sb) in mitigating Ca-induced deactivation in HC-SCR of NOx. Five catalysts with varying Sb loadings were prepared and tested to evaluate Sb’s effect on NOx conversion rate at a space velocity of 30,000 h−1. The results demonstrate that Sb effectively suppresses Ca deactivation, enhancing the conversion rate across all engine test conditions. The highest NOx conversion rate (95.88%) was achieved using a catalyst with 3% Sb. Full article
(This article belongs to the Special Issue Combustion Characteristics and Emission Control of Blended Fuels)
Show Figures

Figure 1

23 pages, 12059 KiB  
Article
Powders Synthesized from Water Solutions of Sodium Silicate and Calcium and/or Magnesium Chlorides
by Tatiana V. Safronova, Alexandra S. Sultanovskaya, Sergei A. Savelev, Tatiana B. Shatalova, Yaroslav Y. Filippov, Olga V. Boytsova, Vadim B. Platonov, Tatiana V. Filippova, Albina M. Murashko, Xinyan Feng and Muslim R. Akhmedov
Compounds 2025, 5(2), 22; https://doi.org/10.3390/compounds5020022 - 16 Jun 2025
Viewed by 440
Abstract
Powders with phase composition including quasi-amorphous phases and calcium carbonate CaCO3 in the form of calcite or aragonite and sodium halite NaCl as a reaction by-product were synthesized from 0.5M aqua solutions of sodium silicate and 0.5M aqua solutions of calcium and/or [...] Read more.
Powders with phase composition including quasi-amorphous phases and calcium carbonate CaCO3 in the form of calcite or aragonite and sodium halite NaCl as a reaction by-product were synthesized from 0.5M aqua solutions of sodium silicate and 0.5M aqua solutions of calcium and/or magnesium chlorides. Starting solutions were taken in quantities which could provide precipitation of hydrated calcium and/or magnesium silicates with molar ratios Ca/Si = 1 (CaSi), Mg/Si = 1 (MgSi) or (Ca+Mg)/Si = 1 (CaMgSi). Hydrated calcium and/or magnesium silicates, hydrated silica, magnesium carbonate, hydrated magnesium carbonate or hydrated magnesium silicate containing carbonate ions are suspected as components of quasi-amorphous phases presented in synthesized powders. Heat treatment of synthesized powders at 400, 600, 800 °C and pressed preceramic samples at 900, 1000, 1100 and 1200 °C were used for investigation of thermal evolution of the phase composition and microstructure of powders and ceramic samples. Mass loss of powder samples under investigation during heat treatment was provided due to evacuation of H2O (m/z = 18), CO2 (m/z = 44) and NaCl at temperatures above its melting point. After sintering at 1100 °C, the phase composition of ceramic samples included wollastonite CaSiO3 (CaSi_1100); enstatite MgSiO3, clinoenstatite MgSiO3 and forsterite Mg2SiO4 (MgSi_1100); and diopside CaMgSi2O6 (CaMgSi_1100). After sintering at 1200 °C, the phase composition of ceramics CaSi_1200 included pseudo-wollastonite CaSiO3. After heat treatment at 1300 °C, the phase composition of MgSi_1300 powder included preferably protoenstatite MgSiO3. The phase composition of all samples after heat treatment belongs to the oxide system CaO–MgO–SiO2. Ceramic materials in this system are of interest for use in different areas, including refractories, construction materials and biomaterials. Powders prepared in the present investigation, both via precipitation and via heat treatment, can be used for the creation of materials with specific properties and in model experiments as lunar regolith simulants. Full article
Show Figures

Figure 1

14 pages, 3417 KiB  
Article
The Influence of Water Content in Ethylene Glycol Electrolyte on Magnesium Plasma Electrolytic Fluorinated Coating
by Yifeng Yang, Hao Wang, Xuchen Lu and Cancan Liu
Coatings 2025, 15(6), 701; https://doi.org/10.3390/coatings15060701 - 11 Jun 2025
Viewed by 373
Abstract
Plasma electrolytic fluorination (PEF) of AZ31 magnesium alloy was carried out by adding different ratios of water to the ethylene glycol-ammonium fluoride electrolyte. The structural composition of the coatings was characterized using SEM, XRD, and EDS, and the effects of water content on [...] Read more.
Plasma electrolytic fluorination (PEF) of AZ31 magnesium alloy was carried out by adding different ratios of water to the ethylene glycol-ammonium fluoride electrolyte. The structural composition of the coatings was characterized using SEM, XRD, and EDS, and the effects of water content on the microstructure and corrosion resistance of the PEF coatings were analyzed. The results showed that the addition of water promoted the ionization of ammonium fluoride and increased the conductivity of the glycol electrolyte, which led to a decrease in the termination voltage. However, the coating thickness was not changed by the addition of water. The O element in water was not enough to compete with the F element in the electrolyte and had a small effect on the PEF coating composition, which was still dominated by MgF2. The addition of water had an effect on the structure of the coating: with an increase in water content, the number of coating penetration holes decreases, and the continuity is enhanced. The pores on the surface of the coating tended to be levelled off and transitioned to the typical coating structure of PEO (plasma electrolytic oxidation). The addition of water to the glycol electrolyte was conducive to improving the corrosion resistance of the coatings. The corrosion resistance of PEF coatings in neutral NaCl corrosive medium firstly increased and then decreased, and the strongest corrosion resistance was obtained when the ratio of glycol and water is 6:4. Full article
Show Figures

Figure 1

18 pages, 3095 KiB  
Article
Development of κ-Carrageenan Films Reinforced with Magnesium Oxide Nanoparticles for the Potential Treatment of Chronic Wounds: In Vitro and In Vivo Insights
by Lesly Rodríguez-Vicens, Jorge L. Mejía-Méndez, Edgar R. López-Mena and Sergio A. Bernal-Chávez
Polysaccharides 2025, 6(2), 45; https://doi.org/10.3390/polysaccharides6020045 - 30 May 2025
Cited by 1 | Viewed by 1441
Abstract
In this work, κ-carrageenan (κ-C) and polyethylene oxide (PEO) were utilized to synthesize polymeric films (κ-C-PEO). A 2k experimental design was employed to optimize the synthesis of κ-C-PEO systems by considering the content of κ-carrageenan, PEO, and glycerin and their influence on [...] Read more.
In this work, κ-carrageenan (κ-C) and polyethylene oxide (PEO) were utilized to synthesize polymeric films (κ-C-PEO). A 2k experimental design was employed to optimize the synthesis of κ-C-PEO systems by considering the content of κ-carrageenan, PEO, and glycerin and their influence on the mechanical features of the resultant films. The κ-C-PEO systems were robustly characterized by FTIR spectroscopy, thermogravimetric analyses, and scanning electron microscopy (SEM). Magnesium oxide nanoparticles (MgO-NPs) were utilized to load κ-C-PEO films as an efficient approach to enhance their biological performance. The activity of κ-C-PEO films was studied against Gram-negative bacteria through the Kirby–Bauer assay. Artemia salina nauplii were cultured to assess the possible toxicity of κ-C-PEO films. The results demonstrated that κ-C-PEO films were elongated with the heterogeneous distribution of MgO-NPs. The tensile strength, thickness, and swelling capacity of κ-C-PEO films were 129 kPa, 0.19 mm, and 52.01%, respectively. TGA and DTA analyses revealed that κ-C-PEO films are thermally stable structures presenting significant mass loss patterns at >200 °C. Treatment with κ-C-PEO films did not inhibit the growth of Escherichia coli nor Pseudomonas aeruginosa. Against A. salina nauplii, κ-C-PEO films did not decrease the survival rate nor compromise the morphology of the tested in vivo model. The retrieved data from this study expand the knowledge about integrating inorganic nanomaterials with polysaccharide-based structures and their possible application in treating chronic wounds. Even though this work provides innovative insights into the optimal design of bioactive structures, further approaches are required to improve the biological performance of the synthesized κ-C-PEO films. Full article
Show Figures

Graphical abstract

13 pages, 2809 KiB  
Article
Initial Stages of Al-AM60-Modified Surface of Magnesium Alloy Activity Exposed to Simulated Marine Environment
by Gerardo Sánchez, Lucien Veleva and Eduardo Flores
Coatings 2025, 15(6), 661; https://doi.org/10.3390/coatings15060661 - 30 May 2025
Viewed by 543
Abstract
The surface of AM60 magnesium alloy was modified with Al-nanocoating ~65.62 nm, using DC magnetron sputtering to enhance its resistance to degradation under aggressive marine ambience. The sputtered Al film showed adhesion to the α-Mg matrix, covering the dispersed particles of the β [...] Read more.
The surface of AM60 magnesium alloy was modified with Al-nanocoating ~65.62 nm, using DC magnetron sputtering to enhance its resistance to degradation under aggressive marine ambience. The sputtered Al film showed adhesion to the α-Mg matrix, covering the dispersed particles of the β-Mg17Al12 secondary phase. The aluminum nanofilm was composed of (111) and (200) crystal planes of metallic aluminum (Al0) and Al2O3 (Al3+). After 30 days of immersion in a simulated marine environment (SME, pH 7.8), the Al-AM60 maintained a lower alkaline value (pH~8.13) of SME than that of uncoated AM60, attributed to α-Mg electrochemical oxidation to Al2O3 and its posterior dissolution, consuming OH ions. Consequently, the concentration of the released Mg2+ ions from the Al-AM60 surface was reduced ~2.3 times (~15 mg L−1). The Rp (polarization resistance), as inversely proportional to the corrosion current, was extracted from the EIS impedance data fitted to an equivalent electrical circuit. After 30 days in SME solution, the Rp value of the Al-AM60 modified surface was ~3.5 times higher than that of AM60 (~15.46 kΩ cm2), confirming that the sputtered aluminum nano-deposit layer can hinder the corrosion process. These reported findings indicated that sputtered Al nano-coatings can mitigate the surface degradation of Mg-Al alloys in saline aggressive marine environments. Full article
Show Figures

Figure 1

16 pages, 3214 KiB  
Article
Tailoring β-Bi2O3 Nanoparticles via Mg Doping for Superior Photocatalytic Activity and Hydrogen Evolution
by Ibrahim M. Sharaf, Mohamed S. I. Koubisy, Fatemah H. Alkallas, Amira Ben Gouider Trabelsi and Abdelaziz Mohamed Aboraia
Catalysts 2025, 15(6), 519; https://doi.org/10.3390/catal15060519 - 24 May 2025
Viewed by 687
Abstract
Bismuth oxide (β-Bi2O3) is a promising visible-light-driven photocatalyst due to its narrow direct bandgap, but its practical application is hindered by rapid electron–hole recombination and limited surface active sites. This study demonstrates a sol-gel synthesis approach to tailor β-Bi [...] Read more.
Bismuth oxide (β-Bi2O3) is a promising visible-light-driven photocatalyst due to its narrow direct bandgap, but its practical application is hindered by rapid electron–hole recombination and limited surface active sites. This study demonstrates a sol-gel synthesis approach to tailor β-Bi2O3 nanoparticles through magnesium (Mg) doping, achieving remarkable enhancements in the photocatalytic degradation of organic pollutants and hydrogen evolution. The structural analysis through XRD, SEM, and EDX confirmed Mg-doping concentrations of 0.025 to 0.1 M led to crystallite size reduction from 79 nm to 13 nm, while the UV–Vis bandgap measurement showed it decreased from 3.8 eV to 3.08–3.3 eV. The photodegradation efficiency increased through Mg doping at a 0.1 M concentration, with the highest rate constant value of 0.0217 min−1. The doping process led to VB potential reduction between 3.37 V (pristine) and 2.78–2.91 V across the doped samples when referenced to SCE. The photocatalytic performance of Mg0.075Bi1.925O3 improved with its 3.2 V VB potential because the photoelectric band arrangement enhanced both light absorption and charge separation. The combination of modifications through Mg doping yielded an enhanced photocatalytic performance, which proves that magnesium doping is a pivotal approach to modifying β-Bi2O3 suitable for environmentally and energy-related applications. Full article
(This article belongs to the Special Issue Design and Application of Combined Catalysis)
Show Figures

Figure 1

22 pages, 6513 KiB  
Article
Sustainable MgO Nanocatalyst Additives for Boosting Performance and Mitigating Emissions of Used Cooking Oil Biodiesel–Diesel Blends in Compression Ignition Engines
by Kiran Chaudhari, Nilesh Salunke, Shakeelur Raheman Ateequr Raheman, Khursheed B. Ansari, Kapil Ashokrao Saner, Vijay Kashinath Suryawanshi and Mumtaj Shah
Catalysts 2025, 15(5), 489; https://doi.org/10.3390/catal15050489 - 17 May 2025
Cited by 1 | Viewed by 887
Abstract
With conventional fuels dwindling and emissions rising, there is a necessity to develop and assess innovative substitute fuel for compression ignition (CI) engines. This study investigates the potential of magnesium oxide (MgO) nanoparticles as a sustainable additive to enhance the performance and reduce [...] Read more.
With conventional fuels dwindling and emissions rising, there is a necessity to develop and assess innovative substitute fuel for compression ignition (CI) engines. This study investigates the potential of magnesium oxide (MgO) nanoparticles as a sustainable additive to enhance the performance and reduce emissions of used cooking oil (UCO) biodiesel–diesel blends in CI engines. MgO nanoparticles were biosynthesized using Citrus aurantium peel extract, offering an environmentally friendly production method. A single-cylinder CI engine was used to test the performance of diesel fuel (B0), a 20% biodiesel blend (B20), and B20 blends with 30 ppm (B20M30) and 60 ppm (B20M60) MgO nanoparticles. Engine performance parameters (brake thermal efficiency (BTE), brake-specific fuel consumption (BSFC), and exhaust gas temperature (EGT)) and emission characteristics (CO, NOx, unburnt hydrocarbons (HCs), and smoke opacity) were measured. The B20M60 blend showed a 2.38% reduction in BSFC and a 3.38% increase in BTE compared to B20, with significant reductions in unburnt HC, CO, and smoke opacity. However, NOx emissions increased by 6.57%. The green synthesis method enhances sustainability, offering a promising pathway for cleaner and more efficient CI engine operation using UCO biodiesel, demonstrating the effectiveness of MgO nanoparticles. Full article
(This article belongs to the Special Issue Waste-to-Resources Through Catalysis in Green and Sustainable Way)
Show Figures

Figure 1

Back to TopTop