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Abstract: In the scenario of climate change, the availability of genetic resources for tomato cultivation
that combine improved nutritional properties and more tolerance to water deficiency is highly
desirable. Within this context, the molecular screenings of the Red Setter cultivar-based TILLING
platform led to the isolation of a novel lycopene ε-cyclase gene (SlLCY-E) variant (G/3378/T) that
produces modifications in the carotenoid content of tomato leaves and fruits. In leaf tissue, the novel
G/3378/T SlLCY-E allele enhances β,β-xanthophyll content at the expense of lutein, which decreases,
while in ripe tomato fruit the TILLING mutation induces a significant increase in lycopene and total
carotenoid content. Under drought stress conditions, the G/3378/T SlLCY-E plants produce more
abscisic acid (ABA) and still conserve their leaf carotenoid profile (reduction of lutein and increase
in β,β-xanthophyll content). Furthermore, under said conditions, the mutant plants grow much
better and are more tolerant to drought stress, as revealed by digital-based image analysis and in vivo
monitoring of the OECT (Organic Electrochemical Transistor) sensor. Altogether, our data indicate
that the novel TILLING SlLCY-E allelic variant is a valuable genetic resource that can be used for
developing new tomato varieties, improved in drought stress tolerance and enriched in fruit lycopene
and carotenoid content.

Keywords: Solanum lycopersicum; induced mutations; carotenoid pathway; abiotic stress; digital
image-based phenotyping; bioristor

1. Introduction

Tomato is one of the most widely consumed vegetables in the world. Tomato plants
are sensitive to lack of water during reproductive development, especially during flowering
and fruit growth [1]. Under drought stress conditions, tomato plants exhibit reduced leaf
area, reduced growth, flower drop, mineral deficiency, reduced fruit size, fruit breakage,
and calcium deficiency-related physiological disorders, such as flower rot and poor seed
viability [2]. Therefore, improvement in the drought resistance of tomato varieties is a focus
for researchers and breeders [3].

Under water-deficit conditions, plant cells perceive stress through cell membrane
receptor/sensors’ activity [3]. Following this, a range of second messengers, such as abscisic
acid (ABA), inositol phosphate, calcium ions, reactive oxygen species (ROS), transcriptional
regulators, and phosphoinositides, are activated [4]. Subsequently, plants trigger a series of
physiological defence responses in order to reduce water loss by partial stomatal closure,
controlled water transpiration, and modulation of the expression level of several drought-
perceptive genes [5].
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Tomatoes are also one of the principal dietary sources of antioxidants, such as carotenoids,
tocopherols and flavonoids. Among carotenoids, which are the most abundant antioxidants,
ripe tomato fruits mainly accumulate lycopene. Lycopene is a C40 compound that is syn-
thesized via carotenoid metabolism during fruit ripening [6]. The cyclization of lycopene is
an important branching point in the carotenoid biosynthesis pathway (Figure S1). In one
route, lycopene ε-cyclase, together with lycopene β-cyclase, makes α-carotene and, conse-
quently, lutein. In the alternative route, lycopene β-cyclase alone leads to the formation
of β-carotene and its derivative xanthophylls [6]. The β,β xanthophyll, 9-cis-violaxanthin
and 9-cis-neoxanthin are the precursors for the synthesis of abscisic acid (ABA), the plant
hormone involved in the response to abiotic stress [7,8].

Lycopene is a strong antioxidant and has been shown to be able to reduce the risk
of prostate cancer [9] and cardiovascular diseases [10]. The important health benefits of
lycopene have prompted studies aimed at enhancing lycopene accumulation to improve
the nutraceutical properties of tomato fruit.

Over-expression or down-regulation of genes encoding key enzymes of the lycopene
biosynthesis pathways are the most effective approaches to increasing lycopene content [11–13].
Modulation of the chromoplast-specific lycopene β-cyclase (Cyc-B) enzyme by means of
a TILLING missense point mutation was also successful in incrementing the lycopene
content in tomato fruit [14]. Recently, Xindi Li et al. [15] used the CRISPR/Cas9 system to
increase lycopene level in tomato fruit via the concurrent inhibition of multiple genes of
the carotenoid pathway.

In diverse plant species, genes/enzymes involved in the conversion of lycopene
to β- and α-carotene are often the main targets in incrementing total carotenoids. In
S. lycopersicum, the overexpression of tomato lycopene β-cyclase cDNA increased the total
carotenoid content in fruits, in addition to the almost complete conversion of lycopene into
β-carotene [16]. The down-regulation of the lycopene ε-cyclase gene using RNAi increased
the total carotenoid content of Brassica napus seeds [17]. In sweet potato, Ipomoea batatas, the
increment in carotenoid level in storage roots and leaves was obtained both by reducing
the expression of lycopene ε-cyclase gene [18] and by overexpression of a new allele of
the lycopene β-cyclase (IbCYB2) gene [19]. With the modulation of lycopene ε-cyclase and
lycopene β-cyclase genes, along with carotenoid enrichment, an increase in abiotic stress
tolerance was also observed in sweet potato.

Nowadays, in the scenario of climate changes and water scarcity, tomato germplasm
that combines improved nutritional properties and increased capability to face adverse
conditions is highly demanded by breeders.

With the aim of increasing the availability of tomato genetic resources improved in
fruit carotenoid content and abiotic stress tolerance, we exploited TILLING (Targeting
Induced Local Lesions IN Genomes) [20] technology to select new alleles in the tomato Red
Setter mutant population [21].

We searched for new allelic variants of the lycopene ε-cyclase gene which, in sweet
potato plants down-regulated via RNAi, resulted in increased total carotenoid content and
abiotic stress tolerance [18]. The search for new SlLCY-E alleles by TILLING molecular
screenings led to the isolation of a novel lycopene ε-cyclase (SlLCY-E) variant containing
a point mutation (G/3378/T) with potential enhancement effects on lycopene and total
carotenoid biosynthesis in ripe tomato fruit and on β,β-xanthophyll increase in leaf tissue.

The evaluation of underwater deficiency of the G/3378/T LCY-E allele via in vivo
monitoring of the OECT sensor [22] and digital-based images showed that the G/3378/T
LCY-E plants are more tolerant to drought stress. Altogether, our data demonstrate that the
G/3378/T LCY-E allele is a valuable and promising genetic resource, useful for developing
new tomato varieties with improved drought stress tolerance features, and enriched in fruit
lycopene and carotenoid content.
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2. Materials and Methods
2.1. Plant Material

In this work the following tomato (S. lycopersicum) lines were used: Red Setter, referred
to as WT (wild type), which is an old processing tomato cultivar, and the EMS-generated
mutant lyc-e (referred to as M, mutant), selected through the TILLING approach, from
the Red Setter mutant collection [21]. Plant material was grown in a greenhouse under
environmentally controlled conditions at a temperature of 22 ◦C with a photoperiod of 16 h
light/8 h dark.

2.2. Mutant Allele Identification

The search for induced point mutations in the SlLCY-E gene (Solyc12g008980.1) was
done in the Red Setter TILLING platform [21] according to the experimental conditions
described in Dalmais et al. [23]. The Red Setter SlLCY-E mRNA sequence, deposited in
Genbank database (https://www.ncbi.nlm.nih.gov/, accessed on 27 April 2020) under the
accession number EU533951.1, was used to retrieve the SlLCY-E gene structure information
in the SGN website (https://solgenomics.net/, accessed on 27 April 2020) and the genomic
sequence then used for primer design. Two couples of SlLCY-E gene-specific primers were
selected and employed in the molecular screening based on nested-PCR (Table 1).

Table 1. List and sequences of the primers employed in the TILLING molecular screening.

Primer Sequence 5′-3′

Fw-ext TCAGACACGACGCTCAATCT
Rev-ext TGTCGTTTTCGTTCTTGTGG
Fw-int CCAACACGAGTCTTTTTCGAG
Rev-int AGTACAGAGGCGCATTTTGG

The first PCR was conducted with the external primers (Fw-ext/Rev-ext) and the
second PCR with the internal forward (Fw-int) and reverse (Rev-int) primers 5′-end labelled
with IRDye 700 and IRDye 800 dye (LI-COR®, Lincoln, NE, USA), respectively.

The detection of mutations was performed with the mismatch specific endonuclease
ENDO I [24] and the LI-COR 4300 DNA analyzer (LI-COR®, Lincoln, NE, USA). The
information on the identity and nucleotide change position in the screened region was
obtained via Sanger sequence analysis.

2.3. Drought Stress Experiments

Two drought stress experiments were performed with the lcy-e mutant line and the
Red Setter control genotype: the first one in summer and the second one in autumn season.
The drought stress effects on tomato plants were studied with different approaches in
the two seasons: in summer, the plants were subjected to biochemical analysis, and in
autumn they were pheno-typed via digital images and in vivo monitoring of the bioristor.
The summer experiment took place during the last two weeks of July under unregulated
conditions. In a greenhouse with an average daily temperature of 30 ◦C, a relative humidity
of 45% and solar radiation of 167 Par., 24 plants of Red Setter control genotype and 24 plants
of lcy-e were grown in 16 cm diameter soil-filled pots and fully irrigated until the 5th–6th
true leaf stage.

At this development stage, for each genotype, 12 plants were irrigated with 250 mL of
water twice daily, early in the morning and in the evening, while 12 plants were exposed to
drought stress by withholding watering for 15 days.

Before the drought stress imposition, leaf material was collected from mutant and
control tomato genotypes (day 0) and from drought stressed (DS) and well-watered (WW)
plants at 3, 6 and 10 days after stress application. On the 15th day of the stress imposition,
water was restored and two hours after the irrigation leaf material was collected.

https://www.ncbi.nlm.nih.gov/
https://solgenomics.net/
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For each sampling day, leaf material was harvested at the same time (9.00 a.m.) and
for each genotype and for each experimental condition (stress and no stress application)
leaf tissue was harvested from 3 independent plants (3 biological replicates). The sampled
green material was immediately frozen and stored at −80 ◦C then lyophilized and used in
the carotenoid and ABA measurement analysis.

In autumn, the drought stress experiment was conducted in the greenhouse under
controlled conditions. The experiment involved the use of eight replicas per genotype
and per treatment. The plants were grown in 16 cm diameter soil-filled pots, exposed to a
photoperiod of 12 h (light intensity 180 Par) with a daytime temperature of 22 ◦C and a
night-time temperature of 16 ◦C; the relative humidity ranged from 50 to 60%.

When the plants reached the 5th leaf expansion phase, one bioristor sensor was
inserted in each plant (Figure 1). Plants were kept fully irrigated for 1 day post insertion,
and drought stress was applied for 13 days. Six plants of each genotype were subjected to
the suspension of irrigation while six plants were kept normally irrigated as control.
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Figure 1. Scheme of tomato monitoring through bioristor: an in vivo phenotyping approach.

2.4. Carotenoid Analysis

The carotenoid analyses were conducted as previously described in D’Ambrosio
et al. [25], with the Agilent 1200 Chemstation HPLC system (Agilent Technologies, Milano,
Italy) and a C-30 4,6x250 mm reversed phase column (YMC Europe GmbH, Dinslaken,
Germany). The pigments were extracted from leaves and ripe fruits and the assays were
carried out with at least three biological replicates.

Carotenoids were identified and quantified using calibration curves of the standard
compounds of violaxanthin, neoxanthin, supplied by Carotenature GmbH (Carotena-
ture GmbH, Bern, Switzerland), lutein, zeaxanthin, b-carotene, and lycopene e 8′-apo-β-
carotenal (internal standard) from Sigma Aldrich (Merk KGaA, Darmstadt, Germany).

2.5. ABA Measurement

The leaf ABA content was determined by LC-MS analysis according to the protocol
reported in Rong Zhou et al. [26]. The analyses were performed on an Agilent 1290 infinity
series (Agilent Technologies, Milano, Italy) equipped with a Model G4220A binary pump,
G6410B mass detector, G4226A autosampler and a G1316C column compartment (Agilent
Technologies, Milano, Italy). All mass spectra were obtained by Mass Hunter workstation
data acquisition software (v B.08.02, Agilent Technologies, Milano, Italy) and were analyzed
by Mass Hunter workstation software (v B.08.02, Agilent Technologies, Milano, Italy) for
qualitative and quantitative analysis.
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2.6. Leaf Stomatal Conductance

Leaf stomatal conductance was performed on two fully expanded leaves from each
plant. Measurements were taken on a central portion of leaves (fourth and fifth leaf from the
ground) using a steady-state Leaf Porometer (SC-1 Decagon Devices, Pullman, WA, USA).

2.7. Digital Imaging Phenotyping: Data Acquisition and Processing

RGB images were captured using a Scanalyzer 3D platform (LemnaTec GmbH, Aachen,
Germany), described in Marko et al. [27]. These result in three mutually orthogonal views
which were used to assess plant morphometric parameters, such as height and biomass
(biovolume). The digital biovolume (projected shoot area, PSA) was calculated as the sum
of the projected plant area from the three orthogonal images of the same plant. This digital
trait is used as a digital proxy for fresh weight. Solidity, which indicates how much of
the hull area is covered by leaves, is calculated as the projected shoot area/convex hull
area from plant images. A measure of the plant color was determined by calculating
the weighted mean value from the histogram of the hue channel in the HSV color space
resulting in a value from 0–360◦, where yellow and green are respectively at 60◦ and 120◦,
yellow indicating chlorotic tissue and green healthy tissue.

2.8. Bioristor Measurements

Bioristor is an Organic Electrochemical Transistor (OECT) based sensor composed of a
channel and gate electrodes, both constituted by a textile fiber functionalized with a conduc-
tive polymer [28,29] and directly integrated into the plant stem (Figure 1). For the functional-
ization, two textile fibers were soaked for 5 min in aqueous poly(3,4-ethylenedioxythiophene)
doped with polystyrene sulphonate (CleviosPH500, Starck GmbH, Munich, Germany),
after which ethylene glycol (10% v/v) and dodecyl benzene sulphonic acid (2% v/v) were
added. Fibers were baked at 130 ◦C for 90 min. Before functionalization, each thread
was cleaned with a plasma oxygen cleaner treatment (Femto, Diener electronic, Ebhausen,
Germany) to increase its wettability and facilitate the adhesion of the aqueous conductive
polymer solution. Twice treated fiber was completely inserted into the stem of each tomato
plant, as channel and gate of the OECT.

The fiber was connected at each end to a metal wire with silver paste to stabilize
the connections, forming the “source” and “drain” electrodes. The transistor device was
completed by introducing a second functionalized textile thread as the gate electrode [22].

Bioristors are connected to a digital converter board NI USB-6343 multifunction I/O
device (National Instruments, Austin, TX, USA). Drain and gate currents play a major
role in determining the sensor response. The p-type doped PEDOT (oxidized from the
electrochemistry point of view) leads to mobile holes generating a hole current (Ids0) which
flows in the channel when a drain voltage (Vds = −0.05 V) is applied. These holes are
balanced by the negative charge of the PSS sulphonate group [30] until the application
of a positive gate bias (Vg = 0.6 V), which leads to the injection of cations (M+) from the
electrolyte (xylem sap in this case) into the PEDOT:PSS channel, causing its de-doping,
according to equation [31].

PEDOT+ : PSS− + M+ + e− → PEDOT0 + M+ : PSS− (1)

The “de-doping process” [32], according to the reduction of the oxidized PEDOT+ to
PEDOT0 and the decrease of the number of holes in the channel, leads to a drop in the
drain current (Ids). The whole process is reversible: when gate-source voltage is switched
off (Vg = 0 V), cations diffuse from the channel to the electrolyte, increasing the number of
conducting holes and, consequently, reduced PEDOT0 returns to the oxidized state and
drain-source current to the initial value (Ids0).

The sensor response (R) can be expressed as

R =
|Ids − Ids0|

Ids0
(2)
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and is related to the cation concentration in the electrolyte solution [29], thus allowing the
monitoring of the temporal variation in the plant sap’s cationic content. Here, R measured
in stressed plants (Rstress) and in control plants (Rcontrol) is reported.

When monitoring the plant sap concentration over several days, it proved useful to
smooth out the day/night signal oscillations due to plant circadian rhythms that character-
ize bioristor response [28]. The ratio between the signal recorded from sensors installed in
water-stressed plants and control plants was expressed as Normalized Response [22]:

NR =
Rstress

Rcontrol
(3)

2.9. Statistical Analysis

For carotenoid content and phenomics work, statistical analysis was performed using
the base functions of the R software (4.2 version). One-way ANOVA was used to examine
differences in the means and standard error of carotenoid content, ABA content and plant
phenomics data. From this ANOVA analysis, significant differences were identified with
the TukeyHSD post-hoc test. The bioristor R index data were subjected to analysis using
MATLAB (MathWorks, Natick, MA, USA) and Microsoft Excel 2016 to address variations
related to the circadian cycle [22]. Specifically, a rolling mean calculation was employed
to smoothen the data, thereby reducing background noise and enhancing the visibility of
variations linked to drought occurrences. For statistical analysis of the R data, Analysis
of Variance (ANOVA) was conducted using MATLAB (MathWorks, Natick, MA, USA),
with the resulting p-value being computed. Additionally, Principal Component Analysis
(PCA) was performed using the R statistical analysis software function “prcomp,” and the
findings were visualized through a biplot generated with the “factoextra” package. The
biplot effectively summarized the first two principal components, PC1 and PC2, along
with their respective component loading vectors. Furthermore, the component scores
were depicted as colored dots, providing classification information based on the thesis
classification scheme [33].

3. Results
3.1. Discovery and Phenotyping of a Novel SlLCY-E Allele

The search for induced point mutations in lycopene ε-cyclase gene (SlLCY-E, Solyc12g
008980.1) was carried out on the tomato Red Setter cultivar-based TILLING platform [21].
The molecular screening of a 684 bp region, encompassing exon 7, exon 8 and 51 bp of exon
9, of SlLCY-E gene (Figure 2), allowed the identification of a missense mutation (G/3378/T),
causing the amino acid change of Tryptophan with Leucin (W/356/L) at position 356 of
the lycopene ε-cyclase protein.
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http://wormweb.org/exonintron
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Since lycopene ε-cyclase is a key enzyme in the carotenoid biosynthesis pathway,
we first analyzed the leaf and fruit carotenoid content of M4 lcy-e plants (M, mutant),
homozygous for the discovered point mutation, to verify whether the amino acid change
W/356/L could affect the plant phenotype.

In the phenotypic characterization, the non-mutagenized plants of Red Setter (WT,
wild type) were used as control.

The results of leaf and ripe fruit pigment analysis showed significant differences in
lcy-e mutant with respect to the Red Setter control line (Table 2). In the leaf tissue of lcy-e
plants the violaxanthin content was double that of Red Setter (289 vs. 144 µg/g of dry
weight, DW), while for its precursor, zeaxanthin, an increment of 30% with respect to
the wild type line was measured. A significant decrease in lutein amount was instead
observed in leaves (397 vs. 615 µg/g DW of the WT) and ripe fruits of the mutant line
(7.19 vs. 20.60 µg/g DW of the WT). In addition to the lutein content reduction, the HPLC
determinations of carotenoids in ripe fruit showed an increase of lycopene (23%) and total
carotenoid (19%). The total carotenoid content, as well as the lycopene content of lcy-e fruit,
were significantly different from the Red Setter control fruit.

Table 2. Leaf and Fruit carotenoid content (µg·g−1 DW) of lcy-e (M) and Red Setter (WT) plants.

Violaxanthin Zeaxanthin Neoxanthin Lutein β-Carotene Lycopene Total Carotenoids

Leaf
M 288.51 ± 53.74 a 31.95 ± 3.86 a 101.25 ± 22.37 a 396.55 ± 56.82 a 444.33 ± 31.96 a 1262.6 ± 98.16 a

WT 144.18 ± 18.35 b 22.05 ± 2.79 b 101.31 ± 15.66 a 615.02 ± 14.08 b 395.19 ± 10.49 a 1277.74 ± 36.4 a

Fruit
M 7.2 ± 1.20 a 37.27 ± 6.26 a 1819.28 ± 104.53 a 1874.5 ± 110.33 a

WT 20.59 ± 2.04 b 54.62 ± 7.86 b 1474.40 ± 51.08 b 1571.18 ± 49.08 b

Data are presented as mean ± SD. Each mean was derived from determinations carried out on three biological
replicates. Means with the same letter are not statistically different (Tukey test, p < 0.05). M indicates the mutant
line lcy-e, WT the control line Red Setter.

Altogether, the leaf and fruit carotenoid results demonstrated that the G/3378/T
missense mutation, present in the lcy-e line, is able to produce metabolic phenotypic effects.

3.2. First Drought Stress Experiment
3.2.1. Analysis of Leaf Carotenoid Content

Both 9-cis-violaxanthin and 9-cis-neoxanthin have been proposed to be the precur-
sors for abscisic acid biosynthesis, the key hormone involved in the plant response to
abiotic stress and, in particular, to drought stress. Since the HPLC determinations of leaf
carotenoids revealed a higher content of violaxanthin in lcy-e mutant plants with respect to
the control line Red Setter, we tested the G/3378/T LCY-E allele in a suspended irrigation
regime with the aim of evaluating its response towards adverse conditions, such as that
produced by the drought stress.

The first drought stress experiment was conducted with the lcy-e mutant line and the
wild type Red Setter during the summer, as reported in Materials and Methods. To deter-
mine whether the plant response to the stress imposition was correlated with alterations
in the carotenoid biosynthesis, well-watered (WW) and drought stressed (DS) Red Setter
and lcy-e plants were analyzed for their leaf carotenoid content at 0, 3, 6, 10 and 15 days
(Figure 3).
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the mean of three biological replicates ±SD. A one-way ANOVA was used to examine the differences
between genotypes at each timing point; the differences among means were identified by Tukey
Post-Hoc Test; asterisks indicate significance (* p < 0.05, ** p < 0.01 *** p < 0.001).

Concerning lutein content, it was significantly higher in the Red Setter control line
than the mutant genotype, irrespective of watering conditions at all the timing points,
except for the 6 day point, where similar concentrations were measured in DS plants of M
and WT. Lutein content was roughly doubled in Red Setter compared to lcy-e plants. On
the contrary, violaxanthin content was, on average, double that in the mutant than in wild
type, both in WW and DS plants, at 0, 3, 6, 10 and 15 days.

A significant difference in zeaxanthin content was also registered between the mutant
line and the control genotype, both in WW and DS plants. The violaxanthin precursor
was higher in lcy-e plants at all analyzed time points, except for the lcy-e WW plants at
10 days and the lcy-e DS plants at 3 and 15 days, where the recorded amounts were similar
in both genotypes.

The neoxanthin content was similar in the two genotypes before the drought stress
imposition (day 0), it decreased at 3 and 6 days in WW and DS plants of both genotypes,
while at 10 and 15 days it started to increase, reaching values similar to those registered at
the beginning of the experiment (day 0). A significantly higher content of neoxanthin was
observed in Red Setter WW plants at 6 days, while under stress conditions, at the same
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time point, the neoxanthin amount was higher in DS lcy-e plants than DS Red Setter plants.
A significantly higher neoxanthin content was also measured in lcy-e DS plants at 3 days
after stress imposition.

Regarding β-carotene, no significant differences were registered between the two WW
genotypes at all the analyzed time points. On the contrary, a higher content of β-carotene
was observed in DS lcy-e plants at 6 and 10 days.

The total carotenoid content was, on average, similar in WW and DS plants of Red
Setter and lcy-e lines except at 6 days, when in the lcy-e DS plants it was double that
measured in Red Setter DS plants, while an opposite trend was observed at 10 and 15 days
for the wild type control line.

Overall, the leaf HPLC determinations of WW and DS plants confirmed the lcy-e
carotenoid profile previously observed, i.e., reduction of lutein and increase of violaxanthin
and zeaxanthin content with respect to the control line Red Setter.

3.2.2. ABA Measurements

Well-watered and drought stressed plants of lcy-e mutant and Red Setter control
genotypes were also analyzed for their ABA content by LC-MS (Figure 4).
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Figure 4. Quantitative analysis of ABA content in leaves of WW and DS lcy-e (M) and Red Setter
plants (WT). The ABA levels were taken before the drought stress imposition (day 0), at 3, 6 10 days
after stress application and two hours later than the restored water (day 15). Values are the average
of three biological replicates ±SE. A one-way ANOVA was used to examine the differences between
genotypes at each timing point; the differences among means were identified by Tukey Post-Hoc Test;
asterisks indicate significance (* p < 0.05, *** p < 0.001).
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No significant differences in ABA content were observed between WW lcy-e and
Red Setter plants at all the analyzed time points. Conversely differences in abscisic acid
amounts were detected between DS lcy-e and Red Setter plants. Before the start of stress
imposition (day 0), the ABA content was similar in both genotypes. After three days of
drought stress, both lines responded with increased ABA content; however, the mutant
line had a threefold greater level to that of the control.

The difference was still significant at day 6 even if the ABA content decreased in
both tomato lines but the lcy-e mutant consistently had higher levels than the Red Setter
genotype. At day 15, the “recovery” phase, the ABA level returned to levels similar to that
recorded before the start of stress application (day 0) for both genotypes.

3.3. Second Drought Stress Experiment
3.3.1. Digital Imaging Results

The second drought stress experiment took place in autumn, as described in Materials
and Methods. The response of mutant and wild type plants to the drought stress was moni-
tored through digital RGB images captured at 3, 6 and 12 days after the stress imposition.

As shown in Figure 5, the biomass (projected shoot area) of mutant plants was greater
than that of the Red Setter wild type plants; this was the case in both well-watered and
drought stress conditions, with the differences being more evident under drought stress.
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Figure 5. Indices derived from the digital image-based analysis on well-watered (WW) and drought
stressed (DS) lcy-e (M) and Red Setter (WT) plants. (A) projected shoot area (digital biovolume),
(B) plant height, (C) solidity, (D) green index. Values are the mean of six biological replicates ±SD.
A one-way ANOVA was used to examine the differences between genotypes at each timing point;
the differences among means were identified by Tukey Post-Hoc Test; asterisks indicate significance
(* p < 0.05, ** p < 0.01 *** p < 0.001).
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A similar trend was observed in the plant height trait. In fact, the WW and DS mutant
plants were higher than WW and DS wild type Red Setter. The difference between the two
tomato lines increased under drought stress.

The different response of mutant and wild type plants to drought was also shown by
the solidity index. Solidity indicates how much of the plant hull area is covered by leaves
and is the ratio of plant pixel area to the pixel area of the convex hull shape containing all of
the plant pixels. A diminished solidity could therefore be caused by increasing the convex
hull area while keeping the plant area pixels constant, or decreasing the plant area pixels
while keeping the convex hull area constant. As shown in Figure 6, solidity of WW wild
type Red Setter and lcy-e mutant plants was not significantly different, but under drought
stress the wild type plants displayed a lower solidity with respect to the mutant. The lower
solidity can be explained as a consequence of the reduced plant pixel area and suggests
greater wilting of the wild type leaves with respect to the lcy-e mutant.
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14 days on lcy-e mutant plants (M, dashed line) and Red Setter wild type plants (WT, solid line). Blu
arrow indicates full irrigation, yellow arrow indicates drought stress imposition.

3.3.2. Bioristor Results

Six drought stressed and six well-watered tomato plants of lcy-e and Red Setter
genotypes were each monitored in vivo with a bioristor for 14 days. The trend of the
Normalized Sensor Response (NR) was monitored continuously and recorded for the entire
length of the experiment (Figure 6).

A variation in the NR of the wild type occurred at day 1 and a rapid and continuous
decrease of NR was registered with two typical drought avoidance peaks at day 3 and 4.
At day 4, the sensor response reached a steady level that continued until the end of the
drought stress imposition (Figure 6).

An opposite trend was observed for the NR of the mutant plants, which showed a
slight decrease after 12 h from the beginning of the stress and then the slope showed a rapid
and continuous increase up to day 4 reaching maximum values, leading to the hypothesis
that the accumulation of osmolytes and compounds was triggered by a defense response.
From day 4 to day 10, the NR trend rapidly decreased indicating a stress condition, reaching
at day 10 a NR value comparable with pre-stress. From day 10 to the end of the experiment,
there was a slow steady increase in NR for the mutant line.

The Analysis of Variance (ANOVA), performed on R values of WW and DS plants for
both treatments to consider all possible variables, showed a high significance difference
between WW and DS plants (p ≤ 0.001) throughout the stress period of the experiment.
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Physiological and digital-image base phenotypic traits were compared with those
acquired using bioristor. It should be noted that data physiological and phenological
traits are measured at time points, while bioristor measurements continuously measure
physiological changes in the plant sap and are potentially more sensitive to dynamic
variations. The stomatal conductance (SC), investigated as physiological trait strongly
affected by drought stress, was recorded and a correlation analysis was carried out with the
data collected by bioristor. A strong, highly significant correlation was observed between
sensor response (R) and stomatal conductance (SC) (r = 0.74, p ≤ 0.001; Figure 7).
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Figure 7. Scatter plots of the sensor response (R) and stomatal conductance (SC) measured on well-
watered and drought stressed plants of lcy-e and Red Setter genotypes. The scatter plot and the
displayed linear regression indicate a strong correlation between the two variables, with a correlation
coefficient of r = 0.74. p ≤ 0.001 indicates the statistical significance level of the observed correlation.

The bioristor measurements were correlated with RGB indices acquired through the
Scanalyzer 3D platform: (i) plant height, (ii) plant solidity, (iii) digital biovolume and (iv)
hue circular (Figure S2). Notwithstanding the applied drought stress, the plants’ growth as
indicated by their digital biovolume (projected shoot area), height and solidity, was not
strongly affected by the water scarcity.

R was correlated with the plant height (r = 0.74, p ≤ 0.01, Figure 8), and there was a
good correlation with digital biovolume as previously observed. The ability of a bioristor
to monitor the in vivo changes occurring in the plant sap, correlated with changes in
morphophysiological traits, was supported here.

As shown in Figure 9, a PCA analysis was performed considering physiological,
phenotypic traits and the sensor response (R). The first two components (PC1 and PC2)
explain 84.3% of the variability of the described phenomenon. The first PC (PC1) explains
55.3% of the phenotypic variation, and perfectly separates the genotypes and the different
treatment. The wild type DS plants are separated in the biplot from all other genotypes,
indicating that drought stress strongly impacted on all traits analyzed.
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Figure 8. Scatter plots of the sensor response (R) and height (cm) measured on well-watered and
drought stressed plants of mutant and wild type genotypes. The scatter plot and linear regression
displayed indicate a strong correlation between the two variables, with a correlation coefficient of
r = 0.74; p ≤ 0.01 indicates the statistical significance level of the observed correlation.
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Figure 9. Biplot showing the PCA results. The first two PCs display 84.3% of the total phenotypic
variation observed. The component scores (shown in points) are colored according to the combination
of genotype and grown conditions. Blue, well-watered (WW) mutant plants (M); red, drought
stressed (DS) mutant plants (M); grey, well-watered (WW) wild type plants (WT); yellow, drought
stressed (DS) wild type plants (WT). The component loading vectors (represented in lines) were
superimposed proportionally to their contribution. SC: stomatal conductance; R: sensor response;
DB: digital biovolume; h: plant height; hue_circular; solidity.
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The presence of the lcy-e mutant genotype within the Red Setter well-watered group
support the role of the novel G/3378/T LCY-E allelic variant in conferring drought tolerance.
R and stomatal conductance are strongly and positively correlated (r = 0.74, p ≤ 0.001 as
previously demonstrated by Janni et al. [22] and Kim et al. [34,35].

4. Discussion

Plants commonly experience periods of drought during their life cycle [36]. Drought
stress therefore represents a critical constraint for crop productivity [37,38]. The availability
of genetic resources more adaptable to the ongoing climate change and more tolerant to
water deficiency with no reduction in their nutritional properties is highly desirable and
demanded. Within this context, the molecular screenings of our Red Setter cultivar-based
TILLING platform allowed the identification of a novel lycopene ε-cyclase gene (SlLCY-E)
variant that has the ability to increase the lycopene and total carotenoid content in ripe
fruits and to improve abiotic stress tolerance in tomato plants.

The novel SlLCY-E allelic variant consists of a missense point mutation that was
predicted tolerated by the LCY-E protein activity, according to the SIFT computational
analysis [39]; however, the amino acid substitution at position 356 of the lycopene ε-cyclase
protein (W356L) was unusual in the set of 12 protein sequences used by SIFT for its
prediction. Furthermore the search for any predicted mutations of the SlLCY-E gene among
the sequenced 360 tomato accessions [40] in the Tomato 360 variants SL2.50 genome browser
at SGN (https://solgenomics.net/jbrowse_solgenomics/, accessed on 1 February 2023),
accessed for position SL2.50ch12:2288749, revealed that there are no predicted natural
mutations at the searched position. This suggests that the TILLING G/3378/T point
mutation in the SlLCY-E gene is a new and unique mutation. The discovered TILLING
missense mutation appears not to be present in the natural variability, therefore we decided
to study its influence on the tomato plant phenotype.

As the SlLCY-E gene encodes a key enzyme in the carotenoid pathway, the lycopene
ε-cyclase, the effects of the missense point mutation on plant phenotype was assessed by
analyzing the carotenoid profile and content of leaves as well as ripe fruits of lcy-e mutant
plants by comparison to the Red Setter control plants (Table 2).

The observed leaf and fruit lcy-e carotenoid profile is in agreement with the impaired
activity of the lycopene ε-cyclase enzyme. It is postulated that the G/3378/T missense
mutation affects lycopene ε-cyclase activity with respect to the wild type LCY-E protein
and, as a consequence, a decrease in lutein content in leaf and ripe fruit is observed. The
deleterious effect of the TILLING missense mutation on lycopene ε-cyclase activity shifts
the synthesis of carotenoids towards the β-branch of the pathway, thus increasing the
β,β-xanthophyll content in leaf tissue. The impaired activity of the lycopene ε-cyclase also
explains the increment of lycopene and consequently of total carotenoids in ripe fruits.

The increase in total carotenoid content observed in lcy-e ripe fruits was not seen
in lcy-e leaves of plants grown in greenhouse controlled conditions. A similar result is
reported in Brassica napus by Bianyun Y. et al. [17] that, by reducing the expression of
lycopene ε-cyclase using RNAi, an increase in total carotenoid in seeds of transgenic plants
was obtained, but not in the leaves. Differences in capacity to make and store excess
carotenoids were proposed to explain the differences between the tissues.

The leaf carotenoid profile of lcy-e i.e., reduction in lutein and increase in β,β-
xanthophyll content was still conserved in the mutant line when subjected to drought
stress by withholding watering for 15 days. In particular, the violaxanthin content, even if
slightly decreased from the sixth day of the stress imposition, continued to be roughly two
times higher in lcy-e leaves than in control genotype.

The elevated content of violaxanthin together with neoxanthin, which are proposed to
be the abscisic acid precursors, could explain the higher level of ABA measured in the DS
mutant line with respect to the DS control line Red Setter.

Surprisingly, no significant difference in ABA content was observed between WW lcy-e
and Red Setter plants despite that violaxanthin content in the mutant line was double that

https://solgenomics.net/jbrowse_solgenomics/
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in the wild type line. The amount of measured ABA was, in fact, roughly 5 µg·g−1 DW at all
the analyzed timing points (Figure 4). In sweet potato plants where the expression of IbLCY-
E was down-regulated by RNAi, an increased level of ABA content was instead measured
under both normal and stress (drought and salt) treatment conditions, in agreement with
the higher violaxanthin content of the transgenic plants [18]. In our lyc-e TILLING mutant,
the positive correlation between violaxanthin content and ABA concentration was not
found and the expected increase of ABA due to the high leaf β,β-xanthophyll concentration
was not observed in WW mutant plants.

Perhaps the different response of tomato lcy-e line and transgenic sweet potato, both
“affected” in lycopene ε-cyclase activity by means of two different approaches (TILLING
missense mutation and down-regulation by RNAi respectively), could be attributed to a
diverse mechanism regulating the ABA level and biosynthesis in the two plant species.

The lack of a strict correlation between violaxanthin content and ABA concentration
was also reported for the tomato mutant line hp3 (high pigment 3) by Galpaz et al. [41].
Due to the deleterious effect of a missense mutation occurring in the gene for zeaxanthin
epoxidase (Zep), which converts zeaxanthin to violaxanthin, hp3 leaves have low traces
of violaxanthin and neoxanthin, the two β,β-xanthophyll precursors of ABA. Concerning
this mutant line, the authors report that hp3 plants grown in the greenhouse under well-
watered conditions showed a low level of ABA but similar to that of wild type plants grown
under the same condition, despite their small leaf β,β-xanthophyll content. A significant
decrease in ABA levels was instead detected in field-grown hp3 plants compared to the
wild-type. These results, i.e., absence and presence of differences in ABA content between
hp3 mutant and wild type genotype, are identical to our findings with lcy-e and Red Setter
plants grown in well-watered and drought stress conditions respectively.

Several studies have described the damaging influences of drought stress on the
vegetative growth of plants [42]. Investigations performed in greenhouse [43] and field [44]
conditions demonstrated that DS affects tomato plant growth by reducing plant height,
shoot length and number of leaves per plant. Our studies showed that drought stressed
lcy-e plants grow much better than the Red Setter control plants, as revealed by their high
values of biovolume and height, measured with the digital image-based analysis. The lcy-e
tolerance to drought stress is also shown by the lower wilting of the mutant leaves with
respect to the wild type genotype, as indicated by the solidity index.

The integration of bioristor data with image-based phenotyping has provided insights
into the dynamics and timing of the tomato lcy-e line phenotypic and physiological re-
sponse. The analysis of the bioristor data suggests that, as an initial response to the drought
stress, a change in the transport, allocation, and production of metabolites and ions occurs
within the plant, which acts as a signal for stomatal closure and the subsequent decrease in
transpiration [22,45].

The high correlation coefficient between the sensor response (R), stomatal conduc-
tance (SC), and height trait confirms the hypothesis that the bioristor can detect ions and
molecules related to the drought stress and those dissolved and transported through the
transpiration stream, thus efficiently detecting the occurrence of drought stress immedi-
ately after the priming of the defense responses. A difference in the extent and timing of
a possible drought avoidance was observed between the two tested tomato genotypes,
together with the different responses to water stress monitored between lcy-e mutant and
Red Setter wild type plants.

The combination of the digital image-based data and the bioristor values in a PCA,
allowed the clear separation of stressed and unstressed plants. The stressed lcy-e plants
clustered with the Red Setter well-watered group, supporting the role of the G/3378/T LCY-
E allelic variant in conferring drought tolerance. These findings open new perspectives for
the use of the bioristor as a tool to study and select drought tolerant genotypes and varieties.

The overall results of the present study demonstrate that the TILLING G/3378/T
LCY-E allele is a valuable genetic resource that can be used for developing new tomato
lines improved in drought stress tolerance and in fruit lycopene and carotenoid content.
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Since it has been identified in a processing tomato cultivar (Red Setter), the G/3378/T
LCY-E allele can be directly used in breeding programs or incorporated in the genetic
backgrounds of interest. Open field evaluation conducted on the lcy-e and Red Setter
lines under regular irrigation confirmed that the G/3378/T missense mutation favors the
accumulation of lycopene and total carotenoids in the fruit. In addition the results of the
field trial showed that the new allelic variant of the SlLCY-E gene does not affect the most
important technological parameters of fruit, such as fruit dimension, fruit weight, firmness
and soluble solid content.

Altogether, our phenotypic data prove the usefulness of G/3378/T LCY-E allele in
creating new tomato lines addressed to industry or fresh markets.

5. Conclusions

Through TILLING screenings of our Red Setter tomato mutant population we identi-
fied a novel lycopene ε-cyclase (LCY-E) allele (G/3378/T), producing an increment of ly-
copene and total carotenoid content in ripe tomato fruit and an increase of β,β-xanthophylls
in leaf tissue.

Under water deficiency conditions, the new G/3378/T LCY-E allele produces more
ABA than the Red Setter control genotype and it is more tolerant to drought stress, as
revealed by the in vivo phenotyping via OECT sensor, which detected a higher changes of
ion concentration in the sap of the mutant than in wild type and digital imaging analysis.

Our phenotypic data demonstrate that the G/3378/T LCY-E allele is a valuable ge-
netic resource, useful for developing new tomato varieties with improved drought stress
tolerance features and enriched in fruit lycopene and carotenoid content.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/genes14061284/s1, Figure S1: Schematic representation of the
carotenoid pathway; Figure S2: Pearson’s Correlation (r) of the bioristor response (R) and image-
derived data.
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