error_outline You can access the new MDPI.com website here. Explore and share your feedback with us.
 
 
Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (253)

Search Parameters:
Keywords = lung specific delivery

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 4255 KB  
Article
Hydroxypropyl Methylcellulose Capsules Enhance Aerodynamic Performance of Carrier-Based Dry Powder Inhaler Formulations: A Comprehensive Evaluation of Capsule Material Effects
by Camille Dumont, Sandrine Picco, Beatriz Noriega-Fernandes, Pierre Verlhac, Andrea Elena Cortez, Camille Boulet, Molly Gallagher, Christopher Bock and Vincent Jannin
Pharmaceutics 2025, 17(12), 1621; https://doi.org/10.3390/pharmaceutics17121621 - 17 Dec 2025
Viewed by 535
Abstract
Background/Objectives: This study aims to investigate the underexplored impact of capsule type on the performances of capsule-based dry powder inhalers (cDPIs). It compares specific properties of hard gelatin-based capsules (Hard Gelatin Capsules (HGC), HGC including polyethylene glycol (HGC + PEG)) and hypromellose-based [...] Read more.
Background/Objectives: This study aims to investigate the underexplored impact of capsule type on the performances of capsule-based dry powder inhalers (cDPIs). It compares specific properties of hard gelatin-based capsules (Hard Gelatin Capsules (HGC), HGC including polyethylene glycol (HGC + PEG)) and hypromellose-based capsules, (Zephyr® Vcaps® (VC), Zephyr® Vcaps® Plus (VCP) and Vcaps® Plus Zephyr Inhance™ (VCP-I)) with aerosolization performances of model carrier-based formulation, providing insights into their impact on pulmonary drug delivery efficacy. Methods: Aerosolization properties of a model phenytoin/lactose blend formulation filled in the different capsules was evaluated using a Next Generation Impactor (NGI) with RS01 device. Capsule shell characteristics were evaluated in terms of water activity, static charges, and inner surface aspect and roughness. Results: Hypromellose-based capsules, especially VC and VCP-I, exhibited significantly higher drug delivery performances compared to gelatin-based capsules. In particular, VCP-I demonstrated good results with excellent batch-to-batch reproducibility and 51% of the nominal dose available for lung absorption. Although capsule inner surface showed clear differences between both polymer families, no clear correlation could be found between cDPI performances and capsule roughness and density of charge. All capsules presented good mechanical properties in the conditions of the tests. Conclusions: Capsule type exerts a significant impact on cDPI performances. These findings highlight the importance of capsule selection as a critical material attribute in the design and optimization of inhalation products. Full article
(This article belongs to the Section Pharmaceutical Technology, Manufacturing and Devices)
Show Figures

Figure 1

35 pages, 968 KB  
Review
Advancing Lung Cancer Treatment: A Comprehensive Review of Photodynamic Therapy and Nanoparticle Applications
by Andreea Moise-Crintea, Anne-Marie Constantin, Elena Mihaela Jianu, Ioana Maria Orlea, Minodora Manea, Roxana Oana Cojocariu, Rahela Carpa, Bogdan-Andrei Borlea, Cristina-Maria Boznea, Razvan Lucian Coseriu and Alina Sovrea
Pharmaceutics 2025, 17(12), 1579; https://doi.org/10.3390/pharmaceutics17121579 - 8 Dec 2025
Viewed by 837
Abstract
Lung cancer remains a significant global health challenge. The high mortality rate is primarily caused by late diagnoses and the limitations of conventional therapies. Photodynamic therapy (PDT), which uses photosensitizing compounds, specific wavelengths of light, and oxygen to generate cytotoxic reactive oxygen species [...] Read more.
Lung cancer remains a significant global health challenge. The high mortality rate is primarily caused by late diagnoses and the limitations of conventional therapies. Photodynamic therapy (PDT), which uses photosensitizing compounds, specific wavelengths of light, and oxygen to generate cytotoxic reactive oxygen species (ROS) that selectively destroy cancer cells, has emerged as a promising, minimally invasive alternative. Despite its advantages, traditional PDT has limitations. These include the limited penetration depth of light and the hypoxic nature of the tumor microenvironment. Nanotechnology has transformed PDT by enabling the precise delivery of photosensitizers, improving their stability, overcoming physiological barriers, and allowing for deeper tissue targeting. This review analyzes the molecular mechanisms of PDT, the evolution of photosensitizer and nanoparticle design, strategies to overcome PDT limitations, and the impact of the tumor microenvironment. Additionally, the potential of combining PDT with other cancer therapies, such as chemotherapy, immunotherapy, targeted therapy, radiotherapy, and gene therapy, is being investigated. While preclinical successes are remarkable, clinical implementation of nanoparticle-based PDT faces complex regulatory pathways, manufacturing scalability challenges, and the need for robust long-term safety data. Integrating artificial intelligence (AI) and biomarker discovery will accelerate the development of personalized treatments and usher in a new era of targeted oncology for lung cancer patients. Full article
Show Figures

Figure 1

22 pages, 8429 KB  
Article
SOX18 and SOX30 in NSCLC: The Epigenetic Landscape of Methylation, miRNA Regulation, and Network Crosstalk in Tumor Progression
by Mateusz Olbromski, Aleksandra Piotrowska, Monika Mrozowska, Alicja Kmiecik, Natalia Glatzel-Plucinska, Agnieszka Gomulkiewicz, Aleksandra Stepien, Klaudia Krawczynska, Piotr Blasiak, Marzenna Podhorska-Okolow and Piotr Dziegiel
Int. J. Mol. Sci. 2025, 26(23), 11669; https://doi.org/10.3390/ijms262311669 - 2 Dec 2025
Viewed by 519
Abstract
SOX (SRY-related HMG-box) transcription factors are key regulators of embryogenesis and vascular development, with emerging roles in cancer biology. In non-small-cell lung cancer (NSCLC), the contributions of SOX18 and SOX30 remain insufficiently understood, particularly regarding their epigenetic regulation and network interactions with angiogenic [...] Read more.
SOX (SRY-related HMG-box) transcription factors are key regulators of embryogenesis and vascular development, with emerging roles in cancer biology. In non-small-cell lung cancer (NSCLC), the contributions of SOX18 and SOX30 remain insufficiently understood, particularly regarding their epigenetic regulation and network interactions with angiogenic and immune-modulatory pathways. We examined 800 NSCLC specimens (400 lung adenocarcinomas, 400 squamous cell carcinomas) using immunohistochemistry, RT-qPCR, Western blotting, and spatial transcriptomics to profile SOX18, SOX30, and related signaling partners (SOX7, SOX17, MEF2C—Myocyte Enhancer Factor 2C, VCAM1—Vascular Cell Adhesion Molecule 1, p-STAT3—Signal Transducer and Activator of Transcription 3). Epigenetic regulation was assessed via droplet digital methylation-specific PCR of promoter CpG islands, while functional validation employed adenoviral delivery of hsa-miR-24-3p in NSCLC cell lines and 3D spheroid cultures. SOX18 protein was markedly overexpressed in both NSCLC subtypes, despite reduced transcript levels and consistent promoter hypermethylation, suggesting post-transcriptional regulation. In contrast, SOX30 expression was uniformly downregulated at both mRNA and protein levels, frequently linked to promoter hypermethylation, especially in squamous carcinoma. Spatial transcriptomics revealed SOX18 enrichment at tumor cores and invasive borders, co-localizing with MEF2C, VCAM1, and p-STAT3 in vascular and stromal niches, while SOX30 expression remained low across all tumor regions. Functional assays demonstrated that hsa-miR-24-3p suppressed SOX18 expression and partially modulated SOX30 and MEF2C, reinforcing a miRNA-driven regulatory axis. In summary, SOX18 and SOX30 play divergent roles in NSCLC progression: SOX18 functions as a pro-oncogenic factor driving angiogenesis and tumor–stroma interactions, while SOX30 acts as an epigenetically silenced tumor suppressor. Regulation of SOX18 by miR-24-3p highlights a potential therapeutic vulnerability. These findings underscore the significance of SOX transcription factors as biomarkers and potential targets for novel treatment strategies in NSCLC. Full article
(This article belongs to the Special Issue Advancements in Cancer Biomarkers)
Show Figures

Graphical abstract

18 pages, 3761 KB  
Article
Hexapeptide-Liposome Nanosystem for the Delivery of Endosomal pH Modulator to Treat Acute Lung Injury
by Yuting Ji, Qian Wang, Rujing Lin, Mimi Pang, Liya Sun, Jiameng Gong, Huiqiang Ma, Shan-Yu Fung and Hong Yang
J. Funct. Biomater. 2025, 16(12), 450; https://doi.org/10.3390/jfb16120450 - 1 Dec 2025
Viewed by 651
Abstract
The overactivation of endosomal Toll-like receptor (TLR) in macrophages plays an important role in the pathogenesis of acute lung injury (ALI). There is currently still a lack of nano-formulated and macrophage-targeted endosomal TLR inhibitors that have been approved for clinical uses. We previously [...] Read more.
The overactivation of endosomal Toll-like receptor (TLR) in macrophages plays an important role in the pathogenesis of acute lung injury (ALI). There is currently still a lack of nano-formulated and macrophage-targeted endosomal TLR inhibitors that have been approved for clinical uses. We previously discovered that the elevation of endosomal pH using nanodevices provides a promising strategy to specifically inhibit endosomal TLRs in macrophages. The weakly basic drug hydroxychloroquine (HCQ) has been reported for its capability to accumulate in endolysosomes and modulate the acidity in these compartments. To enhance its macrophage-targeting ability and the therapeutic efficacy in vivo, herein we formulated HCQ into a nanoform using liposomes, named HCQ-L. We found that HCQ-L was less cytotoxic and more effective in inhibiting endosomal TLRs (including TLR3, TLR4, TLR 7/8) than the molecular HCQ. Subsequently, a hexapeptide, Pep12, was inserted onto the surface of HCQ-L to form HCQ-L-P12. Interestingly, Pep12 modification significantly improved the stability of liposomes in aqueous solution for at least 2 years; while having enhanced inhibitory effects on TLR7/8 signaling, HCQ-L-P12 displayed similar effects on inhibiting the TLR4 pathway and down-stream pro-inflammatory cytokine production when compared with HCQ-L. Furthermore, both HCQ nanoformulations potently elevated the endosomal pH. In vivo evaluation showed that HCQ-L-P12 and HCQ-L (but not molecular HCQ) were able to alleviate lung inflammation and injuries by decreasing inflammatory cell infiltration upon intratracheal instillation in a lipopolysaccharide (LPS)-induced acute lung injury (ALI) mouse model. This research provides a new strategy to fabricate lipid-based nanocarriers for targeted delivery of endosomal pH modulators to treat ALI and other acute and chronic inflammatory disorders. Full article
(This article belongs to the Special Issue Nanomaterials for Drug Delivery Systems)
Show Figures

Graphical abstract

16 pages, 2794 KB  
Article
Construction and Activity of Cisplatin-Loaded Chitosan–Zinc Amino-Porphyrin Photosensitizer Hydrogel
by Hongmei Zhang, Dongqing Li, Pengge Wang, Yunxia Yang, Daliang Zhu and Yanqing Wang
Gels 2025, 11(12), 948; https://doi.org/10.3390/gels11120948 - 26 Nov 2025
Viewed by 299
Abstract
Cisplatin resistance remains a major impediment to the successful chemotherapy of various solid tumors, including ovarian, lung, and head and neck cancers. Diverse drug delivery systems with photodynamic specificity significantly target diseased cells precisely. Herein, a homogeneous photodynamic hydrogel drug-loading network based on [...] Read more.
Cisplatin resistance remains a major impediment to the successful chemotherapy of various solid tumors, including ovarian, lung, and head and neck cancers. Diverse drug delivery systems with photodynamic specificity significantly target diseased cells precisely. Herein, a homogeneous photodynamic hydrogel drug-loading network based on chitosan (CS) containing zinc amino-porphyrin (ZnTAPP) has been developed for carrying cisplatin (CDDP). Aldehyde groups of glutaraldehyde acted as a bridge to connect ZnTAPP and CS. CDDP was then loaded in CS-ZnTAPP hydrogel to construct the anticancer drug system synergistically. Multiple analysis methods were applied to evaluate the chemical structure and physical properties of hydrogels, including a Fourier transform infrared spectrometer, scanning electron microscopy, an X-ray powder diffractometer, rheological measurements, etc. CS-ZnTAPP hydrogels as well as CS-ZnTAPP-CDDP hydrogels, generated abundant singlet oxygen rapidly for photodynamic therapy. Finally, the hydrogels exhibited significant anticancer activities under irradiation; the IC50 was reduced to 10.936 μg/mL toward CDDP-resistant lung cancer cells (A549/CDDP). The new hydrogel could be applied as a photodynamic anticancer drug delivery system to overcome cisplatin resistance. Full article
Show Figures

Figure 1

21 pages, 4137 KB  
Article
Physics-Informed Neural Networks Simulation and Validation of Airflows in Three-Dimensional Upper Respiratory Tracts
by Mohamed Talaat, Xiuhua Si, Haibo Dong and Jinxiang Xi
Fluids 2025, 10(12), 306; https://doi.org/10.3390/fluids10120306 - 25 Nov 2025
Viewed by 1035
Abstract
Accurate and efficient simulation of airflows in human airways is critical for advancing the understanding of respiratory physiology, disease diagnostics, and inhalation drug delivery. Traditional computational fluid dynamics (CFD) provides detailed predictions but is often mesh-sensitive and computationally expensive for complex geometries. In [...] Read more.
Accurate and efficient simulation of airflows in human airways is critical for advancing the understanding of respiratory physiology, disease diagnostics, and inhalation drug delivery. Traditional computational fluid dynamics (CFD) provides detailed predictions but is often mesh-sensitive and computationally expensive for complex geometries. In this study, we explored the usage of physics-informed neural networks (PINNs) to simulate airflows in three geometries with increasing complexity: a duct, a simplified mouth–lung model, and a patient-specific upper airway. Key procedures to implement PINN training and testing were presented, including geometry preparation/scaling, boundary/constraint specification, training diagnostics, nondimensionalization, and inference mapping. Both the laminar PINN and SDF–mixing-length PINN were tested. PINN predictions were validated against high-fidelity CFD simulations to assess accuracy, efficiency, and generalization. The results demonstrated that nondimensionalization of the governing equations was essential to ensure training accuracy for respiratory flows at 1 m/s and above. Hessian-matrix-based diagnosis revealed a quick increase in training challenges with flow speed and geometrical complexity. Both the laminar and SDF–mixing-length PINNs achieved comparable accuracy to corresponding CFD predictions in the duct and simplified mouth–lung geometry. However, only the SDF–mixing-length PINN adequately captured flow details unique to respiratory morphology, such as obstruction-induced flow diversion, recirculating flows, and laryngeal jet decay. The results of this study highlight the potential of PINNs as a flexible alternative to conventional CFD for modeling respiratory airflows, with adaptability to patient-specific geometries and promising integration with static or real-time imaging (e.g., 4D CT/MRI). Full article
(This article belongs to the Special Issue Respiratory Flows)
Show Figures

Figure 1

20 pages, 339 KB  
Review
The Three Musketeers in Cancer Therapy: Pharmacokinetics, Pharmacodynamics and Personalised Approach
by Milan Zarić, Petar Čanović, Radica Živković Zarić, Simona Protrka and Miona Glišić
J. Pers. Med. 2025, 15(11), 516; https://doi.org/10.3390/jpm15110516 - 31 Oct 2025
Viewed by 1024
Abstract
Cancer therapy is rapidly evolving from a one-size-fits-all paradigm toward highly personalized approaches. Traditional chemotherapies and radiotherapies, while broadly applied, often yield suboptimal outcomes due to tumor heterogeneity and are limited by significant toxicities. In contrast, precision oncology tailors prevention, diagnosis, and treatment [...] Read more.
Cancer therapy is rapidly evolving from a one-size-fits-all paradigm toward highly personalized approaches. Traditional chemotherapies and radiotherapies, while broadly applied, often yield suboptimal outcomes due to tumor heterogeneity and are limited by significant toxicities. In contrast, precision oncology tailors prevention, diagnosis, and treatment to the individual patient’s genetic and molecular profile. Key advancements underscore this shift: molecularly targeted drugs (e.g., trastuzumab for HER2-positive breast cancer, EGFR and ALK inhibitors for lung cancer) have improved efficacy and reduced toxicity compared to conventional therapy. Pharmacokinetic (PK) and pharmacodynamic (PD) considerations are central to personalizing treatment, explaining variability in drug exposure and response among patients and guiding dose optimization. Modern strategies like therapeutic drug monitoring and model-informed precision dosing seek to maintain drug levels in the therapeutic range, improving outcomes. Immunotherapies, including checkpoint inhibitors and CAR-T cells, have transformed oncology, though patient selection via biomarkers (such as PD-L1 expression or tumor mutational burden) is critical to identify likely responders. Innovative drug delivery systems, notably nanomedicine, address PK challenges by enhancing tumor-specific drug accumulation and enabling novel therapeutics. Furthermore, rational combination regimens (informed by PK/PD and tumor biology) are being designed to achieve synergistic efficacy and overcome resistance. Key barriers include the high cost of biomarker testing, insufficient laboratory infrastructure, and inconsistent reimbursement policies. Operational inefficiencies such as long turnaround times or lack of clinician awareness further limit the use of precision diagnostics. Regulatory processes also remain complex, particularly around the co-development of targeted drugs and companion diagnostics, and the evidentiary requirements for rare subgroups. Addressing these barriers will require harmonized policies, investment in infrastructure, and educational initiatives to ensure that the promise of personalized medicine becomes accessible to all patients. Ensuring that advances are implemented responsibly—guided by pharmacological insights, supported by real-world evidence, and evaluated within ethical and economic frameworks—will be critical to realizing the full potential of personalized cancer medicine. Full article
(This article belongs to the Section Personalized Medicine in Pharmacy)
Show Figures

Graphical abstract

20 pages, 1726 KB  
Article
Heterologous SARS-CoV-2 Buccal Immunization with Oral Dissolving Films Generated a Strong Systemic and Mucosal Immunity in a Murine Model
by Tanisha Manoj Arte, Smital Patil, Emmanuel Adediran, Mahek Gulani, Amarae Ferguson, Sarthak Shah, Priyal Bagwe, Susu M. Zughaier and Martin J. D’Souza
Vaccines 2025, 13(11), 1105; https://doi.org/10.3390/vaccines13111105 - 29 Oct 2025
Viewed by 661
Abstract
Background: In response to the emergence of immune-evasive variants of SARS-CoV-2, this study explores a novel heterologous vaccination strategy using a microparticulate formulation approach that is delivered via oral dissolving film (ODF) formulations into the buccal cavity. Heterologous administration has the potential to [...] Read more.
Background: In response to the emergence of immune-evasive variants of SARS-CoV-2, this study explores a novel heterologous vaccination strategy using a microparticulate formulation approach that is delivered via oral dissolving film (ODF) formulations into the buccal cavity. Heterologous administration has the potential to generate cross-reactive antibodies, which can be especially beneficial against viruses with ever-mutating variants. Moreover, the microparticulate oral dissolving film-based vaccine approach is a non-invasive vaccine delivery platform. Methods: The vaccine design incorporated whole inactivated Delta and Omicron variants of the virus, administered at prime and booster doses, respectively, effectively encapsulated in a Poly(lactic-co-glycolic) acid (PLGA) polymer matrix, and adjuvanted with Alum to enhance immune activation. Following vaccination, serum, mucosal, and tissue samples were analyzed to evaluate humoral and cellular immune responses against the model antigen, as well as other variants such as Alpha and Beta variants, to understand the cross-reactive response. Result: In vitro evaluations confirmed the vaccine’s safety and its ability to stimulate immune responses. On administering microparticulate oral dissolving films to mice, whole inactivated delta and omicron variant-specific antibodies were observed in serum samples along with neutralizing titers in terminal week. The formulated vaccine showed significant secretory IgA antibody levels in mucosal samples. Moreover, CD4+ and CD8a cellular responses were observed in tissue samples of spleen and lymph nodes, along with antibodies (IgG, IgA, and IgM) detected in lung supernatant samples. Humoral and cellular cross-reactive antibodies were observed in the samples. Conclusions: This approach offers a promising platform for developing next-generation vaccines capable of inducing broad immunity. Full article
Show Figures

Figure 1

13 pages, 1022 KB  
Review
Preoxygenation in the ICU
by Clément Monet, Mathieu Capdevila, Inès Lakbar, Yassir Aarab, Joris Pensier, Audrey De Jong and Samir Jaber
J. Clin. Med. 2025, 14(20), 7305; https://doi.org/10.3390/jcm14207305 - 16 Oct 2025
Viewed by 3255
Abstract
Tracheal intubation is a frequent and high-risk procedure in the intensive care unit (ICU). Unlike elective intubation in the operating room, ICU intubation is often performed under emergent conditions in physiologically unstable patients, leading to increased technical difficulty and higher complication rates. Among [...] Read more.
Tracheal intubation is a frequent and high-risk procedure in the intensive care unit (ICU). Unlike elective intubation in the operating room, ICU intubation is often performed under emergent conditions in physiologically unstable patients, leading to increased technical difficulty and higher complication rates. Among these, hypoxemia is particularly frequent and represents a major determinant of morbidity and mortality. Optimizing preoxygenation is therefore a cornerstone of safe airway management in critically ill patients. The aim of this review is to explore the advantages and limitations of each preoxygenation strategy and to provide clinicians with clear, practical guidance to optimize airway management in the ICU. Preoxygenation aims to increase oxygen reserves in order to prolong the duration of safe apnea. Conventional methods include high-flow oxygen delivery through a tightly fitted face mask, though efficacy depends on minimizing leaks. More advanced strategies include non-invasive ventilation (NIV), which improves both alveolar oxygen fraction and lung volume, and high-flow nasal cannula (HFNC), which additionally allows apneic oxygenation during intubation. Randomized controlled trials, including the recent PREOXY study, demonstrate the superiority of NIV over facemask preoxygenation in reducing peri-intubation desaturation, particularly in hypoxemic patients. HFNC is valuable when NIV is contraindicated, while combined approaches (NIV plus HFNC) may further enhance efficacy. Beyond technique, structured protocols and team organization are crucial to reduce complications. In conclusion, preoxygenation is an essential, patient-specific intervention that mitigates the risks of ICU intubation. Familiarity with available methods enables clinicians to tailor strategies, optimize oxygenation, and improve patient safety during this high-risk procedure. Full article
(This article belongs to the Special Issue Airway Management: From Basic Techniques to Innovative Technologies)
Show Figures

Figure 1

59 pages, 1977 KB  
Review
Heterogeneity of Cellular Senescence, Senotyping, and Targeting by Senolytics and Senomorphics in Lung Diseases
by Said Ali Ozdemir, Md Imam Faizan, Gagandeep Kaur, Sadiya Bi Shaikh, Khursheed Ul Islam and Irfan Rahman
Int. J. Mol. Sci. 2025, 26(19), 9687; https://doi.org/10.3390/ijms26199687 - 4 Oct 2025
Cited by 2 | Viewed by 3638
Abstract
Cellular senescence, a state of stable cell cycle arrest accompanied by a complex senescence-associated secretory phenotype (SASP), is a fundamental biological process implicated as a key driver of lung aging and lung age-related diseases (LARDs). This review provides a comprehensive overview of the [...] Read more.
Cellular senescence, a state of stable cell cycle arrest accompanied by a complex senescence-associated secretory phenotype (SASP), is a fundamental biological process implicated as a key driver of lung aging and lung age-related diseases (LARDs). This review provides a comprehensive overview of the rapidly evolving field of senotyping based on cellular heterogeneity in lung development and aging in health and disease. It also delves into the molecular mechanisms driving senescence and SASP production, highlighting pathways such as p53/p21, p16INK4a/RB, mTOR, and p38 MAPK as therapeutic targets. The involvement of various novel SASP proteins, such as GDP15, cytokines/chemokines, growth factors, and DNA damage response proteins. We further highlight the effectiveness of senotherapeutics in mitigating the detrimental effects of senescent cell (SnC) accumulation within the lungs. It also outlines two main therapeutic approaches: senolytics, which selectively trigger apoptosis in SnCs, and senomorphics (also known as senostatics), which mitigate the detrimental effects of the SASP without necessarily removing the senescent cells. Various classes of senolytic and senomorphic drugs are currently in clinical trials including natural products (e.g., quercetin, fisetin, resveratrol) and repurposed drugs (e.g., dasatinib, navitoclax, metformin, rapamycin) that has demonstrated therapeutic promise in improving tissue function, alleviating LARDs, and extending health span. We discuss the future of these strategies in lung research and further elaborate upon the usability of novel approaches including HSP90 inhibitors, senolytic CAR-T cells, Antibody drug conjugate and galactose-modified prodrugs in influencing the field of personalized medicine in future. Overall, this comprehensive review highlights the progress made so far and the challenges faced in the field of cellular senescence including SnC heterogeneity, states of senescence, senotyping, immunosenescence, drug delivery, target specificity, long-term safety, and the need for robust cell-based biomarkers. Future perspectives, such as advanced delivery systems, and combination therapies, are considered critical for translating the potential of senotherapeutics into effective clinical applications for age-related pulmonary diseases/conditions. Full article
(This article belongs to the Special Issue Molecular Biology of Senescence and Anti-Aging Strategies)
Show Figures

Graphical abstract

15 pages, 1290 KB  
Article
Successful Delivery of Small Non-Coding RNA Molecules into Human iPSC-Derived Lung Spheroids in 3D Culture Environment
by Anja Schweikert, Chiara De Santi, Xi Jing Teoh, Frederick Lee Xin Yang, Enya O’Sullivan, Catherine M. Greene, Killian Hurley and Irene K. Oglesby
Biomedicines 2025, 13(10), 2419; https://doi.org/10.3390/biomedicines13102419 - 3 Oct 2025
Viewed by 1102
Abstract
Background/Objectives: Spheroid cultures in Matrigel are routinely used to study cell behaviour in complex 3D settings, thereby generating preclinical models of disease. Ideally, researchers would like to modulate gene expression ‘in situ’ for testing novel gene therapies while conserving the spheroid architecture. [...] Read more.
Background/Objectives: Spheroid cultures in Matrigel are routinely used to study cell behaviour in complex 3D settings, thereby generating preclinical models of disease. Ideally, researchers would like to modulate gene expression ‘in situ’ for testing novel gene therapies while conserving the spheroid architecture. Here, we aim to provide an efficient method to transfect small RNAs (such as microRNAs and small interfering RNAs, i.e., siRNAs) into human induced pluripotent stem cell (iPSC)-derived 3D lung spheroids, specifically alveolar type II epithelial cells (iAT2) and basal cell (iBC) spheroids. Methods: Transfection of iAT2 spheroids within 3D Matrigel ‘in situ’, whole spheroids released from Matrigel or spheroids dissociated to single cells was explored via flow cytometry using a fluorescently labelled siRNA. Validation of the transfection method was performed in iAT2 and iBC spheroids using siRNA and miRNA mimics and measurement of specific target expression post-transfection. Results: Maximal delivery of siRNA was achieved in serum-free conditions in whole spheroids released from the Matrigel, followed by whole spheroids ‘in situ’. ‘In situ’ transfection of SFTPC-siRNA led to a 50% reduction in the SFTPC mRNA levels in iAT2 spheroids. Transfection of miR-29c mimic and miR-21 pre-miR into iAT2 and iBC spheroids, respectively, led to significant miRNA overexpression, together with a significant decrease in protein levels of the miR-29 target FOXO3a. Conclusions: This study demonstrates successful transfection of iPSC-derived lung spheroids without disruption of their 3D structure using a simple and feasible approach. Further development of these methods will facilitate functional studies in iPSC-derived spheroids utilizing small RNAs. Full article
(This article belongs to the Section Molecular Genetics and Genetic Diseases)
Show Figures

Figure 1

15 pages, 434 KB  
Review
Dendritic Cell Immunotherapy for Solid Tumors: Advances in Translational Research and Clinical Application
by Mi Eun Kim and Jun Sik Lee
Curr. Issues Mol. Biol. 2025, 47(10), 806; https://doi.org/10.3390/cimb47100806 - 1 Oct 2025
Viewed by 3632
Abstract
Dendritic cells (DCs) are critical antigen-presenting cells that orchestrate the interface between innate and adaptive immunity, making them attractive approaches for cancer immunotherapy. Recent advances in the characterization of DC subsets, antigen delivery strategies, and adjuvant design have enabled the enhancement of DC-based [...] Read more.
Dendritic cells (DCs) are critical antigen-presenting cells that orchestrate the interface between innate and adaptive immunity, making them attractive approaches for cancer immunotherapy. Recent advances in the characterization of DC subsets, antigen delivery strategies, and adjuvant design have enabled the enhancement of DC-based vaccines for solid tumors. Clinical studies across melanoma, glioblastoma, prostate cancer, and non-small cell lung cancer have demonstrated safety and immunogenicity, with encouraging signals of clinical efficacy, particularly when DC vaccination is combined with immune checkpoint blockade or personalized neoantigen approaches. However, translational barriers remain, including the immunosuppressive tumor microenvironment, inefficient DC migration, and variability in manufacturing protocols. Developing solutions such as in vivo DC targeting, biomaterials-based delivery systems, high-resolution single-cell analyses, and artificial intelligence-driven epitope prediction are controlled to overcome these challenges. Together, these innovations highlight the evolving role of DC immunotherapy as a foundation of precision oncology, offering the potential to integrate personalized vaccination strategies into standard treatment paradigms for solid tumors. Therefore, in this review, we specifically focus on these advances in dendritic cell immunotherapy for solid tumors and their translational implications. Full article
(This article belongs to the Special Issue Future Challenges of Targeted Therapy of Cancers: 2nd Edition)
Show Figures

Figure 1

14 pages, 280 KB  
Review
Patient Education and Communication in Palliative Radiotherapy: A Narrative Review
by Erika Galietta, Costanza M. Donati, Filippo Mammini, Arina A. Zamfir, Alberto Bazzocchi, Rebecca Sassi, Renée Hovenier, Clemens Bos, Milly Buwenge, Silvia Cammelli, Helena M. Verkooijen and Alessio G. Morganti
Cancers 2025, 17(19), 3109; https://doi.org/10.3390/cancers17193109 - 24 Sep 2025
Viewed by 1018
Abstract
Palliative radiotherapy (PRT) is central to symptom control in advanced cancer, yet referrals are often late, and patients and clinicians frequently hold misconceptions about intent, benefits, and logistics. Patient education may address these gaps, but the PRT-specific evidence base has not been consolidated. [...] Read more.
Palliative radiotherapy (PRT) is central to symptom control in advanced cancer, yet referrals are often late, and patients and clinicians frequently hold misconceptions about intent, benefits, and logistics. Patient education may address these gaps, but the PRT-specific evidence base has not been consolidated. We conducted a narrative review following SANRA guidance. We searched PubMed, Scopus, and the Cochrane Library for English-language studies from 1 January 2000 to 18 July 2025. Eligible articles evaluated structured patient-education interventions or characterized education or communication content, information needs, or decision processes among adults referred to or receiving PRT. Two reviewers independently screened and extracted data. Owing to heterogeneity of designs and endpoints, we performed a narrative synthesis without meta-analysis. Six studies met criteria: two randomized controlled trials, two prospective pre–post studies, one qualitative interview study, and one observational communication study, conducted in the Netherlands, the United States, Canada, and Hong Kong. Education at referral or consultation improved knowledge, reduced decisional uncertainty, and increased readiness to proceed with PRT. Education integrated with treatment improved symptom outcomes, including higher rates of pain control at 12 weeks and faster time to pain control when a nurse-led pain-education program accompanied PRT for painful bone metastases, and improvements in dyspnea, fatigue, anxiety, and function in advanced lung cancer. Observational and qualitative work showed low patient question-asking and persistent curative expectations; overall quality of life generally did not change. Although the evidence is limited and heterogeneous, targeted, standardized education appears to improve decision quality and selected symptoms in PRT pathways. Pragmatic multi-site trials and implementation studies are needed to define content, timing, personnel, and delivery models that are scalable in routine care. Full article
(This article belongs to the Special Issue Palliative Radiotherapy of Cancer)
30 pages, 9006 KB  
Article
The Role of CD68+ Cells in Bronchoalveolar Lavage Fluid for the Diagnosis of Respiratory Diseases
by Igor D. Zlotnikov, Natalia I. Kolganova, Shamil A. Gitinov, Dmitry Y. Ovsyannikov and Elena V. Kudryashova
Immuno 2025, 5(3), 43; https://doi.org/10.3390/immuno5030043 - 22 Sep 2025
Viewed by 1271
Abstract
Addressing the critical challenge in the differential diagnosis of severe inflammatory lung diseases, we propose a novel methodology for the analysis of macrophage surface receptors, CD68 and CD206, using specific non-antibody ligands. We developed a non-antibody alternative for the fluorometric detection of CD68+ [...] Read more.
Addressing the critical challenge in the differential diagnosis of severe inflammatory lung diseases, we propose a novel methodology for the analysis of macrophage surface receptors, CD68 and CD206, using specific non-antibody ligands. We developed a non-antibody alternative for the fluorometric detection of CD68+ cells, focusing on macrophages as key functional markers in inflammatory processes. Our marker based on dioleylphosphatidylserine (DOPS), a specific ligand to CD68, was incorporated into a liposomal delivery system. The specificity of this DOPS-based ligand can be precisely modulated by the liposome’s composition and the polyvalent presentation of the ligand. We synthesized a series of fluorescently-labeled DOPS-based ligands and developed a liposome-based sandwich fluorometric assay. This assay enables the isolation and quantification of CD68 receptor presence from bronchoalveolar lavage fluid (BALF). The results confirmed the specific binding of DOPS/lecithin liposomes to CD68+ cells compared to control lecithin systems. Furthermore, the incorporation of PEGylated ‘stealth’ liposomes significantly enhanced binding specificity and facilitated the generation of distinct binding profiles, which proved valuable in differentiating various inflammatory conditions. This approach yielded unique binding profiles of PS-based ligands to CD68+ cells, which varied significantly among a broad range of respiratory conditions, including primary ciliary dyskinesia, bronchial asthma, bronchitis, bacterial infection, pneumonia, and bronchiectasis. Confocal Laser Scanning Microscopy demonstrated selective binding and intracellular localization of the DOPS-based marker within CD68+ macrophages from BALF samples of patients with bronchitis or asthma. The binding parameters of this multivalent composite ligand with the CD68 receptor are comparable to those of antibodies. The inherent binding specificity of phosphatidylserine may offer a sufficient and viable alternative to conventional antibodies. Our results demonstrate the remarkable potential of this novel DOPS-based assay as a complementary tool for the developing non-antibody-based systems for the differential diagnosis of the respiratory diseases, warranting further investigation in larger clinical studies. Full article
Show Figures

Figure 1

36 pages, 2272 KB  
Review
Bio-Functional Nanomaterials for Enhanced Lung Cancer Therapy: The Synergistic Roles of Vitamins D and K
by Andreea Crintea, Camelia Munteanu, Tamás Ilyés, Ciprian N. Silaghi and Alexandra M. Crăciun
J. Funct. Biomater. 2025, 16(9), 352; https://doi.org/10.3390/jfb16090352 - 19 Sep 2025
Viewed by 1604
Abstract
Lung cancer remains a leading cause of cancer-related mortality worldwide, requiring the development of innovative and effective therapeutic strategies. Bio-functional nanomaterials, due to their unique physicochemical properties, offer a versatile platform for targeted drug delivery, controlled release, and multimodal therapies, thereby enhancing efficacy [...] Read more.
Lung cancer remains a leading cause of cancer-related mortality worldwide, requiring the development of innovative and effective therapeutic strategies. Bio-functional nanomaterials, due to their unique physicochemical properties, offer a versatile platform for targeted drug delivery, controlled release, and multimodal therapies, thereby enhancing efficacy and reducing the systemic toxicity of conventional treatments. Independently, both vitamin D and vitamin K have demonstrated significant anti-cancer properties, including inhibition of proliferation, induction of apoptosis, modulation of angiogenesis, and attenuation of metastatic potential in various cancer cell lines and in vivo models. However, their clinical application is often limited by poor bioavailability, rapid metabolism, and potential for off-target effects. Specifically, by enhancing the solubility, stability, and targeted accumulation of fat-soluble vitamins D and K within tumoral tissues for improved lung cancer therapy, this review emphasizes the novel and cooperative role of bio-functional nanomaterials in overcoming these limitations. Future studies should focus on the logical development of sophisticated nanomaterial carriers for optimal co-delivery plans and thorough in vivo validation, aiming to convert these encouraging preclinical results into successful clinical treatments for patients with lung cancer. Full article
Show Figures

Figure 1

Back to TopTop