Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (358)

Search Parameters:
Keywords = machinery safety

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 2669 KiB  
Article
Data-Driven Fault Diagnosis for Rotating Industrial Paper-Cutting Machinery
by Luca Viale, Alessandro Paolo Daga, Ilaria Ronchi and Salvatore Caronia
Machines 2025, 13(8), 688; https://doi.org/10.3390/machines13080688 - 5 Aug 2025
Abstract
Machine learning and artificial intelligence have transformed fault detection and maintenance strategies for industrial machinery. This study applies well-established data-driven techniques to a rarely explored industrial application—the condition monitoring of high-precision paper cutting machines—enhancing condition-based maintenance to improve operational efficiency, safety, and cost-effectiveness. [...] Read more.
Machine learning and artificial intelligence have transformed fault detection and maintenance strategies for industrial machinery. This study applies well-established data-driven techniques to a rarely explored industrial application—the condition monitoring of high-precision paper cutting machines—enhancing condition-based maintenance to improve operational efficiency, safety, and cost-effectiveness. A key element of the proposed approach is the integration of an infrared pyrometer into vibration monitoring, utilizing accelerometer data to evaluate the state of health of machinery. Unlike traditional fault detection studies that focus on extreme degradation states, this work successfully identifies subtle deviations from optimal, which even expert technicians struggle to detect. Building on a feasibility study conducted with Tecnau SRL, a comprehensive diagnostic system suitable for industrial deployment is developed. Endurance tests pave the way for continuous monitoring under various operating conditions, enabling real-time industrial diagnostic applications. Multi-scale signal analysis highlights the significance of transient and steady-state phase detection, improving the effectiveness of real-time monitoring strategies. Despite the physical similarity of the classified states, simple time-series statistics combined with machine learning algorithms demonstrate high sensitivity to early-stage deviations, confirming the reliability of the approach. Additionally, a systematic analysis to downgrade acquisition system specifications identifies cost-effective sensor configurations, ensuring the feasibility of industrial implementation. Full article
Show Figures

Figure 1

21 pages, 1147 KiB  
Review
Recent Advances in Developing Cell-Free Protein Synthesis Biosensors for Medical Diagnostics and Environmental Monitoring
by Tyler P. Green, Joseph P. Talley and Bradley C. Bundy
Biosensors 2025, 15(8), 499; https://doi.org/10.3390/bios15080499 - 3 Aug 2025
Viewed by 201
Abstract
Cell-free biosensors harness the selectivity of cellular machinery without living cells’ constraints, offering advantages in environmental monitoring, medical diagnostics, and biotechnological applications. This review examines recent advances in cell-free biosensor development, highlighting their ability to detect diverse analytes including heavy metals, organic pollutants, [...] Read more.
Cell-free biosensors harness the selectivity of cellular machinery without living cells’ constraints, offering advantages in environmental monitoring, medical diagnostics, and biotechnological applications. This review examines recent advances in cell-free biosensor development, highlighting their ability to detect diverse analytes including heavy metals, organic pollutants, pathogens, and clinical biomarkers with high sensitivity and specificity. We analyze technological innovations in cell-free protein synthesis optimization, preservation strategies, and field deployment methods that have enhanced sensitivity, and practical applicability. The integration of synthetic biology approaches has enabled complex signal processing, multiplexed detection, and novel sensor designs including riboswitches, split reporter systems, and metabolic sensing modules. Emerging materials such as supported lipid bilayers, hydrogels, and artificial cells are expanding biosensor capabilities through microcompartmentalization and electronic integration. Despite significant progress, challenges remain in standardization, sample interference mitigation, and cost reduction. Future opportunities include smartphone integration, enhanced preservation methods, and hybrid sensing platforms. Cell-free biosensors hold particular promise for point-of-care diagnostics in resource-limited settings, environmental monitoring applications, and food safety testing, representing essential tools for addressing global challenges in healthcare, environmental protection, and biosecurity. Full article
Show Figures

Figure 1

25 pages, 10205 KiB  
Article
RTLS-Enabled Bidirectional Alert System for Proximity Risk Mitigation in Tunnel Environments
by Fatima Afzal, Farhad Ullah Khan, Ayaz Ahmad Khan, Ruchini Jayasinghe and Numan Khan
Buildings 2025, 15(15), 2667; https://doi.org/10.3390/buildings15152667 - 28 Jul 2025
Viewed by 267
Abstract
Tunnel construction poses significant safety challenges due to confined spaces, limited visibility, and the dynamic movement of labourers and machinery. This study addresses a critical gap in real-time, bidirectional proximity monitoring by developing and validating a prototype early-warning system that integrates real-time location [...] Read more.
Tunnel construction poses significant safety challenges due to confined spaces, limited visibility, and the dynamic movement of labourers and machinery. This study addresses a critical gap in real-time, bidirectional proximity monitoring by developing and validating a prototype early-warning system that integrates real-time location systems (RTLS) with long-range (LoRa) wireless communication and ultra-wideband (UWB) positioning. The system comprises Arduino nano microcontrollers, organic light-emitting diode (OLED) displays, and piezo buzzers to detect and signal proximity breaches between workers and equipment. Using an action research approach, three pilot case studies were conducted in a simulated tunnel environment to test the system’s effectiveness in both static and dynamic risk scenarios. The results showed that the system accurately tracked proximity and generated timely alerts when safety thresholds were crossed, although minor delays of 5–8 s and slight positional inaccuracies were noted. These findings confirm the system’s capacity to enhance situational awareness and reduce reliance on manual safety protocols. The study contributes to the tunnel safety literature by demonstrating the feasibility of low-cost, real-time monitoring solutions that simultaneously track labour and machinery. The proposed RTLS framework offers practical value for safety managers and informs future research into automated safety systems in complex construction environments. Full article
(This article belongs to the Special Issue AI in Construction: Automation, Optimization, and Safety)
Show Figures

Figure 1

19 pages, 1563 KiB  
Review
Autonomous Earthwork Machinery for Urban Construction: A Review of Integrated Control, Fleet Coordination, and Safety Assurance
by Zeru Liu and Jung In Kim
Buildings 2025, 15(14), 2570; https://doi.org/10.3390/buildings15142570 - 21 Jul 2025
Viewed by 297
Abstract
Autonomous earthwork machinery is gaining traction as a means to boost productivity and safety on space-constrained urban sites, yet the fast-growing literature has not been fully integrated. To clarify current knowledge, we systematically searched Scopus and screened 597 records, retaining 157 peer-reviewed papers [...] Read more.
Autonomous earthwork machinery is gaining traction as a means to boost productivity and safety on space-constrained urban sites, yet the fast-growing literature has not been fully integrated. To clarify current knowledge, we systematically searched Scopus and screened 597 records, retaining 157 peer-reviewed papers (2015–March 2025) that address autonomy, integrated control, or risk mitigation for excavators, bulldozers, and loaders. Descriptive statistics, VOSviewer mapping, and qualitative synthesis show the output rising rapidly and peaking at 30 papers in 2024, led by China, Korea, and the USA. Four tightly linked themes dominate: perception-driven machine autonomy, IoT-enabled integrated control systems, multi-sensor safety strategies, and the first demonstrations of fleet-level collaboration (e.g., coordinated excavator clusters and unmanned aerial vehicle and unmanned ground vehicle (UAV–UGV) site preparation). Advances include centimeter-scale path tracking, real-time vision-light detection and ranging (LiDAR) fusion and geofenced safety envelopes, but formal validation protocols and robust inter-machine communication remain open challenges. The review distils five research priorities, including adaptive perception and artificial intelligence (AI), digital-twin integration with building information modeling (BIM), cooperative multi-robot planning, rigorous safety assurance, and human–automation partnership that must be addressed to transform isolated prototypes into connected, self-optimizing fleets capable of delivering safer, faster, and more sustainable urban construction. Full article
(This article belongs to the Special Issue Automation and Robotics in Building Design and Construction)
Show Figures

Figure 1

21 pages, 3570 KiB  
Article
Fatigue Life Analysis of Cylindrical Roller Bearings Considering Elastohydrodynamic Lubrications
by Ke Zhang, Zhitao Huang, Qingsong Li and Ruiyu Zhang
Appl. Sci. 2025, 15(14), 7867; https://doi.org/10.3390/app15147867 - 14 Jul 2025
Viewed by 253
Abstract
Cylindrical roller bearings are widely used in industrial machinery, automotive systems, and aerospace applications, where their reliability directly affects the performance and safety of mechanical systems. The fatigue life of cylindrical roller bearings is significantly affected by their elastohydrodynamic lubrication condition, with variations [...] Read more.
Cylindrical roller bearings are widely used in industrial machinery, automotive systems, and aerospace applications, where their reliability directly affects the performance and safety of mechanical systems. The fatigue life of cylindrical roller bearings is significantly affected by their elastohydrodynamic lubrication condition, with variations potentially reaching multiple times. However, conventional quasi-static models often neglect lubrication effects. This study establishes a quasi-static analysis model for cylindrical roller bearings that incorporates the effects of elastohydrodynamic lubrication by integrating elastohydrodynamic lubrication theory with the Lundberg–Palmgren life model. The isothermal line contact elastohydrodynamic lubrication equations are solved using the multigrid method, and the contact load distribution is determined through nonlinear iterative techniques to calculate bearing fatigue life. Taking the N324 support bearing on the main shaft of an SFW250-8/850 horizontal hydro-generator as an example, the influences of radial load, inner race speed, and lubricant viscosity on fatigue life are comparatively analyzed. Experimental validation is conducted under both light-load and heavy-load operating conditions. The results demonstrate that elastohydrodynamic lubrication markedly increases contact loads, leading to a reduced predicted fatigue life compared with that of the De Mul model (which ignores lubrication). The proposed lubrication-integrated model achieves an average deviation of 5.3% from the experimental data, representing a 16.1% improvement in prediction accuracy over the De Mul model. Additionally, increased rotational speed and lubricant viscosity accelerate fatigue life degradation. Full article
(This article belongs to the Special Issue Advances and Applications in Mechanical Fatigue and Life Assessment)
Show Figures

Figure 1

21 pages, 5921 KiB  
Article
Coverage Path Planning Based on Region Segmentation and Path Orientation Optimization
by Tao Yang, Xintong Du, Bo Zhang, Xu Wang, Zhenpeng Zhang and Chundu Wu
Agriculture 2025, 15(14), 1479; https://doi.org/10.3390/agriculture15141479 - 10 Jul 2025
Viewed by 311
Abstract
To address the operational demands of irregular farmland with fixed obstacles, this study proposes a full-coverage path planning framework that integrates UAV-based 3D perception and angle-adaptive optimization. First, digital orthophoto maps (DOMs) and digital elevation models (DEMs) were reconstructed from low-altitude aerial imagery. [...] Read more.
To address the operational demands of irregular farmland with fixed obstacles, this study proposes a full-coverage path planning framework that integrates UAV-based 3D perception and angle-adaptive optimization. First, digital orthophoto maps (DOMs) and digital elevation models (DEMs) were reconstructed from low-altitude aerial imagery. The feasible working region was constructed by shrinking field boundaries inward and dilating obstacle boundaries outward. This ensured sufficient safety margins for machinery operation. Next, segmentation angles were scanned from 0° to 180° to minimize the number and irregularity of sub-regions; then a two-level simulation search was performed over 0° to 360° to optimize the working direction for each sub-region. For each sub-region, the optimal working direction was selected based on four criteria: the number of turns, travel distance, coverage redundancy, and planning time. Between sub-regions, a closed-loop interconnection path was generated using eight-directional A* search combined with polyline simplification, arc fitting, Chaikin subdivision, and B-spline smoothing. Simulation results showed that a 78° segmentation yielded four regular sub-regions, achieving 99.97% coverage while reducing the number of turns, travel distance, and planning time by up to 70.42%, 23.17%, and 85.6%. This framework accounts for field heterogeneity and turning radius constraints, effectively mitigating path redundancy in conventional fixed-angle methods. This framework enables general deployment in agricultural field operations and facilitates extensions toward collaborative and energy-optimized task planning. Full article
(This article belongs to the Section Agricultural Technology)
Show Figures

Figure 1

13 pages, 1068 KiB  
Review
Battery Electric Vehicles in Underground Mining: Benefits, Challenges, and Safety Considerations
by Epp Kuslap, Jiajie Li, Aibaota Talehatibieke and Michael Hitch
Energies 2025, 18(14), 3588; https://doi.org/10.3390/en18143588 - 8 Jul 2025
Viewed by 446
Abstract
This paper explores the implementation of battery electric vehicles (BEVs) in underground mining operations, focusing on their benefits, challenges, and safety considerations. The study examines the shift from traditional diesel-powered machinery to BEVs in response to increasing environmental concerns and stricter emission regulations. [...] Read more.
This paper explores the implementation of battery electric vehicles (BEVs) in underground mining operations, focusing on their benefits, challenges, and safety considerations. The study examines the shift from traditional diesel-powered machinery to BEVs in response to increasing environmental concerns and stricter emission regulations. It discusses various lithium-ion battery chemistries used in BEVs, particularly lithium–iron–phosphate (LFP) and nickel–manganese–cobalt (NMC), comparing their performance, safety, and suitability for underground mining applications. The research highlights the significant benefits of BEVs, including reduced greenhouse gas emissions, improved air quality in confined spaces, and potential ventilation cost savings. However, it also addresses critical safety concerns, such as fire risks associated with lithium-ion batteries and the emission of toxic gases during thermal runaway events. The manuscript emphasises the importance of comprehensive risk assessment and mitigation strategies when introducing BEVs to underground mining environments. It concludes that while BEVs offer promising solutions for more sustainable and environmentally friendly mining operations, further research is needed to ensure their safe integration into underground mining practices. This study contributes valuable insights to the ongoing discussion on the future of mining technology and its environmental impact. Full article
Show Figures

Figure 1

22 pages, 9776 KiB  
Article
Detection and Tracking of Environmental Sensing System for Construction Machinery Autonomous Operation Application
by Junyi Chen, Qipeng Cai, Xinhai Hu, Qihuai Chen, Tianliang Lin and Haoling Ren
Sensors 2025, 25(13), 4214; https://doi.org/10.3390/s25134214 - 6 Jul 2025
Viewed by 353
Abstract
There are a large number of unstructured scenes and special targets in the construction machinery application scene, which brings greater interference to the environment sensing system for Construction Machinery Autonomous Operation Application. The conventional mature sensing scheme in passenger cars is not fully [...] Read more.
There are a large number of unstructured scenes and special targets in the construction machinery application scene, which brings greater interference to the environment sensing system for Construction Machinery Autonomous Operation Application. The conventional mature sensing scheme in passenger cars is not fully applicable to construction machinery. By taking the environmental characteristics and operating conditions of construction machinery into consideration, a set of environmental sensing algorithms based on LiDAR for construction machinery scenarios is studied. Real-time target detection of the environment, trajectory tracking, and prediction for dynamic targets are achieved. Decision instructions are provided for upstream detection information for the subsequent behavioral decision-making, motion planning, and other modules. To test the effectiveness of the information exchange between the proposed algorithm and the overall machine interface, the early warning and emergency braking for autonomous operation is implemented. Experiments are carried out through an excavator test platform. The superiority of the optimized detection model is verified through real-time target detection tests at different speeds and under different states. Information exchange between the environmental sensing and the machine interface based on safety warning and braking is achieved. Full article
(This article belongs to the Special Issue Spectral Detection Technology, Sensors and Instruments, 2nd Edition)
Show Figures

Figure 1

20 pages, 3835 KiB  
Article
Fuzzy PD-Based Control for Excavator Boom Stabilization Using Work Port Pressure Feedback
by Joseph T. Jose, Gyan Wrat, Santosh Kr. Mishra, Prabhat Ranjan and Jayanta Das
Actuators 2025, 14(7), 336; https://doi.org/10.3390/act14070336 - 4 Jul 2025
Viewed by 295
Abstract
Hydraulic excavators operate in harsh environments where direct measurement of actuator chamber pressures and boom displacement is often unreliable or infeasible. This study presents a novel control strategy that estimates actuator chamber pressures from work port pressures using differential equations, eliminating the need [...] Read more.
Hydraulic excavators operate in harsh environments where direct measurement of actuator chamber pressures and boom displacement is often unreliable or infeasible. This study presents a novel control strategy that estimates actuator chamber pressures from work port pressures using differential equations, eliminating the need for direct pressure or position sensors. A fuzzy logic-based proportional–derivative (PD) controller is developed to mitigate boom oscillations, particularly under high-inertia load conditions and variable operator inputs. The controller dynamically adjusts gains through fuzzy logic-based gain scheduling, enhancing adaptability across a wide range of operating conditions. The proposed method addresses the limitations of classical PID controllers, which struggle with the nonlinearities, parameter uncertainties, and instability introduced by counterbalance valves and pressure-compensated proportional valves. Experimental data is used to design fuzzy rules and membership functions, ensuring robust performance. Simulation and full-scale experimental validation demonstrate that the fuzzy PD controller significantly reduces pressure overshoot (by 23% during extension and 32% during retraction) and decreases settling time (by 31.23% and 28%, respectively) compared to conventional systems. Frequency-domain stability analysis confirms exponential stability and improved damping characteristics. The proposed control scheme enhances system reliability and safety, making it ideal for excavators operating in remote or rugged terrains where conventional sensor-based systems may fail. This approach is generalizable and does not require modifications to the existing hydraulic circuit, offering a practical and scalable solution for modern hydraulic machinery. Full article
Show Figures

Figure 1

40 pages, 3472 KiB  
Review
The Current Development Status of Agricultural Machinery Chassis in Hilly and Mountainous Regions
by Renkai Ding, Xiangyuan Qi, Xuwen Chen, Yixin Mei and Anze Li
Appl. Sci. 2025, 15(13), 7505; https://doi.org/10.3390/app15137505 - 3 Jul 2025
Viewed by 397
Abstract
The scenario adaptability of agricultural machinery chassis in hilly and mountainous regions has become a key area of innovation in modern agricultural equipment development in China. Due to the fragmented nature of farmland, steep terrain (often exceeding 15°), complex topography, and limited suitability [...] Read more.
The scenario adaptability of agricultural machinery chassis in hilly and mountainous regions has become a key area of innovation in modern agricultural equipment development in China. Due to the fragmented nature of farmland, steep terrain (often exceeding 15°), complex topography, and limited suitability for mechanization, traditional agricultural machinery experiences significantly reduced operational efficiency—typically by 30% to 50%—along with poor mobility. These limitations impose serious constraints on grain yield stability and the advancement of agricultural modernization. Therefore, enhancing the scenario-adaptive performance of chassis systems (e.g., slope adaptability ≥ 25°, lateral tilt stability > 30°) is a major research priority for China’s agricultural equipment industry. This paper presents a systematic review of the global development status of agricultural machinery chassis tailored for hilly and mountainous environments. It focuses on three core subsystems—power systems, traveling systems, and leveling systems—and analyzes their technical characteristics, working principles, and scenario-specific adaptability. In alignment with China’s “Dual Carbon” strategy and the unique operational requirements of hilly–mountainous areas (such as high gradients, uneven terrain, and small field sizes), this study proposes three key technological directions for the development of intelligent agricultural machinery chassis: (1) Multi-mode traveling mechanism design: Aimed at improving terrain traversability (ground clearance ≥400 mm, obstacle-crossing height ≥ 250 mm) and traction stability (slip ratio < 15%) across diverse landscapes. (2) Coordinated control algorithm optimization: Designed to ensure stable torque output (fluctuation rate < ±10%) and maintain gradient operation efficiency (e.g., less than 15% efficiency loss on 25° slopes) through power–drive synergy while also optimizing energy management strategies. (3) Intelligent perception system integration: Facilitating high-precision adaptive leveling (accuracy ± 0.5°, response time < 3 s) and enabling terrain-adaptive mechanism optimization to enhance platform stability and operational safety. By establishing these performance benchmarks and focusing on critical technical priorities—including terrain-adaptive mechanism upgrades, energy-drive coordination, and precision leveling—this study provides a clear roadmap for the development of modular and intelligent chassis systems specifically designed for China’s hilly and mountainous regions, thereby addressing current bottlenecks in agricultural mechanization. Full article
Show Figures

Figure 1

26 pages, 5110 KiB  
Article
Rolling Based on Multi-Source Time–Frequency Feature Fusion with a Wavelet-Convolution, Channel-Attention-Residual Network-Bearing Fault Diagnosis Method
by Tongshuhao Feng, Zhuoran Wang, Lipeng Qiu, Hongkun Li and Zhen Wang
Sensors 2025, 25(13), 4091; https://doi.org/10.3390/s25134091 - 30 Jun 2025
Cited by 1 | Viewed by 358
Abstract
As a core component of rotating machinery, the condition of rolling bearings is directly related to the reliability and safety of equipment operation; therefore, the accurate and reliable monitoring of bearing operating status is critical. However, when dealing with non-stationary and noisy vibration [...] Read more.
As a core component of rotating machinery, the condition of rolling bearings is directly related to the reliability and safety of equipment operation; therefore, the accurate and reliable monitoring of bearing operating status is critical. However, when dealing with non-stationary and noisy vibration signals, traditional fault diagnosis methods are often constrained by limited feature characterization from single time–frequency analysis and inadequate feature extraction capabilities. To address this issue, this study proposes a lightweight fault diagnosis model (WaveCAResNet) enhanced with multi-source time–frequency features. By fusing complementary time–frequency features derived from continuous wavelet transform, short-time Fourier transform, Hilbert–Huang transform, and Wigner–Ville distribution, the capability to characterize complex fault patterns is significantly improved. Meanwhile, an efficient and lightweight deep learning model (WaveCAResNet) is constructed based on residual networks by integrating multi-scale analysis via a wavelet convolutional layer (WTConv) with the dynamic feature optimization properties of channel-attention-weighted residuals (CAWRs) and the efficient temporal modeling capabilities of weighted residual efficient multi-scale attention (WREMA). Experimental validation indicates that the proposed method achieves higher diagnostic accuracy and robustness than existing mainstream models on typical bearing datasets, and the classification performance of the newly proposed model exceeds that of state-of-the-art bearing fault diagnostic models on the same dataset, even under noisy conditions. Full article
(This article belongs to the Section Fault Diagnosis & Sensors)
Show Figures

Figure 1

18 pages, 16108 KiB  
Article
Development of roCaGo for Forest Observation and Forestry Support
by Yoshinori Kiga, Yuzuki Sugasawa, Takumi Sakai, Takuma Nemoto and Masami Iwase
Forests 2025, 16(7), 1067; https://doi.org/10.3390/f16071067 - 26 Jun 2025
Viewed by 289
Abstract
This study addresses the ’last-mile’ transportation challenges that arise in steep and narrow forest terrain by proposing a novel robotic palanquin system called roCaGo. It is inspired by the mechanical principles of two-wheel-steering and two-wheel-drive (2WS/2WD) bicycles. The roCaGo system integrates front- and [...] Read more.
This study addresses the ’last-mile’ transportation challenges that arise in steep and narrow forest terrain by proposing a novel robotic palanquin system called roCaGo. It is inspired by the mechanical principles of two-wheel-steering and two-wheel-drive (2WS/2WD) bicycles. The roCaGo system integrates front- and rear-wheel-drive mechanisms, as well as a central suspension structure for carrying loads. Unlike conventional forestry machinery, which requires wide, well-maintained roads or permanent rail systems, the roCaGo system enables flexible, operator-assisted transport along narrow, unprepared mountain paths. A dynamic model of the system was developed to design a stabilization control strategy, enabling roCaGo to maintain transport stability and assist the operator during navigation. Numerical simulations and preliminary physical experiments demonstrate its effectiveness in challenging forest environments. Furthermore, the applicability of roCaGo has been extended to include use as a mobile third-person viewpoint platform to support the remote operation of existing forestry equipment; specifically the LV800crawler vehicle equipped with a front-mounted mulcher. Field tests involving LiDAR sensors mounted on roCaGo were conducted to verify its ability to capture the environmental data necessary for non-line-of-sight teleoperation. The results show that roCaGo is a promising solution for improving labor efficiency and ensuring operator safety in forest logistics and remote-controlled forestry operations. Full article
Show Figures

Figure 1

21 pages, 1721 KiB  
Article
Methodology for Identification of Occupational Hazards Using Their Characteristic Features in Hard Coal Mining
by Zbigniew Burtan, Dagmara Nowak-Senderowska and Paweł Szczepański
Appl. Sci. 2025, 15(13), 7079; https://doi.org/10.3390/app15137079 - 23 Jun 2025
Viewed by 265
Abstract
Ensuring employee safety is a top priority for every enterprise, and it is especially critical in high-risk industries like coal mining. To achieve this goal, it is essential to focus efforts on identifying existing hazards and thoroughly assessing the associated risks. Accurate identification [...] Read more.
Ensuring employee safety is a top priority for every enterprise, and it is especially critical in high-risk industries like coal mining. To achieve this goal, it is essential to focus efforts on identifying existing hazards and thoroughly assessing the associated risks. Accurate identification and detailed characterization of occupational hazards play a pivotal role in the occupational risk assessment process, providing the foundation for effective safety strategies. This article presents an analysis of the process of identifying occupational hazards in hard coal mining, based on applicable legal regulations and a review of the relevant literature. The analysis reveals, on the one hand, a diversity of approaches to hazard classification, and on the other, a limited use of the characteristic features of hazards in classification processes. The findings of this review form the basis for proposing a systematic classification of occupational hazards in hard coal mining, taking into account the specific features of hazards in relation to their sources and potential consequences. The proposed classification not only categorizes hazards but also describes the specifics of hazard sources, such as environmental conditions, machinery, chemicals, and human factors, as well as the possible outcomes of these hazards, including physical injury, health impacts, and even fatalities. The aim of this article is to present a proposed classification of occupational hazards in hard coal mining and to provide a detailed characterization of these hazards based on the description of their sources and potential consequences. The proposed approach, grounded in the identification of characteristic features of hazards, facilitates the effective selection of preventive measures that can be implemented to reduce risk and improve workplace safety. Due to the presence of the full spectrum of natural hazards in Polish hard coal mining, the analysis draws on available statistical data, focusing on those hazards that contribute most significantly to fatal accidents and serious injuries. In conclusion, the article emphasizes the importance of a structured and systematic approach to identifying and assessing occupational hazards in the coal mining industry. By drawing on legal and literature-based insights, it aims to contribute to the development of more effective safety practices that protect workers and minimize the occurrence of workplace accidents and illnesses. Full article
Show Figures

Figure 1

25 pages, 1725 KiB  
Review
Analysis of the Application of Ammonia as a Fuel for a Compression-Ignition Engine
by Wojciech Tutak and Arkadiusz Jamrozik
Energies 2025, 18(12), 3217; https://doi.org/10.3390/en18123217 - 19 Jun 2025
Viewed by 457
Abstract
Piston engines used for powering automobiles as well as machinery and equipment have traditionally relied on petroleum-derived fuels. Subsequently, renewable fuels began to be used in an effort to reduce the combustion of hydrocarbon-based fuels and the associated greenhouse effect. Researchers are currently [...] Read more.
Piston engines used for powering automobiles as well as machinery and equipment have traditionally relied on petroleum-derived fuels. Subsequently, renewable fuels began to be used in an effort to reduce the combustion of hydrocarbon-based fuels and the associated greenhouse effect. Researchers are currently developing technologies aimed at eliminating fuels containing carbon in their molecular structure, which would effectively minimize the emission of carbon oxides into the atmosphere. Ammonia is considered a highly promising carbon-free fuel with broad applicability in energy systems. It serves as an excellent hydrogen carrier (NH3), free from many of the storage and transportation limitations associated with pure hydrogen. Safety concerns regarding the storage and transport of hydrogen make ammonia an increasingly important fuel also due to its larger hydrogen storage capacity. This manuscript investigates the use of ammonia for powering a dual-fuel engine. The results indicate that the addition of ammonia improves engine performance; however, it may also lead to an increase in NOx emissions. Due to the limitations of ammonia as a fuel, approximately 40% of the energy input must still be provided by diesel fuel to achieve optimal engine performance and acceptable NOx emission levels. The presented research findings highlight the significant potential of NH3 as an alternative fuel for compression-ignition engines. Proper control of the injection strategy or the adoption of alternative combustion systems may offer a promising approach to reducing greenhouse gas emissions while maintaining satisfactory engine performance parameters. Full article
(This article belongs to the Special Issue Renewable Fuels for Internal Combustion Engines: 2nd Edition)
Show Figures

Figure 1

19 pages, 9451 KiB  
Article
Stochastic Identification and Analysis of Long-Term Degradation Through Health Index Data
by Hamid Shiri and Pawel Zimroz
Mathematics 2025, 13(12), 1972; https://doi.org/10.3390/math13121972 - 15 Jun 2025
Viewed by 347
Abstract
Timely diagnosis and prognosis based on degradation symptoms are essential steps for condition-based maintenance (CBM) to guarantee industrial safety and productivity. Most industrial machines operate under variable operating conditions. This time-varying operating condition can accelerate the machinery’s degradation process. It may have a [...] Read more.
Timely diagnosis and prognosis based on degradation symptoms are essential steps for condition-based maintenance (CBM) to guarantee industrial safety and productivity. Most industrial machines operate under variable operating conditions. This time-varying operating condition can accelerate the machinery’s degradation process. It may have a massive influence on data and impede the process of diagnosis and prognosis of the machinery. Therefore, in this paper, to address the mentioned problems, we introduced an approach for modelling non-stationary long-term condition monitoring data. This procedure includes separating random and deterministic parts and identifying possible autodependence hidden in the random sequence, as well as potential time-dependent variance. To achieve these objectives, we employ a time-varying coefficient autoregressive (TVC-AR) model within a Bayesian framework. However, due to the limited availability of diverse run-to-failure data sets, we validate the proposed procedure using a simulated degradation model and two widely recognized benchmark data sets (FEMTO and wind turbine drive), which demonstrate the model’s effectiveness in capturing complex non-stationary degradation characteristics. Full article
(This article belongs to the Special Issue Mathematical Models for Fault Detection and Diagnosis)
Show Figures

Figure 1

Back to TopTop