Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (28)

Search Parameters:
Keywords = magnesium alginate

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 2761 KiB  
Article
Dual-Functioned Magnesium-Enriched Biochar Hydrogels for Phosphate Recovery and Slow-Release Nutrient Delivery
by Nur Maisarah Mohamad Sarbani, Hiroyuki Harada, Mitsuru Aoyagi and Endar Hidayat
Water 2025, 17(15), 2235; https://doi.org/10.3390/w17152235 - 27 Jul 2025
Viewed by 259
Abstract
Excessive phosphate from agriculture and industry has led to widespread eutrophication, posing a serious environmental threat. To address this issue, metal-modified biochars have emerged as promising adsorbents due to their high affinity for phosphate ions. This study investigates the application of two magnesium-modified [...] Read more.
Excessive phosphate from agriculture and industry has led to widespread eutrophication, posing a serious environmental threat. To address this issue, metal-modified biochars have emerged as promising adsorbents due to their high affinity for phosphate ions. This study investigates the application of two magnesium-modified biochar hydrogels denoted as magnesium–bamboo biochar hydrogel (Mg-BBH) and magnesium–pulp biochar hydrogel (Mg-PBH) for phosphate recovery from aqueous solutions, with an additional aim as slow-release fertilizers. The adsorbents were synthesized by impregnating Mg-modified biochars into sodium-alginate-based hydrogel. The influence of initial phosphate concentration, contact time, and temperature were investigated to determine optimal adsorption conditions. Both adsorbents exhibited excellent adsorption performance, with maximum capacities of 309.96 mg PO4/g (Mg-BBH) and 234.69 mg PO4/g (Mg-PBH). Moreover, the adsorption performance of the adsorbents was greatly influenced by the magnesium content. The adsorption process followed the Temkin isotherm and pseudo-second-order kinetics, suggesting that the adsorption energy decreases proportionally with surface coverage and the phosphate uptake was governed by chemisorption. Thermodynamic study confirmed the process was spontaneous and endothermic at 40 °C. A slow-release study further demonstrated a great release of phosphate in soil over time. These findings highlight the dual functionality of Mg-BBH and Mg-PBH as effective materials for both phosphate recovery and controlled nutrient delivery, contributing to sustainable phosphate management. Full article
(This article belongs to the Section Soil and Water)
Show Figures

Figure 1

14 pages, 1402 KiB  
Article
E-Gastryal® + Magnesium Alginate Plus PPI vs. PPI Alone in GERD: Results from the GENYAL® Randomized Controlled Trial
by Cristiano Spada, Daniele Salvi, Silvia Pecere, Francesca Mangiola, Simone Varca, Serban Rosu, Vora Prateek, Petru Vasile Ciobanca, Adrian Goldis, Dionisio Franco Barattini and Guido Costamagna
J. Clin. Med. 2025, 14(13), 4794; https://doi.org/10.3390/jcm14134794 - 7 Jul 2025
Viewed by 546
Abstract
Background: Up to one-third of patients with gastroesophageal reflux disease (GERD) have persistent symptoms despite proton-pump inhibitor (PPI) therapy. E-Gastryal® + MgAlg (Aurora Biofarma, Italy) is a mucosal protective agent that enhances barrier function against acid and non-acidic reflux. This study [...] Read more.
Background: Up to one-third of patients with gastroesophageal reflux disease (GERD) have persistent symptoms despite proton-pump inhibitor (PPI) therapy. E-Gastryal® + MgAlg (Aurora Biofarma, Italy) is a mucosal protective agent that enhances barrier function against acid and non-acidic reflux. This study assessed its efficacy in combination with omeprazole versus omeprazole alone and as maintenance therapy. Methods: Patients with symptomatic GERD and Grade A reflux esophagitis confirmed by endoscopy were randomized to receive omeprazole 20 mg plus E-Gastryal® + MgAlg or omeprazole 20 mg alone. The primary endpoint was the number of rescue medications used over 28 days. Secondary endpoints included symptom relief and quality-of-life assessments using the Reflux Symptom Index (RSI), Gastroesophageal Reflux Disease Impact Scale (GIS), GERD-Health-Related Quality of Life (GERD-HRQL), and Global Assessment of Performance (IGAP). Results: Ninety-six patients were included. The combination group used significantly fewer rescue medications (mean: 21 vs. 40.9 tablets; p = 0.002). At week 4, the combination group showed greater improvement in RSI, GIS, and GERD-HRQL scores (p < 0.001). Symptom relief was sustained during weeks 5–26 with E-Gastryal® + MgAlg alone. Conclusions: E-Gastryal® + MgAlg combined with omeprazole improves symptom control compared to PPI monotherapy. Continued use as maintenance therapy supports its role in long-term GERD management (NCT04130659). Full article
(This article belongs to the Section Gastroenterology & Hepatopancreatobiliary Medicine)
Show Figures

Figure 1

15 pages, 3252 KiB  
Article
Adsorption of Nitrate Ions Using Magnesium-Loaded Bamboo Powder and Nano-Sized Crushed Oyster Shells
by Harada Hiroyuki, Nur Maisarah Mohamad Sarbani, Aoyagi Misturu and Jun Nishimoto
Separations 2025, 12(4), 76; https://doi.org/10.3390/separations12040076 - 27 Mar 2025
Cited by 1 | Viewed by 471
Abstract
Excess nitrate ions should be avoided in agriculture as they are absorbed by plants and ingested by humans, which can have serious effects on soil and groundwater. In this study, environmentally friendly bamboo flour and nano-sized oyster shells were used as adsorbents. The [...] Read more.
Excess nitrate ions should be avoided in agriculture as they are absorbed by plants and ingested by humans, which can have serious effects on soil and groundwater. In this study, environmentally friendly bamboo flour and nano-sized oyster shells were used as adsorbents. The equilibrium time for nitrate adsorption was found to be short, less than five minutes, and the treatment temperature had little effect on adsorption. The adsorption capacity and adsorption mechanism were investigated using experiments and adsorption isotherms. Bamboo powder treated with magnesium chloride (Mg bamboo), crushed oyster shell (oyster shell), and hydrogel induced with sodium alginate (hydrogel) were used. The maximum adsorption of nitrate ions on the magnesium-treated bamboo flour was estimated to be 399 mg NO3/g by the Dubin–Radushakevich equation (correlation coefficient 0.84), with the Langmuir (correlation coefficient 0.91) and Freundlich (correlation coefficient 0.91) equations also fitting relatively well. The D-R equation (correlation coefficient 0.938) and Freundlich equation (correlation coefficient 0.943) also fitted oyster shells relatively well. The maximum adsorption was estimated at 354 mg NO3/g. In oyster shell treatments where phosphate and nitrate ions were present, it was observed that both substances were adsorbed simultaneously. For the hydrogels, only the D-R equation (correlation coefficient 0.944) and the Freundlich isotherm were applicable. The maximum adsorption was estimated at 156 mg/g. Full article
Show Figures

Figure 1

20 pages, 4213 KiB  
Article
Preparation of Phosphogypsum–Bentonite-Based Slow-Release Potassium Magnesium Sulfate Fertilizer
by Zhizhi Zhang, Chunxiao Han, Changyuan Tao, Xing Fan and Renlong Liu
Agriculture 2025, 15(7), 692; https://doi.org/10.3390/agriculture15070692 - 25 Mar 2025
Cited by 2 | Viewed by 759
Abstract
The application of slow-release fertilizers is essential for improving fertilizer utilization efficiency and promoting sustainable agricultural development. Unlike traditional single organic polymer-coated or inorganic-coated fertilizers, this study utilized biodegradable modified polyvinyl alcohol (PVA) as a binder and cheap, readily available phosphogypsum–bentonite as an [...] Read more.
The application of slow-release fertilizers is essential for improving fertilizer utilization efficiency and promoting sustainable agricultural development. Unlike traditional single organic polymer-coated or inorganic-coated fertilizers, this study utilized biodegradable modified polyvinyl alcohol (PVA) as a binder and cheap, readily available phosphogypsum–bentonite as an inorganic coating material to develop a novel slow-release potassium magnesium sulfate fertilizer (SRPMSF). This study initially examined the influence of SA dosage on PVA properties. XRD, FTIR, TGA, and water resistance analyses revealed that sodium alginate exhibits good compatibility with polyvinyl alcohol, enhancing its heat and water resistance. Ultimately, PVA–SA-2 (1.2% sodium alginate) was chosen as the optimal binder for SRPMSF production. Furthermore, this study investigated the impact of bentonite on the physical and slow-release properties of the SRPMSF by varying the phosphogypsum-to-bentonite ratio. This experiment included five treatment methods: the treatments consist of SRPMSF-1 (0 g bentonite), SRPMSF-2 (phosphogypsum/bentonite ratio of 4:1), SRPMSF-3 (3:2), SRPMSF-4 (2:3), and SRPMSF-5 (1:4). A control group (PMSF) was also included. The results indicated that, as the bentonite content increased, both the particle size and compressive strength of the coated slow-release fertilizer increased, with the SRPMSF particle sizes ranging from 3.00 to 4.50 mm. The compressive strength of the SRPMSF ranged from 20.85 to 43.78 N, meeting the requirements for industrial production. The soil column leaching method was employed to assess the nutrient release rate of the fertilizers. The experimental results indicated that, compared to the PMSF, the SRPMSF effectively regulated nutrient release. Pot experiments demonstrated that the SRPMSF significantly enhanced garlic seedling growth compared to the PMSF. In conclusion, a new type of slow-release fertilizer with good slow-release performance is prepared in this paper, which can improve the utilization rate of fertilizer and reduce the economic loss and is conducive to the sustainable development of agriculture. Full article
(This article belongs to the Section Agricultural Soils)
Show Figures

Figure 1

16 pages, 4896 KiB  
Communication
Fiber Fabry–Perot Sensor Based on Ion-Imprinted Sodium Alginate/Graphene Oxide Hydrogel for Copper Ion Detection Using Vernier Effect
by Ning Wang, Shiqi Liu, Liang Xu, Longjiao Wang, Ming He, Chuanjie Lei and Linyufan Xiao
Sensors 2025, 25(3), 920; https://doi.org/10.3390/s25030920 - 3 Feb 2025
Viewed by 991
Abstract
This work proposes an optical fiber copper ion sensor, which is fabricated by an ion-imprinted sodium alginate/graphene oxide (SA/GO) hydrogel and single-mode fiber (SMF). This sensing Fabry–Perot Interferometer (FPI) achieves −1.98 nm/(mg/L) sensitivity with 0.998 linearity. To achieve higher sensitivity, we add a [...] Read more.
This work proposes an optical fiber copper ion sensor, which is fabricated by an ion-imprinted sodium alginate/graphene oxide (SA/GO) hydrogel and single-mode fiber (SMF). This sensing Fabry–Perot Interferometer (FPI) achieves −1.98 nm/(mg/L) sensitivity with 0.998 linearity. To achieve higher sensitivity, we add a reference FPI to create a Vernier effect. We achieve 19.58 nm/mg/L sensitivity and 0.989 linearity at a concentration range of 0 mg/L–1.4 mg/L. It was 9.9 times higher than that of a single-sensing FPI. The experimental results also demonstrate that when the FSR values of two FPIs are closer, the higher response sensitivity is achieved. The sensor also has good measurement repeatability and dynamic response. In addition, the experimental results of response selectivity show that its response sensitivity to copper ions is significantly higher than other six types of ions, including iron ions, lead ions, magnesium ions, manganese ion, zinc ions, chromium ions. The copper ion is also mixed with six types of ions to deeply investigate the response selectivity. Good response selectivity and cross-responding are demonstrated by experimental results. Full article
(This article belongs to the Section Optical Sensors)
Show Figures

Figure 1

13 pages, 4352 KiB  
Article
Magnesium Alginate as an Electrolyte for Magnesium Batteries
by Markus C. Kwakernaak, Lindah K. Kiriinya, Walter J. Legerstee, Winok M. J. Berghmans, Caspar G. T. Hofman and Erik M. Kelder
Batteries 2025, 11(1), 16; https://doi.org/10.3390/batteries11010016 - 3 Jan 2025
Viewed by 1360
Abstract
We present magnesium alginate as an aqueous polymer electrolyte for use in magnesium batteries. Alginates are polysaccharides extracted from algae, which form hydrogel materials upon interaction with divalent and trivalent cations. They are renewable, non-toxic, biocompatible materials that are widely used in the [...] Read more.
We present magnesium alginate as an aqueous polymer electrolyte for use in magnesium batteries. Alginates are polysaccharides extracted from algae, which form hydrogel materials upon interaction with divalent and trivalent cations. They are renewable, non-toxic, biocompatible materials that are widely used in the food and pharmaceutical industries. Mg2+ is weakly bound to an alginate polymer, which results in a hydrogel-like material that contains mobile magnesium ions. We propose that this is the ideal situation for an electrolyte that behaves in a similar way as a ‘water-in-salt’ system. Magnesium alginate was successfully synthesized and characterized by FTIR, XRD, and PDF. Ionic conductivity was measured with EIS measurements; a 2 wt% magnesium electrolyte shows a conductivity of 1.8 mS/cm. During conductivity experiments, we noticed the formation of a black layer on magnesium electrodes, which can improve the ionic conductivity between the electrodes. We carefully characterized this layer with XPS and saw that it mainly consists of alginate derivatives. Full article
Show Figures

Graphical abstract

15 pages, 1561 KiB  
Article
Evaluation of the Improvement Effect of Chemical Fertilizer Combined with Different Additives on Newly Built Paddy Soil
by Nannan Wang, Tibin Zhang, Hao Shi, Xianhua Zhang, Shiwen Wang and Hongyi Li
Agronomy 2024, 14(8), 1706; https://doi.org/10.3390/agronomy14081706 - 2 Aug 2024
Cited by 1 | Viewed by 1480
Abstract
Exploring the effects of different additives on the improvement of newly cultivated farmland in mountainous areas can provide rational soil fertilization plans for regions lacking means of production. We conducted a paddy planting experiment in Ankang City, Shaanxi Province. Six treatments were set [...] Read more.
Exploring the effects of different additives on the improvement of newly cultivated farmland in mountainous areas can provide rational soil fertilization plans for regions lacking means of production. We conducted a paddy planting experiment in Ankang City, Shaanxi Province. Six treatments were set up, including sole chemical fertilizer (CK); fertilizer + bacteria agent (NB); chemical fertilizer + alginate bio-organic fertilizer (NO); fertilizer + fulvic acid biomass nutrient solution (NF); chemical fertilizer + acid soil conditioner (NC); fertilizer + silicon–calcium–magnesium–potassium fertilizer (NSi). We collected topsoil samples after paddy harvest, analyzed their physical, chemical, and biological properties, and selected indicators to construct a Total Data Set (TDS) and a Minimum Data Set (MDS). The Soil Quality Index (SQI) was used to evaluate the soil improvement effects after different fertilization regimes. The SQI calculated by the TDS and the MDS showed that the SQI after NF treatment was higher than that under other treatments. The SQI based on the TDS (SQITDS) and the SQI based on the MDS (SQIMDS) were significantly positively correlated with yield. The SQI calculated based on both the TDS and the MDS can objectively reflect the soil fertility quality. The paddy yield and total dry matter accumulation were the highest under the NF treatment, and the SQI was the largest. Thus, the effect of chemical fertilizer combined with fulvic acid biomass nutrient solution on soil fertility was the most significant. Full article
(This article belongs to the Special Issue Tillage Systems and Fertilizer Application on Soil Health)
Show Figures

Figure 1

22 pages, 10260 KiB  
Article
Alginate-Sr/Mg Containing Bioactive Glass Scaffolds: The Characterization of a New 3D Composite for Bone Tissue Engineering
by Benedetta Guagnini, Barbara Medagli, Bianca Zumbo, Valeria Cannillo, Gianluca Turco, Davide Porrelli and Devis Bellucci
J. Funct. Biomater. 2024, 15(7), 183; https://doi.org/10.3390/jfb15070183 - 2 Jul 2024
Cited by 8 | Viewed by 2785
Abstract
In bone regeneration, combining natural polymer-based scaffolds with Bioactive Glasses (BGs) is an attractive strategy to improve the mechanical properties of the structure, as well as its bioactivity and regenerative potential. Methods: For this purpose, a well-studied alginate/hydroxyapatite (Alg/HAp) porous scaffold was enhanced [...] Read more.
In bone regeneration, combining natural polymer-based scaffolds with Bioactive Glasses (BGs) is an attractive strategy to improve the mechanical properties of the structure, as well as its bioactivity and regenerative potential. Methods: For this purpose, a well-studied alginate/hydroxyapatite (Alg/HAp) porous scaffold was enhanced with an experimental bioglass (BGMS10), characterized by a high crystallization temperature and containing therapeutic ions such as strontium and magnesium. This resulted in an improved biological response compared to 45S5 Bioglass®, the “gold” standard among BGs. Porous composite scaffolds were fabricated by freeze-drying technique and characterized by scanning electron microscopy and microanalysis, infrared spectroscopy, and microcomputed tomography. The mechanical properties and cytocompatibility of the new scaffold composition were also evaluated. The addition of bioglass to the Alg/HAp network resulted in a slightly lower porosity. However, despite the change in pore size, the MG-63 cells were able to better adhere and proliferate when cultured for one week on a BG scaffold compared to the control Alg/HAp scaffolds. Thus, our findings indicate that the combination of bioactive glass BGMS10 does not affect the structural and physicochemical properties of the Alg/HAp scaffold and confers bioactive properties to the structures, making the Alg/HAp-BGMS10 scaffold a promising candidate for future application in bone tissue regeneration. Full article
(This article belongs to the Special Issue Hydroxyapatite Composites for Biomedical Application)
Show Figures

Graphical abstract

23 pages, 8900 KiB  
Article
Experimental Study on the Strength Deterioration and Mechanism of Stabilized River Silt Reinforced with Cement and Alginate Fibers
by Ying Wang, Chaojie Wang, Zhenhua Hu and Rong Sun
Materials 2024, 17(13), 3124; https://doi.org/10.3390/ma17133124 - 26 Jun 2024
Cited by 2 | Viewed by 1428
Abstract
River silt deposited by water in coastal areas is unsuitable for engineering construction. Thus, the in situ stabilization treatment of river silt as the bearing layer has been an important research area in geotechnical engineering. The strength degradation behavior and mechanism of stabilized [...] Read more.
River silt deposited by water in coastal areas is unsuitable for engineering construction. Thus, the in situ stabilization treatment of river silt as the bearing layer has been an important research area in geotechnical engineering. The strength degradation behavior and mechanism of stabilized river silt reinforced with cement and alginate fibers (AFCS) in different engineering environments are crucial for engineering applications. Therefore, freeze–thaw (F–T) cycle tests, wetting-drying (W–D) cycle tests, water immersion tests and seawater erosion tests were conducted to explore the strength attenuation of stabilized river silt reinforced with the same cement content (9% by wet weight) and different fiber contents (0%, 0.3%, 0.6% and 0.9% by weight of wet soil) and fiber lengths (3 mm, 6 mm and 9 mm). The reinforcement and damage mechanism of AFCS was analyzed by scanning electron microscopy (SEM) imaging. The results indicate that the strength of AFCS was improved from 84% to 180% at 15 F–T cycle tests, and the strength of AFCS was improved by 26% and 40% at 30 W–D cycles, which showed better stability and excellent characteristics owing to the hygroscopic characteristics of alginate fiber arousing the release of calcium and magnesium ions within the alginate. Also, the strength attenuation of AFCS was reduced with the increase in the length and content of alginate fibers. Further, the strength of specimens in the freshwater environment was higher than that in the seawater environment at the same fiber content, and the softening coefficient of AFCS in the freshwater environment was above 0.85, indicating that the AFCS had good water stability. The optimal fiber content was found to be 0.6% based on the unconfined compressive strength (UCS) reduction in specimens cured in seawater and a freshwater environment. And the strength of AFCS was improved by about 10% compared with that of cement-stabilized soil (CS) in a seawater environment. A stable spatial network structure inside the soil was formed, in which the reinforcing effect of fibers was affected by mechanical connection, friction and interfacial bonding. However, noticeable cracks developed in the immersed and F–T specimens. These microscopic characteristics contributed to decreased mechanical properties for AFCS. The results of this research provide a reference for the engineering application of AFCS. Full article
Show Figures

Figure 1

13 pages, 4169 KiB  
Article
Magnesium Transfer between Atomic Force Microscopy Probes and Metal Electrodes in Aqueous Alginate Electrolytes
by Walter J. Legerstee, Lindah Kiriinya, Mark Kwakernaak and Erik M. Kelder
Polymers 2024, 16(12), 1615; https://doi.org/10.3390/polym16121615 - 7 Jun 2024
Cited by 1 | Viewed by 1369
Abstract
The upcoming energy transition requires not only renewable energy sources but also novel electricity storage systems such as batteries. Despite Li-ion batteries being the main storage systems, other batteries have been proposed to fulfil the requirements on safety, costs, and resource availability. Moving [...] Read more.
The upcoming energy transition requires not only renewable energy sources but also novel electricity storage systems such as batteries. Despite Li-ion batteries being the main storage systems, other batteries have been proposed to fulfil the requirements on safety, costs, and resource availability. Moving away from lithium, materials such as sodium, magnesium, zinc, and calcium are being considered. Water-based electrolytes are known for their improved safety, environmentally friendliness, and affordability. The key, however, is how to utilize the negative metal electrode, as using water-based electrolytes with these metals becomes an issue with respect to oxidation and/or dendrite formation. This work studied magnesium, where we aimed to determine if it can be electrochemically deposited in aqueous solutions with alginate-based additives to protect the magnesium. In order to do so, atomic force microscopy was used to research the morphological structure of magnesium deposition at the local scale by using a probe—the tip of a cantilever—as the active electrode, during charging and discharging. The second goal of using the AFM probe technology for magnesium deposition and stripping was an extension of our previous study in which we investigated, for lithium, whether it is possible to measure ion current and perform nonfaradaic impedance measurements at the local scale. The work presented here shows that this is possible in a relatively simple way because, with magnesium, no dendrite formation occurs, which hinders the stripping process. Full article
(This article belongs to the Special Issue Polysaccharide-Based Materials: Developments and Properties)
Show Figures

Figure 1

15 pages, 2947 KiB  
Article
Biomimetic Apatite/Natural Polymer Composite Granules as Multifunctional Dental Tissue Regenerative Material
by Barbara Kołodziejska, Ramona Figat and Joanna Kolmas
Int. J. Mol. Sci. 2023, 24(23), 16751; https://doi.org/10.3390/ijms242316751 - 25 Nov 2023
Cited by 8 | Viewed by 1641
Abstract
This study presents a comprehensive evaluation of novel composite biomaterials designed for dental applications, aiming to potentially address the prevalent challenge of dental and periodontal tissue loss. The composites consisted of biomimetic hydroxyapatite (mHA) enriched with Mg2+, CO32−, [...] Read more.
This study presents a comprehensive evaluation of novel composite biomaterials designed for dental applications, aiming to potentially address the prevalent challenge of dental and periodontal tissue loss. The composites consisted of biomimetic hydroxyapatite (mHA) enriched with Mg2+, CO32−, and Zn2+ ions, type I collagen, alginate, and, additionally, chitosan and sericin. The granules were loaded with ibuprofen sodium salt. The investigation encompassed a morphology characterization, a porosity analysis, a chemical structure assessment, and an examination of the swelling behavior, drug release kinetics (ibuprofen), and release profiles of zinc and magnesium ions. The granules exhibited irregular surfaces with an enhanced homogeneity in the chitosan-coated granules and well-developed mesoporous structures. The FT-IR spectra confirmed the presence of ibuprofen sodium, despite overlapping bands for the polymers. The granules demonstrated a high water-absorption capacity, with delayed swelling observed in the chitosan-coated granules. Ibuprofen displayed burst-release profiles, especially in the G1 and G3 samples. In the case of the chitosan-coated granules (G2 and G4), lower amounts of ibuprofen were released. In turn, there was a significant difference in the released amount of magnesium and zinc ions from the granules, which was most likely caused by their different location in the hydroxyapatite crystals. The cytotoxicity assays confirmed the non-cytotoxic behavior of the biomaterial. These findings suggest the potential applicability of these biomaterials in dental scenarios, emphasizing their multifunctional and biocompatible nature. Full article
(This article belongs to the Special Issue Oral Soft Tissue Repair and Oral Diseases)
Show Figures

Figure 1

16 pages, 2095 KiB  
Article
Sodium Alginate-Based MgO Nanoparticles Coupled Antibiotics as Safe and Effective Antimicrobial Candidates against Staphylococcus aureus of Houbara Bustard Birds
by Maheen Murtaza, Amjad Islam Aqib, Shanza Rauf Khan, Afshan Muneer, Muhammad Muddassir Ali, Ahmad Waseem, Tean Zaheer, Lamya Ahmed Al-Keridis, Nawaf Alshammari and Mohd Saeed
Biomedicines 2023, 11(7), 1959; https://doi.org/10.3390/biomedicines11071959 - 11 Jul 2023
Cited by 5 | Viewed by 2330
Abstract
Alternative and modified therapeutic approaches are key elements in culminating antibiotic resistance. To this end, an experimental trial was conducted to determine the cytotoxicity and antibacterial potential of composites of magnesium oxide (MgO) nanoparticles and antibiotics stabilized in sodium alginate gel against multi-drug-resistant [...] Read more.
Alternative and modified therapeutic approaches are key elements in culminating antibiotic resistance. To this end, an experimental trial was conducted to determine the cytotoxicity and antibacterial potential of composites of magnesium oxide (MgO) nanoparticles and antibiotics stabilized in sodium alginate gel against multi-drug-resistant Staphylococcus aureus isolated from a houbara bustard. The characterization of preparations was carried out using X-ray diffraction (XRD), scanning transmissible electron microscopy (STEM), and Fourier-transform infrared spectroscopy (FTIR). The preparations used in this trial consisted of gel-stabilized MgO nanoparticles (MG), gel-stabilized tylosin (GT), gel-stabilized ampicillin (GA), gel-stabilized cefoxitin (GC), gel-stabilized MgO and tylosin (GMT), gel-stabilized MgO and cefoxitin (GMC), and gel-stabilized MgO and ampicillin (GMA). The study presents composites that cause a lesser extent of damage to DNA while significantly enhancing mitotic indices/phases compared to the other single component preparations with respect to the positive control (methyl methanesulphonate). It was also noted that there was a non-significant difference (p > 0.05) between the concentrations of composites and the negative control in the toxicity trial. Studying in parallel trials showed an increased prevalence, potential risk factors, and antibiotic resistance in S. aureus. The composites in a well diffusion trial showed the highest percentage increase in the zone of inhibition in the case of GT (58.42%), followed by GMT (46.15%), GC (40.65%), GMC (40%), GMA (28.72%), and GA (21.75%) compared to the antibiotics alone. A broth microdilution assay showed the lowest minimum inhibitory concentration (MIC) in the case of GMA (9.766 ± 00 µg/mL), followed by that of GT (13.02 ± 5.64 µg/mL), GMC (19.53 ± 0.00 µg/mL), GA (26.04 ± 11.28 µg/mL), GMT (26.04 ± 11.28 µg/mL), MG (39.06 ± 0.00 µg/mL), and GC (39.06 ± 0.00 µg/mL). The study thus concludes the effective tackling of multiple-drug-resistant S. aureus with sodium-alginate-stabilized MgO nanoparticles and antibiotics, whereas toxicity proved to be negligible for these composites. Full article
Show Figures

Graphical abstract

13 pages, 2347 KiB  
Article
Recyclable Magnesium-Modified Biochar Beads for Efficient Removal of Phosphate from Wastewater
by Biao Hu, Nina Yan, Zhiyu Zheng, Lei Xu, Hongde Xie and Jingwen Chen
Nanomaterials 2023, 13(6), 966; https://doi.org/10.3390/nano13060966 - 7 Mar 2023
Cited by 5 | Viewed by 2583
Abstract
Although ball milling is effective for biochar modification with metal oxides for efficient phosphate removal, the recyclability of the adsorbent as well as the precursors for modification, still need to be optimized. Herein, a magnesium-modified biochar was first prepared with the precursor of [...] Read more.
Although ball milling is effective for biochar modification with metal oxides for efficient phosphate removal, the recyclability of the adsorbent as well as the precursors for modification, still need to be optimized. Herein, a magnesium-modified biochar was first prepared with the precursor of MgCl2·6H2O through the solvent-free ball milling method. After that, recyclable biochar beads were fabricated with the introduction of sodium alginate and Fe3O4. The beads were proved to have excellent adsorption performance for phosphate with a saturated capacity of 53.2 mg g−1, which is over 12 times higher than that of pristine biochar beads. Although the particle size reduction, surface area, and O-containing group increments after milling are beneficial for adsorption, the remarkable promotion in performance should mainly result from the appropriate formation of magniferous crystals on biochar, which greatly accelerates the electrostatic interactions as well as precipitation for adsorption. The beads also exhibited excellent magnetism-driven recyclability, which greatly avoids secondary contamination and broadens the application field of the adsorbent. Full article
Show Figures

Graphical abstract

16 pages, 3078 KiB  
Article
QCM-Based MgFe2O4@CaAlg Nanocomposite as a Fast Response Nanosensor for Real-Time Detection of Methylene Blue Dye
by Wafa Al-Gethami, Noha Al-Qasmi, Sameh H. Ismail and Ahmed H. Sadek
Nanomaterials 2023, 13(1), 97; https://doi.org/10.3390/nano13010097 - 25 Dec 2022
Cited by 16 | Viewed by 2430
Abstract
Methylene blue (MB) dye is a common colorant used in numerous industries, particularly the textile industry. When methylene blue is discharged into water bodies without being properly treated, it may seriously damage aquatic and human life. As a result, a variety of methods [...] Read more.
Methylene blue (MB) dye is a common colorant used in numerous industries, particularly the textile industry. When methylene blue is discharged into water bodies without being properly treated, it may seriously damage aquatic and human life. As a result, a variety of methods have been established to remove dyes from aqueous systems. Thanks to their distinguishing features e.g., rapid responsiveness, cost-effectiveness, potential selectivity, portability, and simplicity, the electrochemical methods provided promising techniques. Considering these aspects, a novel quartz crystal microbalance nanosensors based on green synthesized magnesium ferrite nanoparticles (QCM-Based MgFe2O4 NPs) and magnesium ferrite nanoparticles coated alginate hydrogel nanocomposite (QCM-Based MgFe2O4@CaAlg NCs) were designed for real-time detection of high concentrations of MB dye in the aqueous streams at different temperatures. The characterization results of MgFe2O4 NPs and MgFe2O4@CaAlg NCs showed that the MgFe2O4 NPs have synthesized in good crystallinity, spherical shape, and successfully coated by the alginate hydrogel. The performance of the designed QCM-Based MgFe2O4 NPs and MgFe2O4@CaAlg NCs nanosensors were examined by the QCM technique, where the developed nanosensors showed great potential for dealing with continuous feed, very small volumes, high concentrations of MB, and providing an instantaneous response. In addition, the alginate coating offered more significant attributes to MgFe2O4 NPs and enhanced the sensor work toward MB monitoring. The sensitivity of designed nanosensors was evaluated at different MB concentrations (100 mg/L, 400 mg/L, and 800 mg/L), and temperatures (25 °C, 35 °C, and 45 °C). Where a real-time detection of 400 mg/L MB was achieved using the developed sensing platforms at different temperatures within an effective time of about 5 min. The results revealed that increasing the temperature from 25 °C to 45 °C has improved the detection of MB using the MgFe2O4@CaAlg NCs nanosensor and the MgFe2O4@CaAlg NCs nanosensor exhibited high sensitivity for different MB concentrations with more efficiency than the MgFe2O4 NPs nanosensor. Full article
Show Figures

Figure 1

31 pages, 1297 KiB  
Review
Antimicrobial Nanomaterials for Food Packaging
by Vasanti Suvarna, Arya Nair, Rashmi Mallya, Tabassum Khan and Abdelwahab Omri
Antibiotics 2022, 11(6), 729; https://doi.org/10.3390/antibiotics11060729 - 29 May 2022
Cited by 106 | Viewed by 10343
Abstract
Food packaging plays a key role in offering safe and quality food products to consumers by providing protection and extending shelf life. Food packaging is a multifaceted field based on food science and engineering, microbiology, and chemistry, all of which have contributed significantly [...] Read more.
Food packaging plays a key role in offering safe and quality food products to consumers by providing protection and extending shelf life. Food packaging is a multifaceted field based on food science and engineering, microbiology, and chemistry, all of which have contributed significantly to maintaining physicochemical attributes such as color, flavor, moisture content, and texture of foods and their raw materials, in addition to ensuring freedom from oxidation and microbial deterioration. Antimicrobial food packaging systems, in addition to their function as conventional food packaging, are designed to arrest microbial growth on food surfaces, thereby enhancing food stability and quality. Nanomaterials with unique physiochemical and antibacterial properties are widely explored in food packaging as preservatives and antimicrobials, to extend the shelf life of packed food products. Various nanomaterials that are used in food packaging include nanocomposites composing nanoparticles such as silver, copper, gold, titanium dioxide, magnesium oxide, zinc oxide, mesoporous silica and graphene-based inorganic nanoparticles; gelatin; alginate; cellulose; chitosan-based polymeric nanoparticles; lipid nanoparticles; nanoemulsion; nanoliposomes; nanosponges; and nanofibers. Antimicrobial nanomaterial-based packaging systems are fabricated to exhibit greater efficiency against microbial contaminants. Recently, smart food packaging systems indicating the presence of spoilage and pathogenic microorganisms have been investigated by various research groups. The present review summarizes recent updates on various nanomaterials used in the field of food packaging technology, with potential applications as antimicrobial, antioxidant equipped with technology conferring smart functions and mechanisms in food packaging. Full article
(This article belongs to the Special Issue Antibiotic-Free Antibacterial Strategies Enabled by Nanomaterials)
Show Figures

Graphical abstract

Back to TopTop