The Three Musketeers in Cancer Therapy: Pharmacokinetics, Pharmacodynamics and Personalised Approach
Abstract
1. Introduction
2. Pharmacokinetics and Pharmacodynamics in the Context of Personalized Cancer Therapy
2.1. Pharmacokinetics and Interindividual Variability
2.2. Pharmacodynamics and Tumor-Specific Responses
2.3. Integrating PK and PD for Precision Oncology
2.4. Individual vs. Population Approaches in PK/PD
3. Targeted Therapies: Variability in PK/PD
4. Immunotherapy: Checkpoint Inhibitors and Chimeric Antigen Receptor T Cells (CAR-T) Cells
5. Nanomedicine and Drug Delivery Systems: Overcoming PK Barriers
6. Combination Therapies: PK/PD-Based Rationales for Sequencing and Synergy
7. Challenges and Clinical Implementation
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| PK | Pharmacokinetic |
| PD | Pharmacodynamic |
| CAR-T | Chimeric Antigen Receptor T cells |
| CML | Chronic Myeloid Leukemia |
| NSCLC | Non-Small-Cell Lung Cancer |
| OSI | Osimertinib |
| TKIs | Tyrosine Kinase Inhibitors |
| TDM | Therapeutic drug monitoring |
| mAbs | monoclonal antibodies |
| ICIs | immune checkpoint inhibitors |
| PD-L1 | Programmed Death-Ligand 1 |
| irAEs | immune-related adverse events |
| PEM | Pemetrexed |
References
- Bray, F.; Laversanne, M.; Sung, H.; Ferlay, J.; Siegel, R.L.; Soerjomataram, I.; Jemal, A. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2024, 74, 229–263. [Google Scholar] [CrossRef]
- Marques, L.; Rodrigues, M.; Silva, P.; Rocha, J.; Pereira, A.; Oliveira, T.; Fernandes, R. Advancing precision medicine: A review of innovative in silico approaches for drug development, clinical pharmacology, and personalized healthcare. Pharmaceutics 2024, 16, 332. [Google Scholar] [CrossRef]
- Gnagni, L.; Ruscito, I.; Zizzari, I.G.; Nuti, M.; Napoletano, C.; Rughetti, A. Precision oncology targeting FGFRs: A systematic review on pre-clinical activity and clinical outcomes of pemigatinib. Crit. Rev. Oncol. Hematol. 2024, 202, 104464. [Google Scholar] [CrossRef]
- Wang, R.C.; Wang, Z. Precision medicine: Disease subtyping and tailored treatment. Cancers 2023, 15, 3837. [Google Scholar] [CrossRef] [PubMed]
- Maier, C.; Scheffel, J.; Wichmann, H.; de Wiljes, J. Reinforcement learning and Bayesian data assimilation for model-informed precision dosing in oncology. CPT Pharmacomet. Syst. Pharmacol. 2021, 10, 241–254. [Google Scholar] [CrossRef] [PubMed]
- Schürch, M.; Boos, L.; Heinzelmann-Schwarz, V.; Gut, G.; Krauthammer, M.; Wicki, A.; Consortium, T.P. Towards AI-based precision oncology: Machine learning for personalized counterfactual treatment suggestions based on multi-omics data. Nat. Mach. Intell. 2024, 6, 1123–1138. [Google Scholar]
- Widmer, N.; Guidi, M.; Buclin, T. Population pharmacokinetics in oncology and its clinical applications. Pharmaceutics 2024, 16, 711. [Google Scholar] [CrossRef]
- Darwich, A.S.; Polasek, T.M.; Aronson, J.K.; Ogungbenro, K.; Wright, D.F.B.; Achour, B.; Reny, J.-L.; Daali, Y.; Eiermann, B.; Cook, J.; et al. Model-informed precision dosing: Background, requirements, validation, implementation, and forward trajectory of individualizing drug therapy. Annu. Rev. Pharmacol. Toxicol. 2021, 61, 225–245. [Google Scholar] [CrossRef]
- Tsimberidou, A.M.; Kahle, M.; Vo, H.H.; Baysal, M.A.; Johnson, A.; Meric-Bernstam, F. Molecular tumour boards—Current and future considerations for precision oncology. Nat. Rev. Clin. Oncol. 2023, 20, 843–863. [Google Scholar] [CrossRef]
- Weng, L.; Zhang, L.; Peng, Y.; Huang, R.S. Pharmacogenetics and pharmacogenomics: A bridge to individualized cancer therapy. Pharmacogenomics 2013, 14, 315–324. [Google Scholar] [CrossRef]
- Chen, H.-H.; Wu, Y.-J.; Wu, F.-Z. Precision medicine in lung cancer screening: A paradigm shift in early detection—Precision screening for lung cancer. Diagnostics 2025, 15, 1562. [Google Scholar] [CrossRef]
- Mechahougui, H.; Gutmans, J.; Colarusso, G.; Gouasmi, R.; Friedlaender, A. Advances in personalized oncology. Cancers 2024, 16, 2862. [Google Scholar] [CrossRef]
- Levantini, E. Novel therapeutic targets in cancers. Int. J. Mol. Sci. 2023, 24, 14660. [Google Scholar] [CrossRef]
- Moore, D.C.; Guinigundo, A.S. Biomarker-driven oncology clinical trials: Novel designs in the era of precision medicine. J. Adv. Pract. Oncol. 2023, 14, 9–13. [Google Scholar] [PubMed]
- Ioele, G.; Chieffallo, M.; Occhiuzzi, M.A.; De Luca, M.; Garofalo, A.; Ragno, G.; Grande, F. Anticancer drugs: Recent strategies to improve stability profile, pharmacokinetic and pharmacodynamic properties. Molecules 2022, 27, 5436. [Google Scholar] [CrossRef]
- Papachristos, A.; Patel, J.; Vasileiou, M.; Patrinos, G.P. Dose optimization in oncology drug development: The emerging role of pharmacogenomics, pharmacokinetics, and pharmacodynamics. Cancers 2023, 15, 3233. [Google Scholar] [CrossRef]
- Fujiwara, Y.; Kato, S.; Kurzrock, R. Evolution of precision oncology, personalized medicine, and molecular tumor boards. Surg. Oncol. Clin. N. Am. 2024, 33, 197–216. [Google Scholar] [CrossRef] [PubMed]
- Sissung, T.M.; Figg, W.D. Pharmacogenomics testing in phase I oncology clinical trials: Constructive criticism is warranted. Cancers 2022, 14, 1131. [Google Scholar] [CrossRef] [PubMed]
- Diekstra, M.H.; Swen, J.J.; Boven, E.; Castellano, D.; Gelderblom, H.; Mathijssen, R.H.; Rodríguez-Antona, C.; García-Donas, J.; Rini, B.I.; Guchelaar, H.J. CYP3A5 and ABCB1 Polymorphisms as Predictors for Sunitinib Outcome in Metastatic Renal Cell Carcinoma. Eur. Urol. 2015, 68, 621–629. [Google Scholar] [CrossRef]
- Cargnin, S.; Ravegnini, G.; Soverini, S.; Angelini, S.; Terrazzino, S. Impact of SLC22A1 and CYP3A5 Genotypes on Imatinib Response in Chronic Myeloid Leukemia: A Systematic Review and Meta-Analysis. Pharmacol. Res. 2018, 131, 244–254. [Google Scholar] [CrossRef]
- Wu, X.; Xiong, H. The Role of Pharmacogenetic-Based Pharmacokinetic Analysis in Precise Breast Cancer Treatment. Pharmaceutics 2024, 16, 1407. [Google Scholar] [CrossRef]
- Suzumura, T.; Kimura, T.; Kudoh, S.; Umekawa, K.; Nagata, M.; Matsuura, K.; Tanaka, H.; Mitsuoka, S.; Yoshimura, N.; Kira, Y.; et al. Reduced CYP2D6 Function Is Associated with Gefitinib-Induced Rash in Patients with Non-Small Cell Lung Cancer. BMC Cancer 2012, 12, 568. [Google Scholar] [CrossRef]
- Kane, M. Belinostat Therapy and UGT1A1 Genotype. In Medical Genetics Summaries; Pratt, V.M., Scott, S.A., Pirmohamed, M., Esquivel, B., Kattman, B.L., Eds.; National Center for Biotechnology Information (US): Bethesda, MD, USA, 2012. Available online: https://www.ncbi.nlm.nih.gov/books/NBK593302/ (accessed on 14 September 2025).
- Loscocco, F.; Visani, G.; Ruzzo, A.; Bagaloni, I.; Fuligni, F.; Galimberti, S.; Di Paolo, A.; Stagno, F.; Pregno, P.; Annunziata, M.; et al. Clinical Relevance of ABCB1, ABCG2, and ABCC2 Gene Polymorphisms in Chronic Myeloid Leukemia Patients Treated with Nilotinib. Front. Oncol. 2021, 11, 672287. [Google Scholar] [CrossRef]
- Rajamani, B.M.; Benjamin, E.S.B.; Abraham, A.; Ganesan, S.; Lakshmi, K.M.; Anandan, S.; Karathedath, S.; Varatharajan, S.; Mohanan, E.; Janet, N.B.; et al. Plasma Imatinib Levels and ABCB1 Polymorphism Influence Early Molecular Response and Failure-Free Survival in Newly Diagnosed Chronic Phase CML Patients. Sci. Rep. 2020, 10, 20640. [Google Scholar] [CrossRef]
- Li, J.; Cusatis, G.; Brahmer, J.; Sparreboom, A.; Robey, R.W.; Bates, S.E.; Hidalgo, M.; Baker, S.D. Association of Variant ABCG2 and the Pharmacokinetics of Epidermal Growth Factor Receptor Tyrosine Kinase Inhibitors in Cancer Patients. Cancer Biol. Ther. 2007, 6, 432–438. [Google Scholar] [CrossRef]
- Zazo, H.; Aguazul, Y.; Lanao, J.M. Dosing Evaluation of Ceftazidime–Avibactam in Intensive Care Unit Patients Based on Pharmacokinetic/Pharmacodynamic (PK/PD) Modeling and Simulation. Antibiotics 2024, 13, 861. [Google Scholar] [CrossRef]
- Zafar, A.; Khatoon, S.; Khan, M.J.; Abu, J.; Naeem, A. Advancements and limitations in traditional anti-cancer therapies: A comprehensive review of surgery, chemotherapy, radiation therapy, and hormonal therapy. Discov. Oncol. 2025, 16, 607. [Google Scholar] [CrossRef]
- Morawska, K.; Goirand, F.; Marceau, L.; Devaux, M.; Cueff, A.; Bertaut, A.; Vincent, J.; Bengrine-Lefevre, L.; Ghiringhelli, F.; Schmitt, A. 5-FU Therapeutic Drug Monitoring as a Valuable Option to Reduce Toxicity in Patients with Gastrointestinal Cancer. Oncotarget 2018, 9, 11559–11571. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Song, Z.; Yi, Z.; Qin, J.; Jiang, D.; Wang, Z.; Li, H.; Zhao, R. Therapeutic Drug Monitoring Guidelines in Oncology: What Do We Know and How to Move Forward? Insights from a Systematic Review. Ther. Adv. Med. Oncol. 2024, 16, 17588359241250130. [Google Scholar] [CrossRef] [PubMed]
- Mueller-Schoell, A.; Groenland, S.L.; Scherf-Clavel, O.; van Dyk, M.; Huisinga, W.; Michelet, R.; Jaehde, U.; Steeghs, N.; Huitema, A.D.; Kloft, C. Therapeutic Drug Monitoring of Oral Targeted Antineoplastic Drugs. Eur. J. Clin. Pharmacol. 2021, 77, 441–464. [Google Scholar] [CrossRef] [PubMed]
- Park, K. A Review of Modeling Approaches to Predict Drug Response in Clinical Oncology. Yonsei Med. J. 2017, 58, 1–8. [Google Scholar] [CrossRef]
- Garralda, E.; Dienstmann, R.; Tabernero, J. Pharmacokinetic/Pharmacodynamic Modeling for Drug Development in Oncology. Am. Soc. Clin. Oncol. Educ. Book 2017, 37, 210–215. [Google Scholar] [CrossRef] [PubMed]
- van der Kleij, M.B.A.; Guchelaar, N.A.D.; Mathijssen, R.H.J.; Versluis, J.; Huitema, A.D.R.; Koolen, S.L.W.; Steeghs, N. Therapeutic Drug Monitoring of Kinase Inhibitors in Oncology. Clin. Pharmacokinet. 2023, 62, 1333–1364. [Google Scholar] [CrossRef]
- Rodríguez-Nava, C.; Ortuño-Pineda, C.; Illades-Aguiar, B.; Flores-Alfaro, E.; Leyva-Vázquez, M.A.; Parra-Rojas, I.; del Moral-Hernández, O.; Vences-Velázquez, A.; Cortés-Sarabia, K.; Alarcón-Romero, L.d.C. Mechanisms of Action and Limitations of Monoclonal Antibodies and Single Chain Fragment Variable (scFv) in the Treatment of Cancer. Biomedicines 2023, 11, 1610. [Google Scholar] [CrossRef]
- Zahavi, D.; Weiner, L. Monoclonal Antibodies in Cancer Therapy. Antibodies 2020, 9, 34. [Google Scholar] [CrossRef]
- van der Kleij, M.B.A.; Guchelaar, N.A.D.; Steeghs, N.; Huitema, A.D.R.; Beijnen, J.H. Reasons for non-feasibility of therapeutic drug monitoring of oral targeted therapies in oncology—An analysis of a multicentre prospective study. Br. J. Cancer 2024, 131, 843–851. [Google Scholar] [CrossRef]
- Kumar, M.; Lanke, S.; Yadav, A.; Patel, M.; Sharma, V.; Singh, A.; Choudhary, A. Inter-antibody variability in the clinical pharmacokinetics of monoclonal antibodies characterized using population PBPK modeling. Antibodies 2024, 13, 54. [Google Scholar] [CrossRef] [PubMed]
- Kothari, M.; Wanjari, A.; Acharya, S.; Karwa, V.; Chavhan, R.; Kumar, S.; Kadu, A.; Patil, R. A Comprehensive Review of Monoclonal Antibodies in Modern Medicine: Tracing the Evolution of a Revolutionary Therapeutic Approach. Cureus 2024, 16, e61983. [Google Scholar] [CrossRef]
- Sterner, R.C.; Sterner, R.M. CAR-T Cell Therapy: Current Limitations and Potential Strategies. Blood Cancer J. 2021, 11, 69. [Google Scholar] [CrossRef] [PubMed]
- Willyanto, S.E.; Alimsjah, Y.A.; Tanjaya, K.; Tuekprakhon, A.; Pawestri, A.R. Comprehensive Analysis of the Efficacy and Safety of CAR T-Cell Therapy in Patients with Relapsed or Refractory B-Cell Acute Lymphoblastic Leukaemia: A Systematic Review and Meta-Analysis. Ann. Med. 2024, 56, 2349796. [Google Scholar] [CrossRef] [PubMed]
- Jiang, M.; Hu, Y. Dosing regimens of immune checkpoint inhibitors: Attempts at lower dose, less frequency, shorter course. Front. Oncol. 2022, 12, 906251. [Google Scholar] [CrossRef]
- Le Louedec, F.; Leenhardt, F.; Marin, C.; Vassal, G.; Chatelut, E. Cancer immunotherapy dosing: A pharmacokinetic/pharmacodynamic perspective. Vaccines 2020, 8, 632. [Google Scholar] [CrossRef] [PubMed]
- Jian, J.; He, D.; Gao, S.; Tao, X.; Dong, X. Pharmacokinetics in pharmacometabolomics: Towards personalized medication. Pharmaceuticals 2023, 16, 1568. [Google Scholar] [CrossRef] [PubMed]
- Gambardella, V.; Tarazona, N.; Cejalvo, J.M.; Lombardi, P.; Huerta, M.; Roselló, S.; Fleitas, T.; Roda, D.; Cervantes, A. Personalized medicine: Recent progress in cancer therapy. Cancers 2020, 12, 1009. [Google Scholar] [CrossRef] [PubMed]
- Jantararoungtong, T.; Wiwattanakul, S.; Tiyasirichokchai, R.; Prommas, S.; Sukprasong, R.; Koomdee, N.; Jinda, P.; Rachanakul, J.; Nuntharadthanaphong, N.; Pakakasama, S.; et al. TPMT*3C as a predictor of 6-mercaptopurine-induced myelotoxicity in Thai children with acute lymphoblastic leukemia. J. Pers. Med. 2021, 11, 783. [Google Scholar] [CrossRef]
- Dinić, J.; Jovanović Stojanov, S.; Dragoj, M.; Grozdanić, M.; Podolski-Renić, A.; Pešić, M. Cancer patient-derived cell-based models: Applications and challenges in functional precision medicine. Life 2024, 14, 1142. [Google Scholar] [CrossRef]
- Zettler, M.E. Dose optimization of targeted therapies for oncologic indications. Cancers 2024, 16, 2180. [Google Scholar] [CrossRef]
- Sankar, K.; Ye, J.C.; Li, Z.; Guo, H.; Lee, K.; Zhang, Y.; Wong, S.T.C. The role of biomarkers in personalized immunotherapy. Biomark. Res. 2022, 10, 32. [Google Scholar] [CrossRef]
- Gottumukkala, S.B.; Ganesan, T.S.; Palanisamy, A. Comprehensive molecular interaction map of TGFβ induced epithelial to mesenchymal transition in breast cancer. NPJ Syst. Biol. Appl. 2024, 10, 53. [Google Scholar] [CrossRef]
- Fan, D.; Cao, Y.; Cao, M.; Ren, Z.; Wang, Y.; Ma, X.; Li, X. Nanomedicine in cancer therapy. Signal Transduct. Target. Ther. 2023, 8, 293. [Google Scholar] [CrossRef]
- Frieboes, H.B.; Raghavan, S.; Godin, B. Modeling of Nanotherapy Response as a Function of the Tumor Microenvironment: Focus on Liver Metastasis. Front. Bioeng. Biotechnol. 2020, 8, 1011. [Google Scholar] [CrossRef]
- Schmidt, E.; Sun, L.Z.; Palmer, A.C.; Chen, C. Rationales for combining therapies to treat cancer: Independent action, response correlation, and collateral sensitivity versus synergy. Annu. Rev. Cancer Biol. 2023, 7, 247–263. [Google Scholar] [CrossRef]
- Hu, K.; Xia, Y.; Yuan, T.; Lin, Y.; Yang, J. Pharmacodynamic-Driven Sequence-Dependent Synergy Effects in Pemetrexed-Osimertinib Combination Against Non-Small Cell Lung Cancer (NSCLC): Optimizing Synergy Through Sequential Interval. Pharmaceutics 2025, 17, 1044. [Google Scholar] [CrossRef]
- U.S. Food and Drug Administration. Doxil Label. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/label/2007/050718s029lbl.pdf (accessed on 15 September 2025).
- National Cancer Institute. Cancer Nano-Therapies in the Clinic and Clinical Trials. Available online: https://dctd.cancer.gov/research/research-areas/nanotech/cancer-nano/current-therapies (accessed on 17 September 2025).
- Drugs.com. DaunoXome: Package Insert/Prescribing Information. Available online: https://www.drugs.com/pro/daunoxome.html (accessed on 15 September 2025).
- Ibrahim, M.; Abuwatfa, W.H.; Awad, N.S.; Sabouni, R.; Husseini, G.A. Encapsulation, Release, and Cytotoxicity of Doxorubicin Loaded in Liposomes, Micelles, and Metal-Organic Frameworks: A Review. Pharmaceutics 2022, 14, 254. [Google Scholar] [CrossRef]
- European Medicines Agency. Myocet Liposomal. Available online: https://www.ema.europa.eu/en/medicines/human/EPAR/myocet-liposomal (accessed on 17 September 2025).
- Sercombe, L.; Veerati, T.; Moheimani, F.; Wu, S.Y.; Sood, A.K.; Hua, S. Liposomal Formulations in Clinical Use: An Updated Review. Pharmaceutics 2017, 9, 12. [Google Scholar] [CrossRef]
- European Medicines Agency. Mepact. Available online: https://www.ema.europa.eu/en/medicines/human/EPAR/mepact (accessed on 17 September 2025).
- RxList. Marqibo (Vincristine Sulfate Liposome Injection): Side Effects, Uses, Dosage, Interactions, Warnings. Available online: https://www.rxlist.com/marqibo-drug.htm (accessed on 17 September 2025).
- Medsafe. Onivyde Injection Datasheet. Available online: https://www.medsafe.govt.nz/profs/datasheet/o/onivydeinj.pdf (accessed on 17 September 2025).
- Therapeutic Goods Administration. Australian Public Assessment Report for Vyxeos. Available online: https://www.tga.gov.au/sites/default/files/2023-02/auspar-vyxeos-230210.pdf (accessed on 14 September 2025).
- Lymphoma Research Foundation. VYXEOS Demonstrated Superior Overall Survival, Higher CR and CR+CRi Rates, and a Better Chance to Reach HSCT vs 7 + 3. Available online: https://lymphoma.org/wp-content/uploads/2020/06/Treatment-Guide-for-AML-Therapy.pdf (accessed on 14 September 2025).
- Zhao, M.; Lei, C.; Yang, Y.; Bu, X.; Ma, H.; Gong, H.; Liu, J.; Fang, X.; Hu, Z.; Fang, Q. Abraxane, the Nanoparticle Formulation of Paclitaxel Can Induce Drug Resistance by Up-Regulation of P-gp. PLoS ONE 2015, 10, e0131429. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez, F.; Caruana, P.; De la Fuente, N.; Español, P.; Gámez, M.; Balart, J.; Llurba, E.; Rovira, R.; Ruiz, R.; Martín-Lorente, C.; et al. Nano-Based Approved Pharmaceuticals for Cancer Treatment: Present and Future Challenges. Biomolecules 2022, 12, 784. [Google Scholar] [CrossRef] [PubMed]
- Dechbumroong, P.; Hu, R.; Keaswejjareansuk, W.; Namdee, K.; Liang, X.J. Recent Advanced Lipid-Based Nanomedicines for Overcoming Cancer Resistance. Cancer Drug Resist. 2024, 7, 24. [Google Scholar] [CrossRef] [PubMed]
- GlobeNewswire. Oasmia Pharmaceutical Receives Approval from European Commission for Apealea. Available online: https://www.globenewswire.com/news-release/2018/11/22/1655521/0/en/Oasmia-Pharmaceutical-Receives-Approval-from-European-Commission-for-Apealea-paclitaxel-micellar-in-the-European-Union.html (accessed on 15 September 2025).
- Anselmo, A.C.; Mitragotri, S. Nanoparticles in the Clinic: An Update. Bioeng. Transl. Med. 2019, 4, e10143. [Google Scholar] [CrossRef]
- Peddi, P.F.; Hurvitz, S.A. Ado-Trastuzumab Emtansine (T-DM1) in Human Epidermal Growth Factor Receptor 2 (HER2)-Positive Metastatic Breast Cancer: Latest Evidence and Clinical Potential. Ther. Adv. Med. Oncol. 2014, 6, 202–209. [Google Scholar] [CrossRef]
- CarelonRx. Fyarro (Sirolimus Albumin Bound)—Medical Drug Clinical Criteria. Available online: https://www.carelonrx.com/ms/pharmacyinformation/Fyarro.pdf (accessed on 15 September 2025).
- U.S. Food and Drug Administration. FDA Approves Sirolimus Protein-Bound Particles for Malignant Perivascular Epithelioid Cell Tumor. Available online: https://www.fda.gov/drugs/resources-information-approved-drugs/fda-approves-sirolimus-protein-bound-particles-malignant-perivascular-epithelioid-cell-tumor (accessed on 14 September 2025).
- Sun, L.; Liu, H.; Ye, Y.; Li, Q.; Zhang, Y.; Wang, J.; Chen, G. Smart nanoparticles for cancer therapy. Signal Transduct. Target. Ther. 2023, 8, 418. [Google Scholar] [CrossRef] [PubMed]
- Giri, P.M.; Banerjee, A.; Layek, B. A Recent Review on Cancer Nanomedicine. Cancers 2023, 15, 2256. [Google Scholar] [CrossRef]
- Yuan, L.; Chen, Q.; Riviere, J.E.; Lin, Z. Pharmacokinetics and Tumor Delivery of Nanoparticles. J. Drug Deliv. Sci. Technol. 2023, 83, 104404. [Google Scholar] [CrossRef]
- Cheng, Z.; Huang, H.; Yin, M.; Zhang, X.; Wang, X.; Wang, J. Applications of Liposomes and Lipid Nanoparticles in Cancer Therapy: Current Advances and Prospects. Exp. Hematol. Oncol. 2025, 14, 11. [Google Scholar] [CrossRef]
- Esfahani, K.; Elkrief, A.; Calabrese, C.; Lapointe, R.; Hudson, M.; Routy, B.; Miller, W.H., Jr.; Calabrese, L. Moving towards personalized treatments of immune-related adverse events. Nat. Rev. Clin. Oncol. 2020, 17, 504–515. [Google Scholar] [CrossRef]
- Massard, C.; Michiels, S.; Ferté, C.; Le Deley, M.-C.; Lacroix, L.; Hollebecque, A.; Verlingue, L.; Ileana, E.; Rosellini, S.; Ammari, S.; et al. High-throughput genomics and clinical outcome in oncology. Ann. Oncol. 2019, 30, 1411–1423. [Google Scholar]
- Wan, J.C.M.; Massie, C.; Garcia-Corbacho, J.; Mouliere, F.; Brenton, J.D.; Caldas, C.; Pacey, S.; Baird, R.; Rosenfeld, N. Liquid biopsies come of age: Towards implementation of circulating tumour DNA. Nat. Rev. Cancer 2019, 17, 223–238. [Google Scholar] [CrossRef]
- Alix-Panabières, C.; Pantel, K. Liquid biopsy: From discovery to clinical application. Cancer Discov. 2021, 11, 858–873. [Google Scholar] [CrossRef]
- Rolfo, C.; Mack, P.C.; Scagliotti, G.V.; Aggarwal, C.; Arcila, M.E.; Barlesi, F.; Bivona, T.; Diehn, M.; Dive, C.; Dziadziuszko, R.; et al. Liquid biopsy for advanced NSCLC: A consensus statement. Nat. Rev. Clin. Oncol. 2021, 18, 297–311. [Google Scholar]
- Pisapia, P.; Malapelle, U.; Troncone, G. Liquid biopsy and lung cancer. Acta Cytol. 2019, 63, 489–496. [Google Scholar] [CrossRef]
- Ette, E.I.; Williams, P.J. Population pharmacokinetics I: Background, concepts, and models. Ann. Pharmacother. 2004, 38, 1702–1706. [Google Scholar] [CrossRef] [PubMed]
- Huang, H.; Zhao, W.; Qin, N.; Duan, X. Recent progress on physiologically based pharmacokinetic (PBPK) model: A review based on bibliometrics. Toxics 2024, 12, 433. [Google Scholar] [CrossRef] [PubMed]
- Zhao, P.; Zhang, L.; Grillo, J.A.; Liu, Q.; Bullock, J.M.; Moon, Y.J.; Song, P.; Brar, S.S.; Madabushi, R.; Wu, T.-C.; et al. Applications of physiologically based pharmacokinetic (PBPK) modeling and simulation during regulatory review. Clin. Pharmacol. Ther. 2011, 89, 259–267. [Google Scholar] [CrossRef] [PubMed]
- Fountzilas, E.; Pearce, T.; Baysal, M.A.; Chakraborty, A.; Tsimberidou, A.M. Convergence of evolving artificial intelligence and machine learning techniques in precision oncology. NPJ Digit. Med. 2025, 8, 75. [Google Scholar] [CrossRef]
- Kourou, K.; Exarchos, T.P.; Exarchos, K.P.; Karamouzis, M.V.; Fotiadis, D.I. Machine learning applications in cancer prognosis and prediction. Comput. Struct. Biotechnol. J. 2014, 13, 8–17. [Google Scholar] [CrossRef]
- Coudray, N.; Ocampo, P.S.; Sakellaropoulos, T.; Narula, N.; Snuderl, M.; Fenyo, D.; Moreira, A.L.; Razavian, N.; Tsirigos, A. Classification and mutation prediction from non-small cell lung cancer histopathology images using deep learning. Nat. Med. 2019, 24, 1559–1567. [Google Scholar] [CrossRef]
- National Academy of Medicine; Whicher, D.; Ahmed, M.; Israni, S.T.; Matheny, M. (Eds.) Artificial Intelligence in Health Care: The Hope, the Hype, the Promise, the Peril; National Academies Press: Washington, DC, USA, 2023. [Google Scholar] [CrossRef]
- Cortesi, L.; Rugo, H.S.; Jackisch, C. An overview of PARP inhibitors for the treatment of breast cancer. Target. Oncol. 2021, 16, 255–282. [Google Scholar] [CrossRef]
- Khozin, S.; Blumenthal, G.M.; Pazdur, R. Real-world data for clinical evidence generation in oncology. J. Natl. Cancer Inst. 2017, 109, 11. [Google Scholar] [CrossRef]
- Woodcock, J.; LaVange, L.M. Master protocols to study multiple therapies, multiple diseases, or both. N. Engl. J. Med. 2017, 377, 62–70. [Google Scholar] [CrossRef]
- Samineni, D.; Venkatakrishnan, K.; Othman, A.A.; Pithavala, Y.K.; Poondru, S.; Patel, C.; Vaddady, P.; Ankrom, W.; Ramanujan, S.; Budha, N.; et al. Dose optimization in oncology drug development: An international consortium for innovation and quality in pharmaceutical development white paper. Clin. Pharmacol. Ther. 2024, 116, 531–545. [Google Scholar] [CrossRef]
- Sahasrabudhe, V.; Nicholas, T.; Nucci, G.; Musante, C.J.; Corrigan, B. Impact of model-informed drug development on drug development cycle times and clinical trial cost. Clin. Pharmacol. Ther. 2025, 118, 378–385. [Google Scholar] [CrossRef]
- Zhou, X.; Chang, Y.; Qian, J.; Shen, C.; Han, J.; Zhao, H.; Chang, R. Clinical benefit of therapeutic drug monitoring in colorectal cancer patients who received fluorouracil-based chemotherapy. Med. Sci. Monit. 2021, 27, e929474. [Google Scholar] [CrossRef]
- Relling, M.V.; Schwab, M.; Whirl-Carrillo, M.; Suarez-Kurtz, G.; Pui, C.H.; Stein, C.M.; Moyer, A.M.; Evans, W.E.; Klein, T.E.; Antillon-Klussmann, F.G.; et al. Clinical pharmacogenetics implementation consortium guideline for thiopurine dosing based on TPMT and NUDT15 genotypes: 2018 update. Clin. Pharmacol. Ther. 2019, 105, 1095–1105. [Google Scholar] [CrossRef]
- Wages, N.A.; Conaway, M.R. Phase I/II adaptive design for drug combination oncology trials. Stat. Med. 2014, 33, 1990–2003. [Google Scholar] [CrossRef] [PubMed]
- Tosca, E.M.; De Carlo, A.; Ronchi, D.; Magni, P. Model-informed reinforcement learning for enabling precision dosing via adaptive dosing. Clin. Pharmacol. Ther. 2024, 116, 619–636. [Google Scholar] [CrossRef] [PubMed]
- Chakraborty, S. Democratizing nucleic acid-based molecular diagnostic tests for infectious diseases at resource-limited settings—From point of care to extreme point of care. Sens. Diagn. 2024, 3, 536–561. [Google Scholar] [CrossRef]
- Ahmed, L.; Constantinidou, A.; Chatzittofis, A. Patients’ perspectives related to ethical issues and risks in precision medicine: A systematic review. Front. Med. 2023, 10, 1215663. [Google Scholar] [CrossRef]
- Calvino, G.; Farro, J.; Zampatti, S.; Peconi, C.; Megalizzi, D.; Trastulli, G.; Andreucci, S.; Cascella, R.; Strafella, C.; Caltagirone, C.; et al. From genomics to AI: Revolutionizing precision medicine in oncology. Appl. Sci. 2025, 15, 6578. [Google Scholar] [CrossRef]
- Meli, B.A.; Fenech, A.G.; Cordina, M.; Ellul, B.; Agius, E. Challenges in public policy for the implementation of pharmacogenetic tests in Europe. BioSocieties 2024, 20, 400–417. [Google Scholar] [CrossRef]
- Lawler, M.; Keeling, P.; Kholmanskikh, O.; Minnaard, W.; Moehlig-Zuttermeister, H.; Normanno, N.; Verweij, J. Empowering effective biomarker-driven precision oncology: A call to action. Eur. J. Cancer 2024, 209, 114225. [Google Scholar] [CrossRef] [PubMed]
- Ferrero, J.M.; Bouriga, R.; Gal, J.; Milano, G. De-escalating anticancer treatment: Watch your step. Cancers 2025, 17, 2474. [Google Scholar] [CrossRef] [PubMed]
| Therapeutic (Approval Year) | Nanocarrier Type | Active Drug | Nanoparticle Size (nm) | Administration Route | Target Cancer Type (Indication) |
|---|---|---|---|---|---|
| Doxil (CAELYX®)–Pegylated Liposomal Doxorubicin (1995 FDA; 1996 EMA) | PEGylated STEALTH® liposome [55] | Doxorubicin | ~100 nm [55] | Intravenous (IV) infusion | AIDS-related Kaposi’s sarcoma, platinum-refractory ovarian cancer, multiple myeloma (with bortezomib) [56]. |
| DaunoXome–Liposomal Daunorubicin (1996 FDA) | Conventional (non-PEG) liposome [57] | Daunorubicin (citrate salt) | ~45 nm (mean diameter) [57] | IV infusion | First-line cytotoxic therapy for advanced HIV-associated Kaposi’s sarcoma [57]. |
| Myocet–Non-PEG Liposomal Doxorubicin (2000 EMA) | Non-PEG multilamellar liposome (egg PC/Chol) [58] | Doxorubicin | 150–250 nm [58] | IV infusion | First-line treatment of metastatic breast cancer (in combination with cyclophosphamide) [59]. |
| DepoCyt (DepoCyte)–Liposomal Cytarabine (1999 FDA) | Multivesicular liposome (DepoFoam® technology) [60] | Cytarabine | 3–30 µm [60] (multi-vesicular) | Intrathecal injection | Lymphomatous meningitis (neoplastic meningitis in lymphoma/leukemia). |
| Mepact–Liposomal Mifamurtide (L-MTP-PE) (2009 EMA) | Multilamellar liposome (<100 nm) [60] | Mifamurtide (muramyl tripeptide phosphatidylethanolamine) | <100 nm [61] | IV infusion (after reconstitution) | Non-metastatic resectable high-grade osteosarcoma (adjunct to surgery and chemotherapy in patients 2–30 y) [61]. |
| Marqibo–Vincristine Sulfate Liposome (2012 FDA) | Sphingomyelin–cholesterol liposome (optisome) [62] | Vincristine sulfate | ~100 nm [63] | IV infusion | Relapsed or refractory Philadelphia–negative acute lymphoblastic leukemia (adult ALL, ≥2 prior lines) [62]. |
| Onivyde–PEGylated Liposomal Irinotecan (2015 FDA; 2016 EMA) | PEGylated nanoliposome (DSPC/Chol/PEG-DSPE) [63] | Irinotecan (topoisomerase I inhibitor) | ~110 nm [64] | IV infusion | Metastatic pancreatic adenocarcinoma (after gemcitabine, in combination with 5-FU/leucovorin) [63]. |
| Vyxeos (CPX-351)–Liposomal Daunorubicin/Cytarabine (2017 FDA; 2018 EMA) | Fixed-ratio (5:1) co-encapsulated liposome [64] | Daunorubicin + Cytarabine | ~100 nm [64] | IV infusion | Newly diagnosed therapy-related AML or AML with myelodysplasia-related changes (“secondary” AML in adults) [65]. |
| Abraxane (ABI-007)–Albumin-Bound Paclitaxel (2005 FDA; 2008 EMA) | Albumin-bound nanoparticle (nab-paclitaxel) [66] | Paclitaxel | ~130 nm [66] | IV infusion | Metastatic breast cancer; locally advanced or metastatic non–small cell lung cancer; metastatic pancreatic cancer [67]. |
| Oncaspar–PEGylated L-asparaginase (Pegaspargase) (1994 FDA; 2007 EMA) | PEG–protein conjugate (monomethoxy-PEG covalently linked to L-asparaginase) [67] | L-Asparaginase enzyme (E. coli–derived) | N/A (macromolecule) | IV infusion (or IM) | Acute lymphoblastic leukemia (ALL)–used in multi-agent chemotherapy regimens (including in patients with hypersensitivity to native asparaginase) [56]. |
| Apealea–Micellar Paclitaxel (XR17 nanomicelles) (2018 EMA) | Cremophor-free micellar formulation [68] (sodium oleate/retinoid-based micelles) | Paclitaxel | ~20–60 nm (est.) | IV infusion | Platinum-sensitive recurrent ovarian cancer (and primary peritoneal or fallopian tube cancer) in combination with carboplatin [69]. |
| Hensify (NBTXR3)–Hafnium Oxide Nanoparticles (2019 CE Mark EU) | Inorganic crystalline nanoparticle (radioenhancer) [56] | N/A (no drug, physical enhancer) | ~50 nm (crystalline) | Intratumoral injection (pre-radiotherapy) | Locally advanced soft tissue sarcoma (in combination with radiotherapy) [56,70]. |
| NanoTherm–Iron Oxide Magnetic Nanoparticles (2010/2013 CE Mark EU) | Inorganic superparamagnetic iron oxide nanoparticles [69] (aminosilane-coated) | N/A (no drug, thermal ablation agent) | ~15 nm cores (clustered) | Intratumoral injection (with alternating magnetic field) | Refractory glioblastoma (brain tumor)–device-assisted thermal ablation; also under investigation for prostate and pancreatic cancers [56,67]. |
| Kadcyla–Ado-trastuzumab Emtansine (T-DM1 ADC) (2013 FDA/EMA) | Antibody–drug conjugate (humanized anti-HER2 IgG1 linked to DM1 cytotoxin) [67] | Trastuzumab–emtansine (maytansine derivative) | ~10–15 nm (antibody) | IV infusion | HER2-positive breast cancer (metastatic, post-trastuzumab/taxane; also approved for adjuvant therapy in residual disease) [67,71]. |
| Fyarro (ABI-009)–Albumin-Bound Sirolimus (nab-rapamycin) (2021 FDA) | Albumin-bound nanoparticle (mTOR inhibitor) [72] | Sirolimus (rapamycin) | ~100 nm (similar to nab-paclitaxel) | IV infusion | Locally advanced unresectable or metastatic malignant PEComa (perivascular epithelioid cell tumor) [73]. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zarić, M.; Čanović, P.; Živković Zarić, R.; Protrka, S.; Glišić, M. The Three Musketeers in Cancer Therapy: Pharmacokinetics, Pharmacodynamics and Personalised Approach. J. Pers. Med. 2025, 15, 516. https://doi.org/10.3390/jpm15110516
Zarić M, Čanović P, Živković Zarić R, Protrka S, Glišić M. The Three Musketeers in Cancer Therapy: Pharmacokinetics, Pharmacodynamics and Personalised Approach. Journal of Personalized Medicine. 2025; 15(11):516. https://doi.org/10.3390/jpm15110516
Chicago/Turabian StyleZarić, Milan, Petar Čanović, Radica Živković Zarić, Simona Protrka, and Miona Glišić. 2025. "The Three Musketeers in Cancer Therapy: Pharmacokinetics, Pharmacodynamics and Personalised Approach" Journal of Personalized Medicine 15, no. 11: 516. https://doi.org/10.3390/jpm15110516
APA StyleZarić, M., Čanović, P., Živković Zarić, R., Protrka, S., & Glišić, M. (2025). The Three Musketeers in Cancer Therapy: Pharmacokinetics, Pharmacodynamics and Personalised Approach. Journal of Personalized Medicine, 15(11), 516. https://doi.org/10.3390/jpm15110516

