Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (215)

Search Parameters:
Keywords = macropore formation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 6495 KiB  
Article
Fractal Characterization of Pore Structures in Marine–Continental Transitional Shale Gas Reservoirs: A Case Study of the Shanxi Formation in the Ordos Basin
by Jiao Zhang, Wei Dang, Qin Zhang, Xiaofeng Wang, Guichao Du, Changan Shan, Yunze Lei, Lindong Shangguan, Yankai Xue and Xin Zhang
Energies 2025, 18(15), 4013; https://doi.org/10.3390/en18154013 - 28 Jul 2025
Viewed by 273
Abstract
Marine–continental transitional shale is a promising unconventional gas reservoir, playing an increasingly important role in China’s energy portfolio. However, compared to marine shale, research on marine–continental transitional shale’s fractal characteristics of pore structure and complete pore size distribution remains limited. In this work, [...] Read more.
Marine–continental transitional shale is a promising unconventional gas reservoir, playing an increasingly important role in China’s energy portfolio. However, compared to marine shale, research on marine–continental transitional shale’s fractal characteristics of pore structure and complete pore size distribution remains limited. In this work, high-pressure mercury intrusion, N2 adsorption, and CO2 adsorption techniques, combined with fractal geometry modeling, were employed to characterize the pore structure of the Shanxi Formation marine–continental transitional shale. The shale exhibits generally high TOC content and abundant clay minerals, indicating strong hydrocarbon-generation potential. The pore size distribution is multi-modal: micropores and mesopores dominate, contributing the majority of the specific surface area and pore volume, whereas macropores display a single-peak distribution. Fractal analysis reveals that micropores have high fractal dimensions and structural regularity, mesopores exhibit dual-fractal characteristics, and macropores show large variations in fractal dimension. Characteristics of pore structure is primarily controlled by TOC content and mineral composition. These findings provide a quantitative basis for evaluating shale reservoir quality, understanding gas storage mechanisms, and optimizing strategies for sustainable of oil and gas development in marine–continental transitional shales. Full article
(This article belongs to the Special Issue Sustainable Development of Unconventional Geo-Energy)
Show Figures

Figure 1

26 pages, 9458 KiB  
Article
Wettability Characteristics of Mixed Sedimentary Shale Reservoirs in Saline Lacustrine Basins and Their Impacts on Shale Oil Energy Replenishment: Insights from Alternating Imbibition Experiments
by Lei Bai, Shenglai Yang, Dianshi Xiao, Hongyu Wang, Jian Wang, Jin Liu and Zhuo Li
Energies 2025, 18(14), 3887; https://doi.org/10.3390/en18143887 - 21 Jul 2025
Viewed by 301
Abstract
Due to the complex mineral composition, low clay content, and strong heterogeneity of the mixed sedimentary shale in the Xinjiang Salt Lake Basin, the wettability characteristics of the reservoir and their influencing factors are not yet clear, which restricts the evaluation of oil-bearing [...] Read more.
Due to the complex mineral composition, low clay content, and strong heterogeneity of the mixed sedimentary shale in the Xinjiang Salt Lake Basin, the wettability characteristics of the reservoir and their influencing factors are not yet clear, which restricts the evaluation of oil-bearing properties and the identification of sweet spots. This paper analyzed mixed sedimentary shale samples from the Lucaogou Formation of the Jimsar Sag and the Fengcheng Formation of the Mahu Sag. Methods such as petrographic thin sections, X-ray diffraction, organic matter content analysis, and argon ion polishing scanning electron microscopy were used to examine the lithological and mineralogical characteristics, geochemical characteristics, and pore space characteristics of the mixed sedimentary shale reservoir. Alternating imbibition and nuclear magnetic resonance were employed to quantitatively characterize the wettability of the reservoir and to discuss the effects of compositional factors, lamina types, and pore structure on wettability. Research findings indicate that the total porosity, measured by the alternate imbibition method, reached 72% of the core porosity volume, confirming the effectiveness of alternate imbibition in filling open pores. The Lucaogou Formation exhibits moderate to strong oil-wet wettability, with oil-wet pores predominating and well-developed storage spaces; the Fengcheng Formation has a wide range of wettability, with a higher proportion of mixed-wet pores, strong heterogeneity, and weaker oil-wet properties compared to the Lucaogou Formation. TOC content has a two-segment relationship with wettability, where oil-wet properties increase with TOC content at low TOC levels, while at high TOC levels, the influence of minerals such as carbonates dominates; carbonate content shows an “L” type response to wettability, enhancing oil-wet properties at low levels (<20%), but reducing it due to the continuous weakening effect of minerals when excessive. Lamina types in the Fengcheng Formation significantly affect wettability differentiation, with carbonate-shale laminae dominating oil pores, siliceous laminae contributing to water pores, and carbonate–feldspathic laminae forming mixed pores; the Lucaogou Formation lacks significant laminae, and wettability is controlled by the synergistic effects of minerals, organic matter, and pore structure. Increased porosity strengthens oil-wet properties, with micropores promoting oil adsorption through their high specific surface area, while macropores dominate in terms of storage capacity. Wettability is the result of the synergistic effects of multiple factors, including TOC, minerals, lamina types, and pore structure. Based on the characteristic that oil-wet pores account for up to 74% in shale reservoirs (mixed-wet 12%, water-wet 14%), a wettability-targeted regulation strategy is implemented during actual shale development. Surfactants are used to modify oil-wet pores, while the natural state of water-wet and mixed-wet pores is maintained to avoid interference and preserve spontaneous imbibition advantages. The soaking period is thus compressed from 30 days to 3–5 days, thereby enhancing matrix displacement efficiency. Full article
(This article belongs to the Special Issue Sustainable Development of Unconventional Geo-Energy)
Show Figures

Figure 1

20 pages, 7127 KiB  
Article
Comparative Study on Full-Scale Pore Structure Characterization and Gas Adsorption Capacity of Shale and Coal Reservoirs
by Mukun Ouyang, Bo Wang, Xinan Yu, Wei Tang, Maonan Yu, Chunli You, Jianghai Yang, Tao Wang and Ze Deng
Processes 2025, 13(7), 2246; https://doi.org/10.3390/pr13072246 - 14 Jul 2025
Viewed by 242
Abstract
Shale and coal in the transitional marine–continental facies of the Ordos Basin serve as unconventional natural gas reservoirs, with their pore structures controlling gas adsorption characteristics and occurrence states. To quantitatively characterize the pore structure features and differences between these two reservoirs, this [...] Read more.
Shale and coal in the transitional marine–continental facies of the Ordos Basin serve as unconventional natural gas reservoirs, with their pore structures controlling gas adsorption characteristics and occurrence states. To quantitatively characterize the pore structure features and differences between these two reservoirs, this study takes the Shanxi Formation shale and coal in the Daning–Jixian area on the eastern margin of the Ordos Basin as examples. Field-emission scanning electron microscopy (FE-SEM), high-pressure mercury intrusion, low-temperature N2 adsorption, and low-pressure CO2 adsorption experiments were employed to analyze and compare the full-scale pore structures of the shale and coal reservoirs. Combined with methane isothermal adsorption experiments, the gas adsorption capacity and its differences in these reservoirs were investigated. The results indicate that the average total organic carbon (TOC) content of shale is 2.66%, with well-developed organic pores, inorganic pores, and microfractures. Organic pores are the most common, typically occurring densely and in clusters. The average TOC content of coal is 74.22%, with organic gas pores being the dominant pore type, significantly larger in diameter than those in transitional marine–continental facies shale and marine shale. In coal, micropores contribute the most to pore volume, while mesopores and macropores contribute less. In shale, mesopores dominate, followed by micropores, with macropores being underdeveloped. Both coal and shale exhibit a high SSA primarily contributed by micropores, with organic matter serving as the material basis for micropore development. The methane adsorption capacity of coal is 8–29 times higher than that of shale. Coal contains abundant organic micropores, providing a large SSA and numerous adsorption sites for methane, facilitating gas adsorption and storage. This study comprehensively reveals the similarities and differences in pore structures between transitional marine–continental facies shale and coal reservoirs in the Ordos Basin at the microscale, providing a scientific basis for the precise evaluation and development of unconventional oil and gas resources. Full article
Show Figures

Figure 1

20 pages, 2364 KiB  
Article
Novel Core–Shell Aerogel Formulation for Drug Delivery Based on Alginate and Konjac Glucomannan: Rational Design Using Artificial Intelligence Tools
by Carlos Illanes-Bordomás, Mariana Landin and Carlos A. García-González
Polymers 2025, 17(14), 1919; https://doi.org/10.3390/polym17141919 - 11 Jul 2025
Viewed by 354
Abstract
This study explores novel alginate–konjac glucomannan core–shell aerogel particles for drug delivery systems fabricated via air-assisted coaxial prilling. A systematic approach is needed for the optimization of this method due to the numerous processing variables involved. This study investigated the influence of six [...] Read more.
This study explores novel alginate–konjac glucomannan core–shell aerogel particles for drug delivery systems fabricated via air-assisted coaxial prilling. A systematic approach is needed for the optimization of this method due to the numerous processing variables involved. This study investigated the influence of six variables: alginate and konjac glucomannan concentrations, compressed airflow, liquid pump pressures, and nozzle configuration. A hybrid software using Artificial Neural Networks and genetic algorithms was used to model and optimize the hydrogel formation, achieving a 100% desirable solution. The optimal formulation identified resulted in particles displaying a log-normal size distribution (R2 = 0.967) with an average diameter of 1.57 mm. Supercritical CO2 drying yielded aerogels with macropores and mesopores and a high specific surface area (201 ± 10 m2/g). The loading of vancomycin hydrochloride (Van) or a dexamethasone base (DX) into the aerogel cores during the process was tested. The aerogels exhibited appropriate structural characteristics, and both drugs showed burst release profiles with ca. 80% release within 10 min for DX and medium-dependent release for Van. This study demonstrates the feasibility of producing konjac aerogel particles for delivery systems and the high potential of AI-driven optimization methods, highlighting the need for coating modifications to achieve the desired release profiles. Full article
Show Figures

Graphical abstract

15 pages, 4738 KiB  
Article
Mechanical Performance of Ceria-Coated 3D-Printed Black Zirconia Cellular Structures After Solar Thermochemical CO/H2 Fuel Production Cycles
by Fernando A. Costa Oliveira, Manuel Sardinha, Joaquim M. Justino Netto, Miguel Farinha, Marco Leite, M. Alexandra Barreiros, Stéphane Abanades and Jorge Cruz Fernandes
Crystals 2025, 15(7), 629; https://doi.org/10.3390/cryst15070629 - 8 Jul 2025
Viewed by 340
Abstract
Solar fuels production requires developing redox active materials with porous structures able to withstand thermochemical cycles with enhanced thermal stability under concentrated solar irradiation conditions. The mechanical performance of 3D-printed, macroporous black zirconia gyroid structures, coated with redox-active ceria, was assessed for their [...] Read more.
Solar fuels production requires developing redox active materials with porous structures able to withstand thermochemical cycles with enhanced thermal stability under concentrated solar irradiation conditions. The mechanical performance of 3D-printed, macroporous black zirconia gyroid structures, coated with redox-active ceria, was assessed for their suitability in solar thermochemical cycles for CO2 and H2O splitting. Experiments were conducted using a 1.5 kW solar furnace to supply the high-temperature concentrated heat to a windowed reaction chamber to carry out thermal redox cycling under realistic on-sun conditions. The ceria coating on ceramic structures improved the thermal stability and redox efficiency while minimizing the quantity of the redox material involved. Crushing strength measurements showed that samples not directly exposed to the concentrated solar flux retained their mechanical performance after thermal cycling (~10 MPa), while those near the concentrated solar beam focus exhibited significant degradation due to thermal stresses and the formation of CexZr1−xO2 solid solutions (~1.5 MPa). A Weibull modulus of 8.5 was estimated, marking the first report of such a parameter for fused filament fabrication (FFF)-manufactured black zirconia with gyroid architecture. Failure occurred via a damage accumulation mechanism at both micro- and macro-scales. These findings support the viability of ceria-coated cellular ceramics for scalable solar fuel production and highlight the need for optimized reactor designs. Full article
(This article belongs to the Section Materials for Energy Applications)
Show Figures

Figure 1

25 pages, 9967 KiB  
Article
Study on the Influence and Mechanism of Mineral Admixtures and Fibers on Frost Resistance of Slag–Yellow River Sediment Geopolymers
by Ge Zhang, Huawei Shi, Kunpeng Li, Jialing Li, Enhui Jiang, Chengfang Yuan and Chen Chen
Nanomaterials 2025, 15(13), 1051; https://doi.org/10.3390/nano15131051 - 6 Jul 2025
Viewed by 278
Abstract
To address the demands for resource utilization of Yellow River sediment and the durability requirements of engineering materials in cold regions, this study systematically investigates the mechanisms affecting the frost resistance of slag-Yellow River sediment geopolymers through the incorporation of mineral admixtures (silica [...] Read more.
To address the demands for resource utilization of Yellow River sediment and the durability requirements of engineering materials in cold regions, this study systematically investigates the mechanisms affecting the frost resistance of slag-Yellow River sediment geopolymers through the incorporation of mineral admixtures (silica fume and metakaolin) and fibers (steel fiber and PVA fiber). Through 400 freeze-thaw cycles combined with microscopic characterization techniques such as SEM, XRD, and MIP, the results indicate that the group with 20% silica fume content (SF20) exhibited optimal frost resistance, showing a 19.9% increase in compressive strength after 400 freeze-thaw cycles. The high pozzolanic reactivity of SiO2 in SF20 promoted continuous secondary gel formation, producing low C/S ratio C-(A)-S-H gels and increasing the gel pore content from 24% to 27%, thereby refining the pore structure. Due to their high elastic deformation capacity (6.5% elongation rate), PVA fibers effectively mitigate frost heave stress. At the same dosage, the compressive strength loss rate (6.18%) and splitting tensile strength loss rate (21.79%) of the PVA fiber-reinforced group were significantly lower than those of the steel fiber-reinforced group (9.03% and 27.81%, respectively). During the freeze-thaw process, the matrix pore structure exhibited a typical two-stage evolution characteristic of “refinement followed by coarsening”: In the initial stage (0–100 cycles), secondary hydration products from mineral admixtures filled pores, reducing the proportion of macropores by 5–7% and enhancing matrix densification; In the later stage (100–400 cycles), due to frost heave pressure and differences in thermal expansion coefficients between matrix phases (e.g., C-(A)-S-H gel and fibers), interfacial microcracks propagated, causing the proportion of macropores to increase back to 35–37%. This study reveals the synergistic interaction between mineral admixtures and fibers in enhancing freeze–thaw performance. It provides theoretical support for the high-value application of Yellow River sediment in F400-grade geopolymer composites. The findings have significant implications for infrastructure in cold regions, including subgrade materials, hydraulic structures, and related engineering applications. Full article
(This article belongs to the Special Issue Nanomaterials and Nanotechnology in Civil Engineering)
Show Figures

Figure 1

27 pages, 6141 KiB  
Article
Pore-Throat Structure, Fractal Characteristics, and Main Controlling Factors in Extremely Low-Permeability Sandstone Reservoirs: The Case of Chang 3 Section in Huachi Area, Ordos Basin
by Huanmeng Zhang, Chenyang Wang, Jinkuo Sui, Yujuan Lv, Ling Guo and Zhiyu Wu
Fractal Fract. 2025, 9(7), 439; https://doi.org/10.3390/fractalfract9070439 - 3 Jul 2025
Viewed by 344
Abstract
The pore-throat structure of the extremely low-permeability sandstone reservoir in the Huachi area of the Ordos Basin is complex and highly heterogeneous. Currently, there are issues such as unclear understanding of the micro-pore-throat structural characteristics, primary controlling factors of reservoir quality, and classification [...] Read more.
The pore-throat structure of the extremely low-permeability sandstone reservoir in the Huachi area of the Ordos Basin is complex and highly heterogeneous. Currently, there are issues such as unclear understanding of the micro-pore-throat structural characteristics, primary controlling factors of reservoir quality, and classification boundaries of the reservoir in the study area, which seriously restricts the exploration and development effectiveness of the reservoir in this region. It is necessary to use a combination of various analytical techniques to comprehensively characterize the pore-throat structure and establish reservoir classification evaluation standards in order to better understand the reservoir. This study employs a suite of analytical and testing techniques, including cast thin sections (CTS), scanning electron microscopy (SEM), cathodoluminescence (CL), X-ray diffraction (XRD), as well as high-pressure mercury injection (HPMI) and constant-rate mercury injection (CRMI), and applies fractal theory for analysis. The research findings indicate that the extremely low-permeability sandstone reservoir of the Chang 3 section primarily consists of arkose and a minor amount of lithic arkose. The types of pore-throat are diverse, with intergranular pores, feldspar dissolution pores, and clay interstitial pores and microcracks being the most prevalent. The throat types are predominantly sheet-type, followed by pore shrinkage-type and tubular throats. The pore-throat network of low-permeability sandstone is primarily composed of nanopores (pore-throat radius r < 0.01 μm), micropores (0.01 < r < 0.1 μm), mesopores (0.1 < r < 1.0 μm), and macropores (r > 1.0 μm). The complexity of the reservoir pore-throat structure was quantitatively characterized by fractal theory. Nanopores do not exhibit ideal fractal characteristics. By splicing high-pressure mercury injection and constant-rate mercury injection at a pore-throat radius of 0.12 μm, a more detailed characterization of the full pore-throat size distribution can be achieved. The average fractal dimensions for micropores (Dh2), mesopores (Dc3), and macropores (Dc4) are 2.43, 2.75, and 2.95, respectively. This indicates that the larger the pore-throat size, the rougher the surface, and the more complex the structure. The degree of development and surface roughness of large pores significantly influence the heterogeneity and permeability of the reservoir in the study area. Dh2, Dc3, and Dc4 are primarily controlled by a combination of pore-throat structural parameters, sedimentary processes, and diagenetic processes. Underwater diversion channels and dissolution are key factors in the formation of effective storage space. Based on sedimentary processes, reservoir space types, pore-throat structural parameters, and the characteristics of mercury injection curves, the study area is divided into three categories. This classification provides a theoretical basis for predicting sweet spots in oil and gas exploration within the study area. Full article
Show Figures

Figure 1

26 pages, 7464 KiB  
Article
Pore Structure and Multifractal Characteristics of the Upper Lianggaoshan Formation in the Northeastern Sichuan Basin, China
by Jingjing Guo, Guotao Luo, Haitao Wang and Liehui Zhang
Fractal Fract. 2025, 9(7), 430; https://doi.org/10.3390/fractalfract9070430 - 30 Jun 2025
Viewed by 273
Abstract
The Upper Lianggaoshan (LGS) Formation in the northeastern Sichuan Basin, composed of shale with interbedded siltstone, is a promising target layer for shale oil. Accurate evaluation of pore structures is essential for effective exploration of shale oil. This study investigated pore structures of [...] Read more.
The Upper Lianggaoshan (LGS) Formation in the northeastern Sichuan Basin, composed of shale with interbedded siltstone, is a promising target layer for shale oil. Accurate evaluation of pore structures is essential for effective exploration of shale oil. This study investigated pore structures of siltstone and shale samples from the Upper LGS Formation using low-pressure CO2 adsorption (LTCA), low-temperature N2 adsorption (LTNA), high-pressure mercury intrusion (HPMI), and nuclear magnetic resonance (NMR) methods. The single-exponent and multifractal dimensions of samples were determined, and the relationships between fractal dimensions and pore structures were explored. Results show that the pore size distribution (PSD) of siltstone and shale samples exhibits multi-peak characteristics, with mesopores (2–50 nm) being dominant in the total pore volumes. The multi-scaled pores in shale and siltstone samples exhibit fractal characteristics. The average values of single-fractal dimensions (D1, D2) obtained by LTNA data are 2.39 and 2.62 for shale samples, and 2.24 and 2.59 for siltstone samples, respectively. Compared to siltstones, the pore structures of shale samples exhibit greater complexity, indicated by larger fractal dimensions. The samples from subsections Liang 2 and Liang 3 exhibit greater heterogeneity compared to subsection Liang 1. The single-fractal dimensions of micropores and mesopores show positive correlations with specific surface area (SSA) and pore volume (PV), while the fractal dimension of macropores shows a negative correlation with average pore diameter and median radius. The average values of single-fractal dimension D3 obtained from HPMI data are 2.9644 and 2.9471 for shale and siltstone samples, respectively, indicating more complex structures of macropores in shale samples compared to siltstone samples. The average value of ΔDNMR and singularity strength range Δα obtained by a multifractal model for core samples from subsection Liang 1 are 1.868 and 2.155, respectively, which are the smallest among all of the three subsections, indicating that the heterogeneity of pore structures of subsection Liang 1 is the weakest. This research provides valuable guidance for shale oil development in the northeastern Sichuan Basin, China. Full article
(This article belongs to the Special Issue Analysis of Geological Pore Structure Based on Fractal Theory)
Show Figures

Figure 1

22 pages, 4798 KiB  
Article
Earthworm (Eisenia fetida) Mediated Macropore Network Formation in Black Soil: Decay Straw as a Trigger for Sustainable Tillage
by Baoguang Wu, Pu Chen, Yuping Liu, Zhipeng Yin, Qiuju Wang, Shun Xu, Jinsong Zhang, Bingqi Bai, Deyi Zhou and Yuxin Liu
Agriculture 2025, 15(13), 1397; https://doi.org/10.3390/agriculture15131397 - 29 Jun 2025
Viewed by 346
Abstract
In this study, a method for creating networked macropores through tillage using Eisenia fetida attracted by food sources derived from decomposing straw was proposed. The effects of Eisenia fetida activity and corn stalk addition, as well as the synergistic effects of Bacillus subtilis [...] Read more.
In this study, a method for creating networked macropores through tillage using Eisenia fetida attracted by food sources derived from decomposing straw was proposed. The effects of Eisenia fetida activity and corn stalk addition, as well as the synergistic effects of Bacillus subtilis, on macropore formation were systematically studied. A 3D visualization technique was used to render the pore network model. When compared with undisturbed soil, the results demonstrate that cultivation using earthworms attracted by food sources from decomposing straw creates a soil pore structure with the most significant effect. The 3D porosity of the soil increased 6.90-fold, its average pore volume increased 5.49-fold, and its equivalent diameter increased 4.88-fold. Cylindrical pores, which accounted for the largest proportion (4.38%), had a channel radius of 1–5 mm and comprised approximately 86.7% of all macropores. The channel length increased by 28.5%, the average roundness decreased by 2.5%, and the average coordination number increased by 33.3%. The macroporous network structure formed by these earthworm-generated pores was more beneficial for improving the structure of phaeozem, offering technical support for the field application of earthworm farming. Full article
(This article belongs to the Section Agricultural Soils)
Show Figures

Figure 1

15 pages, 2767 KiB  
Article
Solid-to-Solid Manufacturing Processes for High-Performance Li-Ion Solid-State Batteries
by David Orisekeh, Byeong-Min Roh and Xinyi Xiao
Polymers 2025, 17(13), 1788; https://doi.org/10.3390/polym17131788 - 27 Jun 2025
Viewed by 607
Abstract
Batteries are used as energy storage devices in various equipment. Today, research is focused on solid-state batteries (SSBs), replacing the liquid electrolyte with a solid separator. The solid separators provide electrolyte stability, no leakage, and provide mechanical strength to the battery. Separators are [...] Read more.
Batteries are used as energy storage devices in various equipment. Today, research is focused on solid-state batteries (SSBs), replacing the liquid electrolyte with a solid separator. The solid separators provide electrolyte stability, no leakage, and provide mechanical strength to the battery. Separators are mostly manufactured by either traditional processes or 3D printing technologies. These processes involve making a slurry of plastic, active and conductive material and usually adding a plasticizer when making thin films or filaments for 3D printing. This study investigates the additive manufacturing of solid-state electrolytes (SSEs) by employing fused deposition modeling (FDM) with recyclable, bio-derived polylactic acid (PLA) filaments. Precise control of macro-porosity is achieved by systematically varying key process parameters, including raster orientation, infill percentage, and interlayer adhesion conditions, thereby enabling the formation of tunable, interconnected pore networks within the polymer matrix. Following 3D printing, these engineered porous frameworks are infiltrated with lithium hexafluorophosphate (LiPF6), which functions as the active ionic conductor. A tailored thermal sintering protocol is then applied to promote solid-phase fusion of the embedded salt throughout the macro-porous PLA scaffold, resulting in a mechanically robust and ionically conductive composite separator. The electrochemical ionic conductivity and structural integrity of the sintered SSEs are characterized through electrochemical impedance spectroscopy (EIS) and standardized mechanical testing to assess their suitability for integration into advanced solid-state battery architectures. The solid-state separator achieved an average ionic conductivity of 2.529 × 10−5 S·cm−1. The integrated FDM-sintering process enhances ion exchange at the electrode–electrolyte interface, minimizes material waste, and supports cost-efficient, fully recyclable component fabrication. Full article
Show Figures

Figure 1

19 pages, 5474 KiB  
Article
Structure and Fractal Characteristics of Organic Matter Pores in Wufeng–Lower Longmaxi Formations in Southern Sichuan Basin, China
by Quanzhong Guan, Dazhong Dong, Bin Deng, Cheng Chen, Chongda Li, Kun Jiao, Yuehao Ye, Haoran Liang and Huiwen Yue
Fractal Fract. 2025, 9(7), 410; https://doi.org/10.3390/fractalfract9070410 - 25 Jun 2025
Viewed by 599
Abstract
Organic matter pores constitute a significant storage space in shale gas reservoirs, contributing to approximately 50% of the total porosity. This study employed a comprehensive approach, utilizing scanning electron microscopy, low-pressure N2 adsorption, thermal analysis, image statistics, and fractal theory, to quantitatively [...] Read more.
Organic matter pores constitute a significant storage space in shale gas reservoirs, contributing to approximately 50% of the total porosity. This study employed a comprehensive approach, utilizing scanning electron microscopy, low-pressure N2 adsorption, thermal analysis, image statistics, and fractal theory, to quantitatively characterize the structure and complexity of organic matter pores in the Wufeng–lower Longmaxi Formations (WLLFs). The WLLFs exhibit a high organic matter content, averaging 3.20%. Organic matter pores are typically well-developed, predominantly observed within organic matter clusters, organic matter–clay mineral complexes, and the internal organic matter of pyrite framboid. The morphology of these pores is generally elliptical and spindle-shaped, with the primary pore diameter displaying a bimodal distribution at 10~40 nm and 100~160 nm, potentially influenced by the observational limit of scanning electron microscopy. Shales from greater burial depths within the same gas well contain more organic matter pores; however, the development of organic matter pores in deep gas wells is roughly equivalent to that in medium and shallow gas wells. Fractal dimension values can be utilized to characterize the complexity of organic matter pores, with organic matter macropores (D>50) being more complex than organic matter mesopores (D2–50), which in turn are more complex than organic matter micropores (D<2). The development of macropores and mesopores is a key factor in the heterogeneity of organic matter pores. The complexity of organic matter pores in the same well increases gradually with the burial depth of the shale, and the complexity of organic matter pores in deep gas wells is roughly equivalent to that in medium and shallow gas wells. The structure and fractal characteristics of organic matter pores in shale are primarily controlled by components, diagenesis, tectonism, etc. The lower Longmaxi shale exhibit a high biogenic quartz content and robust hydrocarbon generation from organic matter. This composition effectively shields organic matter pores from multi-directional extrusion, leading to the formation of macropores and mesopores without specific orientation. High-quality shale sections (one and two sublayers) have relatively high fractal dimension D2–50 and D>50 values of organic matter pores and gas content. Consequently, the quality parameters of shale and fractal dimension characteristics can be comprehensively evaluated to identify high-quality shale sections. Full article
Show Figures

Figure 1

20 pages, 5625 KiB  
Article
Pore Evolution Characteristics and Accumulation Effect of Lower Jurassic Continental Shale Gas Reservoirs in Northeastern Sichuan Basin
by Xinyi He, Tao Jiang, Zhenxue Jiang, Zhongbao Liu, Yuanhao Zhang and Dandan Wang
Minerals 2025, 15(6), 650; https://doi.org/10.3390/min15060650 - 16 Jun 2025
Viewed by 254
Abstract
The Sichuan Basin is a key area for shale gas energy exploration in China. However, the pore evolution mechanism and accumulation effect of the Lower Jurassic continental shale gas in the northeastern Sichuan Basin remain poorly understood. In this study, the pore structure [...] Read more.
The Sichuan Basin is a key area for shale gas energy exploration in China. However, the pore evolution mechanism and accumulation effect of the Lower Jurassic continental shale gas in the northeastern Sichuan Basin remain poorly understood. In this study, the pore structure characteristics of shale reservoirs and the dynamic accumulation and evolution of shale gas in the northern Fuling and Yuanba areas were systematically analyzed by adsorption experiments, high-pressure mercury injection joint measurement, and thermal simulation experiments. The results indicate the following: (1) The continental shale in the study area is predominantly composed of mesopores (10–50 nm), which account for approximately 55.21% of the total pore volume, followed by macropores (5–50 μm) contributing around 35.15%. Micropores exhibit the lowest proportion, typically less than 10%. Soluble minerals such as clay minerals and calcite significantly promote pore development, while soluble organic matter may block small pores during hydrocarbon generation, which facilitates the enrichment of free gas. (2) The thermal simulation experiment reveals that pore evolution can be divided into two distinct stages. Prior to 450 °C, hydrocarbon generation leads to a reduction in pore volume due to the compaction and transformation of organic matter. After 450 °C, organic matter undergoes cracking processes accompanied by the formation of shrinkage fractures, resulting in the development of new macropores and a significant increase in pore volume. This indicates that thermal energy input during the thermal evolution stage plays a key role in reservoir reconstruction. (3) The early Jurassic sedimentary environment controls the enrichment of organic matter, and the Cretaceous is the key period of hydrocarbon accumulation. Hydrocarbon generation and diagenesis synergistically promote the formation of gas reservoirs. The Cenozoic tectonic activity adjusted the distribution of gas reservoirs, and finally formed the enrichment model with the core of source–reservoir–preservation dynamic matching. For the first time, combined with dynamic thermal simulation experiments, this study clarifies the stage characteristics of pore evolution of continental shale and identifies the main controlling factors of shale gas accumulation in the Lower Jurassic in northeastern Sichuan, which provides a theoretical basis for continental shale gas exploration and energy resource development, offering important guidance for optimizing the selection of exploration target areas. Full article
(This article belongs to the Special Issue Distribution and Development of Faults and Fractures in Shales)
Show Figures

Figure 1

23 pages, 8674 KiB  
Article
Porous and Tough Polyacrylamide/Carboxymethyl Cellulose Gels Chemically Crosslinked via Cryo-UV Polymerization for Sustained Drug Release
by Duangkamon Viboonratanasri, Daniel Rudolf King, Tsuyoshi Okumura, Mohamad Alaa Terkawi, Yoshinori Katsuyama, Milena Lama, Tomoki Yasui and Takayuki Kurokawa
Gels 2025, 11(6), 453; https://doi.org/10.3390/gels11060453 - 13 Jun 2025
Viewed by 492
Abstract
While carboxymethyl cellulose (CMC)—a biocompatible and water-soluble cellulose derivative—holds promise for biomedical applications, challenges remain in synthesizing CMC-based hydrogels with covalent crosslinking through free radical polymerization without requiring complex, multi-step processes. In this study, we introduce a facile one-pot strategy that combines CMC [...] Read more.
While carboxymethyl cellulose (CMC)—a biocompatible and water-soluble cellulose derivative—holds promise for biomedical applications, challenges remain in synthesizing CMC-based hydrogels with covalent crosslinking through free radical polymerization without requiring complex, multi-step processes. In this study, we introduce a facile one-pot strategy that combines CMC with acrylamide (AAm) under cryogelation and low-intensity UV irradiation to achieve covalent bonding and a high polymerization yield. The resulting polyacrylamide/carboxymethyl cellulose (PAAm/CMC) porous gels were systematically evaluated for their chemical, physical, thermal, and drug-release properties, with a focus on the effects of AAm concentration and polymerization temperature (frozen vs. room temperature). Notably, the cryogel synthesized with 2.5 M AAm (PC2.5) exhibited significantly enhanced mechanical properties—that is, an 8.4-fold increase in tensile modulus and a 26-fold increase in toughness—compared with the non-cryo gel. Moreover, PC2.5 demonstrated excellent cyclic compression stability in water and phosphate-buffered saline (PBS), with less than 10% reduction in modulus after 100 cycles. These increases in the mechanical properties of PC2.5 are attributed to the formation of macropores with high polymer density and high crosslinking density at the pore walls. PC2.5 also showed slower drug release in PBS and good cytocompatibility. This study presents a simplified and efficient route for fabricating mechanically robust, covalently crosslinked PAAm/CMC cryogels, highlighting their strong potential for biomedical applications in drug delivery systems. Full article
(This article belongs to the Section Gel Analysis and Characterization)
Show Figures

Graphical abstract

16 pages, 9568 KiB  
Article
Enrichment Mechanism and Development Technology of Deep Marine Shale Gas near Denudation Area, SW CHINA: Insights from Petrology, Mineralogy and Seismic Interpretation
by Haijie Zhang, Ziyi Shi, Lin Jiang, Weiming Chen, Tongtong Luo and Lin Qi
Minerals 2025, 15(6), 619; https://doi.org/10.3390/min15060619 - 9 Jun 2025
Viewed by 247
Abstract
As an important target for deep marine shale gas exploration, shale reservoirs near denudation areas have enormous resource potential. Based on the impression method, the sedimentary paleogeomorphology near the denudation area is identified as three units: the first terrace, the second terrace, and [...] Read more.
As an important target for deep marine shale gas exploration, shale reservoirs near denudation areas have enormous resource potential. Based on the impression method, the sedimentary paleogeomorphology near the denudation area is identified as three units: the first terrace, the second terrace, and the third terrace. At the second terrace where Well Z212 is located, the thickness of the Longmaxi Formation first section is only 0.8 m, and the continuous thickness of the target interval is only 4.3 m, making it a typical thin shale reservoir. By integrating petrology, mineralogy and the seismic method, the thin shale reservoir is characterized. Compared to shale reservoirs far away from the denudation area, the Well Z212 (near denudation area) production interval (Wufeng Formation first section) has high porosity (6%–10%), moderate TOC (3%–4%), a high carbonate mineral content (10%–35%), and a high gas content (>7 m3/t). The correlation between the total porosity of shale and the density of high-frequency laminations is the strongest, indicating that the silt laminations have a positive effect on pore preservation. There is a significant positive correlation between carbonate content and the volume of mesopores and macropores, as well as the porosity of inorganic pores. It is suggested that carbonate minerals are the main carrier of inorganic pores in Well Z212, and the pores are mainly composed of mesopores and macropores. Under the condition of being far away from the fault zone, even near the denudation area, it has good shale gas preservation characteristics. The key development technologies consist of integrated geo-steering technology, acidification, and volume fracking technology. Based on geological characteristics, the fracturing process optimization of Well Z212 has achieved shale reservoir stimulation. Full article
(This article belongs to the Special Issue Element Enrichment and Gas Accumulation in Black Rock Series)
Show Figures

Figure 1

25 pages, 4925 KiB  
Article
Chestnut Waste-Derived Fe-Based Photocatalyst for Diclofenac Degradation
by Marianna Guagliano, Ana Bahamonde, Maurizio Bellotto, Cinzia Cristiani, Elisabetta Finocchio, Antonio Gasco, Virginia Muelas-Ramos, Karla Jiménez-Bautista, Christian de los Ríos and Daphne Hermosilla
C 2025, 11(2), 38; https://doi.org/10.3390/c11020038 - 6 Jun 2025
Viewed by 1453
Abstract
This study aims to demonstrate the feasibility of the use of chestnut waste as a green and circular material for developing iron-based photocatalysts for non-steroidal anti-inflammatory drug (NSAID) photodegradation. Four Fe-based catalysts and two pristine biochars were obtained upon a pyrolysis process at [...] Read more.
This study aims to demonstrate the feasibility of the use of chestnut waste as a green and circular material for developing iron-based photocatalysts for non-steroidal anti-inflammatory drug (NSAID) photodegradation. Four Fe-based catalysts and two pristine biochars were obtained upon a pyrolysis process at 500 and 700 °C and fully characterised. Due to the applied synthesis, iron is present in the form of isotropic grains of magnetite (Fe3O4), quite homogeneously dispersed onto the biochar. The textural properties of all the materials are mainly determined by the pyrolytic temperature, which results in macroporous materials at 500 °C and microporous ones at 700 °C. Fe-based catalysts were tested in Diclofenac (DFC) photodegradation. DFC removal was the result of both adsorption and photocatalytic reactions. Despite the good yield in DFC removal (80–100%), the formation of degradation by-products can partially invalidate the good effectiveness of this approach. However, the encouraging results of this study represent a step forward for the possible development of waste-derived biochar-based catalysts for in-field application. Full article
(This article belongs to the Special Issue Carbon-Based Materials Applied in Water and Wastewater Treatment)
Show Figures

Figure 1

Back to TopTop