Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (38)

Search Parameters:
Keywords = lycopene cyclase

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 2681 KB  
Article
Engineered Chlamydomonas reinhardtii Strains for Enhanced Astaxanthin Production
by Federico Perozeni, Margherita Angelini, Matteo Ballottari and Stefano Cazzaniga
Life 2025, 15(5), 813; https://doi.org/10.3390/life15050813 - 20 May 2025
Viewed by 1389
Abstract
Microalgae have evolved a diverse carotenoid profile, enabling efficient light harvesting and photoprotection. Previous studies have demonstrated the feasibility of genome editing in the green algal model species Chlamydomonas reinhardtii, leading to significant modifications in carotenoid accumulation. By overexpressing a fully redesigned [...] Read more.
Microalgae have evolved a diverse carotenoid profile, enabling efficient light harvesting and photoprotection. Previous studies have demonstrated the feasibility of genome editing in the green algal model species Chlamydomonas reinhardtii, leading to significant modifications in carotenoid accumulation. By overexpressing a fully redesigned β-carotene ketolase (bkt), the metabolic pathway of C. reinhardtii was successfully redirected toward astaxanthin biosynthesis, a high-value ketocarotenoid with exceptional antioxidant properties, naturally found in only a few microalgal species. In this study, a tailor-made double knockout targeting lycopene ε-cyclase (LCYE) and zeaxanthin epoxidase (ZEP) was introduced as a background for bkt expression to ensure higher substrate availability for bkt enzyme. The increased zeaxanthin availability resulted in a 2-fold increase in ketocarotenoid accumulation compared to the previously engineered bkt1 or bkt5 strain in the UVM4 background. Specifically, the best Δzl-bkt-expressing lines reached 2.84 mg/L under low light and 2.58 mg/L under high light, compared to 1.74 mg/L and 1.26 mg/L, respectively, in UVM4-bkt strains. These findings highlight the potential of rationally designed microalgal host strains, developed through genome editing, for biotechnological applications and high-value compound production. Full article
Show Figures

Figure 1

14 pages, 1487 KB  
Article
Genome-Wide Association Analysis of Sweet Pepper (Capsicum annuum) Based on Agronomic Traits Using PepperSNP50K
by Yaolong Wang, Entong Li, Jiawei Lu, Jing Wang, Qiaolu Zang, Yanping Liang, Ruxia Tian, Changwei Zhang, Fangling Jiang and Yan Cheng
Plants 2025, 14(10), 1506; https://doi.org/10.3390/plants14101506 - 17 May 2025
Cited by 2 | Viewed by 677
Abstract
As one of the most important vegetables globally, peppers have garnered significant attention from breeders due to their diverse agronomic traits, including plant type, leaf shape, and maturity. Understanding the genetic mechanisms underlying these traits is crucial for systematic advancements in sweet pepper [...] Read more.
As one of the most important vegetables globally, peppers have garnered significant attention from breeders due to their diverse agronomic traits, including plant type, leaf shape, and maturity. Understanding the genetic mechanisms underlying these traits is crucial for systematic advancements in sweet pepper breeding. In this study, leveraging the PepperSNP50K liquid breeding chip, we conducted a comprehensive analysis of horticultural traits and genetic diversity using sweet pepper germplasm samples. Initially, the sweet pepper populations were analyzed using SNP-based liquid chip technology. Subsequently, phenotypic surveys were performed on 217 sweet pepper samples, and the collected phenotypic data were integrated with SNP markers to conduct a genome-wide association study (GWAS) of key agronomic traits. Among the 25 horticultural traits evaluated, 11 exhibited significant associations with 54 SNP polymerization regions and 193 candidate genes. These findings provide a robust foundation for the utilization of sweet pepper germplasm resources and the development of new, improved varieties. Furthermore, in this study, we identified Caz06g05770 (Lycopene beta-cyclase) as a candidate gene responsible for the color of mature ripe fruits. This research not only enhances our understanding of the genetic basis of sweet pepper traits but also offers a practical roadmap for advancing breeding programs and boosting agricultural productivity. By bridging the gap between genetic research and practical breeding applications, this study paves the way for the development of high-yield, high-quality sweet pepper varieties tailored to meet the growing demands of global agriculture. Full article
(This article belongs to the Special Issue Omics in Horticultural Crops)
Show Figures

Figure 1

13 pages, 1313 KB  
Article
Product Speculation from Carotenogenic Gene Cluster of Nonlabens spongiae Genome, and Identification of Myxol and Functional Analysis of Each Gene
by Keisuke Nakazawa, Daiki Mineo, Takuya Harayama, Susumu Yoshizawa, Shinichi Takaichi and Kenjiro Sugiyama
Genes 2025, 16(2), 202; https://doi.org/10.3390/genes16020202 - 7 Feb 2025
Cited by 1 | Viewed by 1084
Abstract
Background: Myxol, a monocyclic carotenoid with β- and ψ-end groups, has been identified in only a limited number of bacteria, such as flavobacteria and cyanobacteria. Despite its biological significance, the biosynthetic pathway of myxol is not well understood, and studies on its physiological [...] Read more.
Background: Myxol, a monocyclic carotenoid with β- and ψ-end groups, has been identified in only a limited number of bacteria, such as flavobacteria and cyanobacteria. Despite its biological significance, the biosynthetic pathway of myxol is not well understood, and studies on its physiological functions and biological activities are limited because of its rarity. Methods: BLAST homology searches for carotenoid biosynthesis genes in the genome of Nonlabens were performed. The carotenogenesis-related genes in the genome of the marine flavobacteria Nonlabens spongiae were individually cloned and functionally characterized using a heterologous Escherichia coli expression system. Carotenoids from N. spongiae were identified using an LC-MS analysis. Results: We identified a gene cluster involved in carotenoid biosynthesis in the genome of N. spongiae. This cluster includes genes encoding phytoene synthase (CrtB), phytoene desaturase (CrtI), lycopene cyclase (CrtY), carotenoid 1,2-hydratase (CruF), carotenoid 3,4-desaturase (ψ-end group) (CrtD), carotenoid 2-hydroxylase (ψ-end group) (CrtA-OH), and carotene hydro-xylase (CrtZ). Based on the characteristics of these enzymes, the primary products were predicted to be myxol and/or zeaxanthin. A spectroscopic analysis confirmed that myxol was the primary carotenoid. Furthermore, a plasmid containing a reconstructed gene cluster and geranylgeranyl pyrophosphate synthase (CrtE) located outside the cluster was introduced into E. coli. This system predominantly accumulated myxol, indicating that the reconstructed gene cluster enabled efficient myxol production in E. coli. Conclusions: This study highlighted the potential biotechnological applications of the carotenoid biosynthesis gene clusters for myxol production. Full article
(This article belongs to the Section Microbial Genetics and Genomics)
Show Figures

Figure 1

14 pages, 2393 KB  
Article
Salicylic Acid Improved the Growth of Dunaliella salina and Increased the Proportion of 9-cis-β-Carotene Isomers
by Shuaicheng Xiang, Xiaoting Qiu, Xiaojun Yan, Roger Ruan and Pengfei Cheng
Mar. Drugs 2025, 23(1), 18; https://doi.org/10.3390/md23010018 - 1 Jan 2025
Cited by 2 | Viewed by 2148
Abstract
Dunaliella salina is an important source of natural β-carotene (containing 9-cis and all trans isomers) for industrial production. The phytohormone salicylic acid (SA) has been proven to have impacts on the stress resistance of higher plants, but research on microalgae is currently unclear. [...] Read more.
Dunaliella salina is an important source of natural β-carotene (containing 9-cis and all trans isomers) for industrial production. The phytohormone salicylic acid (SA) has been proven to have impacts on the stress resistance of higher plants, but research on microalgae is currently unclear. In this study, the effects of SA on the growth, biochemical composition, antioxidant enzyme activity, key enzymes of β-carotene synthesis, and cis-and trans-isomers of β-carotene in D. salina under different salt concentrations were investigated. The results were shown that at concentrations of 1.5, 2, and 2.5 M NaCl, the antioxidant enzyme activity and key enzymes for β-carotene synthesis in algal cells were significantly increased, but the content and proportion of 9-cis isomer in β-carotene isomers decreased. The addition of SA significantly increased the growth and antioxidant enzyme (SOD, MDA) activity, as well as the synthesis of key enzyme phytoene synthase (PSY), phytoene desaturase (PDS), and lycopene β cyclase (LCYB) of D. salina under high-salinity conditions. It is worth noting that under the treatment of SA, the proportion of 9-cis isomer in the three salt concentrations (1.5, 2, 2.5 M NaCl) significantly increased by 32.09%, 20.30%, and 11.32%, respectively. Moreover, SA can not only improve the salt tolerance of D. salina, but also increase the proportion of 9-cis isomer, with higher physiological activity in β-carotene, thereby enhancing the application value of D. salina. Full article
(This article belongs to the Special Issue Biotechnological Applications of Marine Photosynthetic Microorganisms)
Show Figures

Figure 1

16 pages, 3366 KB  
Article
The Expression Profile of Genes Related to Carotenoid Biosynthesis in Pepper Under Abiotic Stress Reveals a Positive Correlation with Plant Tolerance
by Tingli Wang, Qiaoyun He, Chenyuan Wang, Zhimin Li, Shitao Sun, Xiai Yang, Xiushi Yang, Yanchun Deng and Chunsheng Hou
Life 2024, 14(12), 1659; https://doi.org/10.3390/life14121659 - 13 Dec 2024
Cited by 3 | Viewed by 1353
Abstract
In light of the increasingly adverse environmental conditions and the concomitant challenges to the survival of important crops, there is a pressing need to enhance the resilience of pepper seedlings to extreme weather. Carotenoid plays an important role in plants’ resistance to abiotic [...] Read more.
In light of the increasingly adverse environmental conditions and the concomitant challenges to the survival of important crops, there is a pressing need to enhance the resilience of pepper seedlings to extreme weather. Carotenoid plays an important role in plants’ resistance to abiotic stress. Nevertheless, the relationship between carotenoid biosynthesis and sweet pepper seedlings’ resistance to different abiotic stresses remains uncertain. In this study, the carotenoid content in abiotic-stressed sweet pepper seedling roots was determined, revealing that carotenoid content was extremely significantly elevated by more than 16-fold under salt stress, followed by drought stress (8-fold), and slightly elevated by only about 1-fold under waterlogging stress. After that, serine/threonine-protein phosphatase 2A (PP2A) was found to be the suitable reference gene (RG) in sweet pepper seedling roots under different abiotic stresses by using RT-qPCR and RefFinder analysis. Subsequently, using PP2A as the RG, RT-qPCR analysis showed that the expression level of most genes associated with carotenoid biosynthesis was extremely significantly up-regulated in sweet pepper seedlings under salt and drought stress. Specifically, violoxanthin deepoxidase (VDE) was significantly up-regulated by more than 481- and 36-fold under salt and drought stress, respectively; lycopene epsilon cyclase (LCYE) was significantly up-regulated by more than 840- and 23-fold under salt and drought stress, respectively. This study contributes to a more comprehensive understanding of the carotenoid biosynthesis pathway serving as a major source of retrograde signals in pepper subjected to different abiotic stresses. Full article
(This article belongs to the Special Issue Physiological Responses of Plants Under Abiotic Stresses)
Show Figures

Figure 1

13 pages, 3126 KB  
Article
Light Intensity Enhances the Lutein Production in Chromochloris zofingiensis Mutant LUT-4
by Qiaohong Chen, Mingmeng Liu, Wujuan Mi, Dong Wan, Gaofei Song, Weichao Huang and Yonghong Bi
Mar. Drugs 2024, 22(7), 306; https://doi.org/10.3390/md22070306 - 29 Jun 2024
Cited by 1 | Viewed by 1675
Abstract
Chromochloris zofingiensis, a unicellular green alga, is a potential source of natural carotenoids. In this study, the mutant LUT-4 was acquired from the chemical mutagenesis pool of C. zofingiensis strain. The biomass yield and lutein content of LUT-4 reached 9.23 g·L−1 [...] Read more.
Chromochloris zofingiensis, a unicellular green alga, is a potential source of natural carotenoids. In this study, the mutant LUT-4 was acquired from the chemical mutagenesis pool of C. zofingiensis strain. The biomass yield and lutein content of LUT-4 reached 9.23 g·L−1, and 0.209% of dry weight (DW) on Day 3, which was 49.4%, and 33% higher than that of wild-type (WT), respectively. The biomass yields of LUT-4 under 100, 300, and 500 µmol/m2/s reached 8.4 g·L−1, 7.75 g·L−1, and 6.6 g·L−1, which was 10.4%, 21%, and 29.6% lower compared with the control, respectively. Under mixotrophic conditions, the lutein yields were significantly higher than that obtained in the control. The light intensity of 300 µmol/m2/s was optimal for lutein biosynthesis and the content of lutein reached 0.294% of DW on Day 3, which was 40.7% more than that of the control. When LUT-4 was grown under 300 µmol/m2/s, a significant increase in expression of genes implicated in lutein biosynthesis, including phytoene synthase (PSY), phytoene desaturase (PDS), and lycopene epsilon cyclase (LCYe) was observed. The changes in biochemical composition, Ace-CoA, pyruvate, isopentenyl pyrophosphate (IPP), and geranylgeranyl diphosphate (GGPP) contents during lutein biosynthesis were caused by utilization of organic carbon. It was thereby concluded that 300 µmol/m2/s was the optimal culture light intensity for the mutant LUT-4 to synthesize lutein. The results would be helpful for the large-scale production of lutein. Full article
(This article belongs to the Special Issue Algal Cultivation for Obtaining High-Value Products)
Show Figures

Graphical abstract

12 pages, 1471 KB  
Article
CRISPR/Cas9-Mediated Knockout of the Lycopene ε-Cyclase for Efficient Astaxanthin Production in the Green Microalga Chlamydomonas reinhardtii
by Jacob Sebastian Kneip, Niklas Kniepkamp, Junhwan Jang, Maria Grazia Mortaro, EonSeon Jin, Olaf Kruse and Thomas Baier
Plants 2024, 13(10), 1393; https://doi.org/10.3390/plants13101393 - 17 May 2024
Cited by 18 | Viewed by 7131
Abstract
Carotenoids are valuable pigments naturally occurring in all photosynthetic plants and microalgae as well as in selected fungi, bacteria, and archaea. Green microalgae developed a complex carotenoid profile suitable for efficient light harvesting and light protection and harbor great capacity for carotenoid production [...] Read more.
Carotenoids are valuable pigments naturally occurring in all photosynthetic plants and microalgae as well as in selected fungi, bacteria, and archaea. Green microalgae developed a complex carotenoid profile suitable for efficient light harvesting and light protection and harbor great capacity for carotenoid production through the substantial power of the endogenous 2-C-methyl-D-erythritol 4-phosphate (MEP) pathway. Previous works established successful genome editing and induced significant changes in the cellular carotenoid content in Chlamydomonas reinhardtii. This study employs a tailored carotenoid pathway for engineered bioproduction of the valuable ketocarotenoid astaxanthin. Functional knockout of lycopene ε-cyclase (LCYE) and non-homologous end joining (NHEJ)-based integration of donor DNA at the target site inhibit the accumulation of α-carotene and consequently lutein and loroxanthin, abundant carotenoids in C. reinhardtii without changes in cellular fitness. PCR-based screening indicated that 4 of 96 regenerated candidate lines carried (partial) integrations of donor DNA and increased ß-carotene as well as derived carotenoid contents. Iterative overexpression of CrBKT, PacrtB, and CrCHYB resulted in a 2.3-fold increase in astaxanthin accumulation in mutant ΔLCYE#3 (1.8 mg/L) compared to the parental strain UVM4, which demonstrates the potential of genome editing for the design of a green cell factory for astaxanthin bioproduction. Full article
(This article belongs to the Special Issue Microalgae Photobiology, Biotechnology, and Bioproduction)
Show Figures

Figure 1

14 pages, 2845 KB  
Article
Haematococcus lacustris Carotenogensis: A Historical Event of Primary to Secondary Adaptations to Earth’s Oxygenation
by Cui Lan Qu, Hui Jin, Bing Zhang, Wei Jian Chen, Yang Zhang, Yuan Yuan Xu, Rui Wang and Yong Min Lao
Life 2024, 14(5), 576; https://doi.org/10.3390/life14050576 - 30 Apr 2024
Viewed by 1391
Abstract
(1) Background: Oxygen has exerted a great effect in shaping the environment and driving biological diversity in Earth’s history. Green lineage has evolved primary and secondary carotenoid biosynthetic systems to adapt to Earth’s oxygenation, e.g., Haematococcus lacustris, which accumulates the highest amount [...] Read more.
(1) Background: Oxygen has exerted a great effect in shaping the environment and driving biological diversity in Earth’s history. Green lineage has evolved primary and secondary carotenoid biosynthetic systems to adapt to Earth’s oxygenation, e.g., Haematococcus lacustris, which accumulates the highest amount of secondary astaxanthin under stresses. The two systems are controlled by lycopene ε-cyclase (LCYE) and β-cyclase (LCYB), which leave an important trace in Earth’s oxygenation. (2) Objectives: This work intends to disclose the underlying molecular evolutionary mechanism of Earth’s oxygenation in shaping green algal carotenogensis with a special focus on lycopene cyclases. (3) Methods: The two kinds of cyclases were analyzed by site-directed mutagenesis, phylogeny, divergence time and functional divergence. (4) Results: Green lineage LCYEs appeared at ~1.5 Ga after the first significant appearance and accumulation of atmospheric oxygen, the so-called Great Oxygenation Event (GOE), from which LCYBs diverged by gene duplication. Bacterial β-bicyclases evolved from β-monocyclase. Enhanced catalytic activity accompanied evolutionary transformation from ε-/β-monocyclase to β-bicyclase. Strong positive selection occurred in green lineage LCYEs after the GOE and in algal LCYBs during the second oxidation, the Neoproterozoic Oxygenation Event (NOE). Positively selected sites in the catalytic cavities of the enzymes controlled the mono-/bicyclase activity, respectively. Carotenoid profiling revealed that oxidative adaptation has been wildly preserved in evolution. (5) Conclusions: the functionalization of the two enzymes is a result of primary to secondary adaptations to Earth’s oxygenation. Full article
(This article belongs to the Special Issue Evolutionary and Conservation Genetics: 2nd Edition)
Show Figures

Figure 1

20 pages, 7964 KB  
Article
Transcript Analysis Reveals Positive Regulation of CA12g04950 on Carotenoids of Pigment Pepper Fruit under Nitrogen Reduction
by Lingfeng Shen, Chenfei Zhang, Yahui Xia, Shasha Yang, Tian Chang, Saleem Ullah and Xuehua Ji
Agriculture 2024, 14(4), 521; https://doi.org/10.3390/agriculture14040521 - 25 Mar 2024
Cited by 3 | Viewed by 1889
Abstract
This study investigates the relationship between nitrogen fertilization and pepper fruit color by employing five different nitrogen treatments (N1: 750 kg/hm2, N2: 562.5 kg/hm2, N3: 375 kg/hm2, N4: 187.5, and N0: 0 kg/hm2). Fruits were [...] Read more.
This study investigates the relationship between nitrogen fertilization and pepper fruit color by employing five different nitrogen treatments (N1: 750 kg/hm2, N2: 562.5 kg/hm2, N3: 375 kg/hm2, N4: 187.5, and N0: 0 kg/hm2). Fruits were harvested at 30 (S1: green ripening stage), 45 (S2: color transition stage), and 60 days (S3: red ripening stage) after flowering. Subsequently, pigment content, carotenoid component content, carotenoid enzyme activity, and transcriptome sequence were analyzed, and CA12g04950 function was validated through virus-induced gene silencing (VIGS). The results indicate that a reduction in nitrogen application led to an earlier onset of fruit color breakdown, and increased the contents of total carotenoid, capsanthin, phytoene and PSY (phytoene synthase) activity, LCYB (lycopene β-cyclase) activity and CCS (capsanthin/capsorubin synthase) activity. The analysis of different expression genes indicated that the most differently expressed genes were enriched in the N1 vs. N4 comparison, with 18 genes involved in carotenoid metabolism and 16 genes involved in nitrogen metabolism. Most DE genes were enriched in the pathways of photosynthesis, porphyrin, carotenoid biosynthesis, seleno-compounds, and nitrogen metabolism. There were numerous differential transcription factor families, including ERF, bHLH, MYB, C2H2, and NAC. Pearson correlation analysis revealed a significant positive correlation between CA12g04950 expression and 11 carotenoid genes in the N4 treatment. Subsequent silencing of CA12g04950 using VIGS resulted in delayed color ripening while a significant decrease in total carotenoid content and the expression levels of carotenoid genes. In conclusion, nitrogen reduction led to an increase in carotenoid content in pigment pepper fruits. Furthermore, under nitrogen reduction, CA12g04950 positively influenced the redness of the fruits. Full article
(This article belongs to the Section Crop Production)
Show Figures

Figure 1

16 pages, 3042 KB  
Article
Improvements in the Appearance and Nutritional Quality of Tomato Fruits Resulting from Foliar Spraying with Silicon
by Li Wang, Ning Jin, Yandong Xie, Wen Zhu, Ye Yang, Jiaying Wang, Yongzhong Lei, Wenkai Liu, Shuya Wang, Li Jin, Jihua Yu and Jian Lyu
Foods 2024, 13(2), 223; https://doi.org/10.3390/foods13020223 - 10 Jan 2024
Cited by 14 | Viewed by 3346
Abstract
Research on silicon (Si), an element considered beneficial for plant growth, has focused on abiotic and biotic stress mitigation. However, the effect of Si on tomato fruit quality under normal growth conditions remains unclear. This study investigated the effects of applying different levels [...] Read more.
Research on silicon (Si), an element considered beneficial for plant growth, has focused on abiotic and biotic stress mitigation. However, the effect of Si on tomato fruit quality under normal growth conditions remains unclear. This study investigated the effects of applying different levels of Si (0 mmol·L−1 [CK], 0.6 mmol·L−1 [T1], 1.2 mmol·L−1 [T2], and 1.8 mmol·L−1 [T3]) in foliar sprays on tomato fruit quality cultivated in substrates, and the most beneficial Si level was found. Compared to CK, exogenous Si treatments had a positive influence on the appearance and nutritional quality of tomato fruits at the mature green, breaker, and red ripening stages. Of these, T2 treatment significantly increased peel firmness and single-fruit weight in tomato fruits. The contents of soluble sugars, soluble solids, soluble proteins, and vitamin C were significantly higher, and the nitrate content was significantly lower in the T2 treatment than in the CK treatment. Cluster analysis showed that T2 produced results that were significantly different from those of the CK, T1, and T3 treatments. During the red ripening stage, the a* values of fruits in the T2 treatment tomato were significantly higher than those in the other three treatments. Moreover, the lycopene and lutein contents of the T2 treatment increased by 12.90% and 17.14%, respectively, compared to CK. T2 treatment significantly upregulated the relative gene expression levels of the phytoene desaturase gene (PDS), the lycopene ε-cyclase gene (LCY-E), and the zeaxanthin cyclooxygenase gene (ZEP) in the carotenoid key genes. The total amino acid content in tomato fruits in the T2 treatment was also significantly higher than that of CK. In summary, foliar spraying of 1.2 mmol·L−1 exogenous Si was effective in improving the appearance and nutritional quality of tomato fruits under normal growth conditions. This study provides new approaches to further elucidate the application of exogenous silicon to improve tomato fruit quality under normal conditions. Full article
Show Figures

Figure 1

17 pages, 3106 KB  
Article
Putative Daucus carota Capsanthin-Capsorubin Synthase (DcCCS) Possesses Lycopene β-Cyclase Activity, Boosts Carotenoid Levels, and Increases Salt Tolerance in Heterologous Plants
by Carolina Rosas-Saavedra, Luis Felipe Quiroz, Samuel Parra, Christian Gonzalez-Calquin, Daniela Arias, Nallat Ocarez, Franco Lopez and Claudia Stange
Plants 2023, 12(15), 2788; https://doi.org/10.3390/plants12152788 - 27 Jul 2023
Cited by 7 | Viewed by 2183
Abstract
Plant carotenoids are synthesized and accumulated in plastids through a highly regulated pathway. Lycopene β-cyclase (LCYB) is a key enzyme involved directly in the synthesis of α-carotene and β-carotene through the cyclization of trans-lycopene. Daucus carota harbors two LCYB genes, of which DcLCYB2 [...] Read more.
Plant carotenoids are synthesized and accumulated in plastids through a highly regulated pathway. Lycopene β-cyclase (LCYB) is a key enzyme involved directly in the synthesis of α-carotene and β-carotene through the cyclization of trans-lycopene. Daucus carota harbors two LCYB genes, of which DcLCYB2 (annotated as CCS-Like) is mostly expressed in mature storage roots, an organ that accumulates high α-carotene and β-carotene content. In this work, we determined that DcLCYB2 of the orange Nantes variety presents plastid localization and encodes for a functional LCYB enzyme determined by means of heterologous complementation in Escherichia coli. Also, ectopic expression of DcLCYB2 in tobacco (Nicotiana tabacum) and kiwi (Actinidia deliciosa) plants increases total carotenoid content showing its functional role in plants. In addition, transgenic tobacco T2 homozygous plants showed better performance under chronic salt treatment, while kiwi transgenic calli also presented a higher survival rate under salt treatments than control calli. Our results allow us to propose DcLCYB2 as a prime candidate to engineer carotenoid biofortified crops as well as crops resilient to saline environments. Full article
Show Figures

Figure 1

13 pages, 4913 KB  
Article
Functional Characterization of Lycopene β- and ε-Cyclases from a Lutein-Enriched Green Microalga Chlorella sorokiniana FZU60
by Hong Fang, Junjie Liu, Ruijuan Ma, Yiping Zou, Shih-Hsin Ho, Jianfeng Chen and Youping Xie
Mar. Drugs 2023, 21(7), 418; https://doi.org/10.3390/md21070418 - 23 Jul 2023
Cited by 9 | Viewed by 3310
Abstract
Lutein is a high-value carotenoid with many human health benefits. Lycopene β- and ε-cyclases (LCYB and LCYE, respectively) catalyze the cyclization of lycopene into distinct downstream branches, one of which is the lutein biosynthesis pathway, via α-carotene. Hence, LCYB and LCYE are key [...] Read more.
Lutein is a high-value carotenoid with many human health benefits. Lycopene β- and ε-cyclases (LCYB and LCYE, respectively) catalyze the cyclization of lycopene into distinct downstream branches, one of which is the lutein biosynthesis pathway, via α-carotene. Hence, LCYB and LCYE are key enzymes in lutein biosynthesis. In this study, the coding genes of two lycopene cyclases (CsLCYB and CsLCYE) of a lutein-enriched marine green microalga, Chlorella sorokiniana FZU60, were isolated and identified. A sequence analysis and computational modeling of CsLCYB and CsLCYE were performed using bioinformatics to identify the key structural domains. Further, a phylogenetic analysis revealed that CsLCYB and CsLCYE were homogeneous to the proteins of other green microalgae. Subcellular localization tests in Nicotiana benthamiana showed that CsLCYB and CsLCYE localized in chloroplasts. A pigment complementation assay in Escherichia coli revealed that CsLCYB could efficiently β-cyclize both ends of lycopene to produce β-carotene. On the other hand, CsLCYE possessed a strong ε-monocyclase activity for the production of δ-carotene and a weak ε-bicyclic activity for the production of ε-carotene. In addition, CsLCYE was able to catalyze lycopene into β-monocyclic γ-carotene and ultimately produced α-carotene with a β-ring and an ε-ring via γ-carotene or δ-carotene. Moreover, the co-expression of CsLCYB and CsLCYE in E. coli revealed that α-carotene was a major product, which might lead to the production of a high level of lutein in C. sorokiniana FZU60. The findings provide a theoretical foundation for performing metabolic engineering to improve lutein biosynthesis and accumulation in C. sorokiniana FZU60. Full article
(This article belongs to the Special Issue Marine Microbial Diversity as Source of Bioactive Compounds—Part II)
Show Figures

Figure 1

25 pages, 8230 KB  
Article
Enhanced Carotenoid Production in Chlamydomonas reinhardtii by Overexpression of Endogenousand Exogenous Beta-Carotene Ketolase (BKT) Genes
by Yuanhao Chen, Hong Du, Honghao Liang, Ting Hong and Tangcheng Li
Int. J. Mol. Sci. 2023, 24(14), 11382; https://doi.org/10.3390/ijms241411382 - 13 Jul 2023
Cited by 13 | Viewed by 3189
Abstract
Chlamydomonas reinhardtii is a unicellular green alga that can grow heterotrophically by using acetate as a carbon source. Carotenoids are natural pigments with biological activity and color, which have functions such as antioxidant, anti-inflammatory, vision protection, etc., and have high commercial value and [...] Read more.
Chlamydomonas reinhardtii is a unicellular green alga that can grow heterotrophically by using acetate as a carbon source. Carotenoids are natural pigments with biological activity and color, which have functions such as antioxidant, anti-inflammatory, vision protection, etc., and have high commercial value and prospects. We transformed Chlamydomonas reinhardtii with the BKT genes from Phaffia rhodozyma (PrBKT) and Chlamydomonas reinhardtii (CrBKT) via plasmid vector, and screened out the stable transformed algal strains C18 and P1. Under the condition that the cell density of growth was not affected, the total carotenoid content of C18 and P1 was 2.13-fold and 2.20-fold higher than that of the WT, respectively. CrBKT increased the levels of β-carotene and astaxanthin by 1.84-fold and 1.21-fold, respectively, while PrBKT increased them by 1.11-fold and 1.27-fold, respectively. Transcriptome and metabolome analysis of C18 and P1 showed that the overexpression of CrBKT only up-regulated the transcription level of BKT and LCYE (the gene of lycopene e-cyclase). However, in P1, overexpression of PrBKT also led to the up-regulation of ZDS (the gene of ζ-carotene desaturase) and CHYB (the gene of β-carotene hydroxylase). Metabolome results showed that the relative content of canthaxanthin, an intermediate metabolite of astaxanthin synthesis in C18 and P1, decreased. The overall results indicate that there is a structural difference between CrBKT and PrBKT, and overexpression of PrBKT in Chlamydomonas reinhardtii seems to cause more genes in carotenoid pathway metabolism to be up-regulated. Full article
(This article belongs to the Section Molecular Plant Sciences)
Show Figures

Figure 1

18 pages, 2593 KB  
Article
A Lycopene ε-Cyclase TILLING Allele Enhances Lycopene and Carotenoid Content in Fruit and Improves Drought Stress Tolerance in Tomato Plants
by Angelo Petrozza, Stephan Summerer, Donato Melfi, Teresa Mango, Filippo Vurro, Manuele Bettelli, Michela Janni, Francesco Cellini and Filomena Carriero
Genes 2023, 14(6), 1284; https://doi.org/10.3390/genes14061284 - 17 Jun 2023
Cited by 9 | Viewed by 2306
Abstract
In the scenario of climate change, the availability of genetic resources for tomato cultivation that combine improved nutritional properties and more tolerance to water deficiency is highly desirable. Within this context, the molecular screenings of the Red Setter cultivar-based TILLING platform led to [...] Read more.
In the scenario of climate change, the availability of genetic resources for tomato cultivation that combine improved nutritional properties and more tolerance to water deficiency is highly desirable. Within this context, the molecular screenings of the Red Setter cultivar-based TILLING platform led to the isolation of a novel lycopene ε-cyclase gene (SlLCY-E) variant (G/3378/T) that produces modifications in the carotenoid content of tomato leaves and fruits. In leaf tissue, the novel G/3378/T SlLCY-E allele enhances β,β-xanthophyll content at the expense of lutein, which decreases, while in ripe tomato fruit the TILLING mutation induces a significant increase in lycopene and total carotenoid content. Under drought stress conditions, the G/3378/T SlLCY-E plants produce more abscisic acid (ABA) and still conserve their leaf carotenoid profile (reduction of lutein and increase in β,β-xanthophyll content). Furthermore, under said conditions, the mutant plants grow much better and are more tolerant to drought stress, as revealed by digital-based image analysis and in vivo monitoring of the OECT (Organic Electrochemical Transistor) sensor. Altogether, our data indicate that the novel TILLING SlLCY-E allelic variant is a valuable genetic resource that can be used for developing new tomato varieties, improved in drought stress tolerance and enriched in fruit lycopene and carotenoid content. Full article
(This article belongs to the Special Issue Genetic Control of Agronomic Traits in Plants)
Show Figures

Figure 1

14 pages, 2138 KB  
Article
Concurrent Production of α- and β-Carotenes with Different Stoichiometries Displaying Diverse Antioxidative Activities via Lycopene Cyclases-Based Rational System
by Hao Luo, Weiwei He, Zhuqing Dai, Zhongyuan Zhang, Yihong Bao, Dajing Li and Ping Zhu
Antioxidants 2022, 11(11), 2267; https://doi.org/10.3390/antiox11112267 - 17 Nov 2022
Cited by 2 | Viewed by 2889
Abstract
α- and β-carotenes belong to the most essential carotenoids in the human body and display remarkable pharmacological value for health due to their beneficial antioxidant activities. Distinct high α-/β-carotene stoichiometries have gained increasing attention for their effective preventions of Alzheimer’s disease, cardiovascular disease, [...] Read more.
α- and β-carotenes belong to the most essential carotenoids in the human body and display remarkable pharmacological value for health due to their beneficial antioxidant activities. Distinct high α-/β-carotene stoichiometries have gained increasing attention for their effective preventions of Alzheimer’s disease, cardiovascular disease, and cancer. However, it is extremely difficult to obtain α-carotene in nature, impeding the accumulations of high α-/β-carotene stoichiometries and excavation of their antioxidant activities. Herein, we developed a dynamically operable strategy based on lycopene cyclases (LCYB and LCYE) for concurrently enriching α- and β-carotenes along with high stoichiometries in E. coli. Membrane-targeted and promoter-centered approaches were firstly implemented to spatially enhance catalytic efficiency and temporally boost expression of TeLCYE to address its low competitivity at the starting stage. Dynamically temperature-dependent regulation of TeLCYE and TeLCYB was then performed to finally achieve α-/β-carotene stoichiometries of 4.71 at 37 °C, 1.65 at 30 °C, and 1.06 at 25 °C, respectively. In the meantime, these α-/β-carotene ratios were confirmed to result in diverse antioxidative activities. According to our knowledge, this is the first time that both the widest range and antioxidant activities of high α/β-carotene stoichiometries were reported in any organism. Our work provides attractive potentials for obtaining natural products with competitivity and a new insight on the protective potentials of α-/β-carotenes with high ratios for health supply. Full article
Show Figures

Figure 1

Back to TopTop