Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (49)

Search Parameters:
Keywords = lubricant chemistry

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
43 pages, 1282 KiB  
Review
Process Intensification Strategies for Esterification: Kinetic Modeling, Reactor Design, and Sustainable Applications
by Kim Leonie Hoff and Matthias Eisenacher
Int. J. Mol. Sci. 2025, 26(15), 7214; https://doi.org/10.3390/ijms26157214 - 25 Jul 2025
Viewed by 699
Abstract
Esterification is a key transformation in the production of lubricants, pharmaceuticals, and fine chemicals. Conventional processes employing homogeneous acid catalysts suffer from limitations such as corrosive byproducts, energy-intensive separation, and poor catalyst reusability. This review provides a comprehensive overview of heterogeneous catalytic systems, [...] Read more.
Esterification is a key transformation in the production of lubricants, pharmaceuticals, and fine chemicals. Conventional processes employing homogeneous acid catalysts suffer from limitations such as corrosive byproducts, energy-intensive separation, and poor catalyst reusability. This review provides a comprehensive overview of heterogeneous catalytic systems, including ion exchange resins, zeolites, metal oxides, mesoporous materials, and others, for improved ester synthesis. Recent advances in membrane-integrated reactors, such as pervaporation and nanofiltration, which enable continuous water removal, shifting equilibrium and increasing conversion under milder conditions, are reviewed. Dual-functional membranes that combine catalytic activity with selective separation further enhance process efficiency and reduce energy consumption. Enzymatic systems using immobilized lipases present additional opportunities for mild and selective reactions. Future directions emphasize the integration of pervaporation membranes, hybrid catalyst systems combining biocatalysts and metals, and real-time optimization through artificial intelligence. Modular plug-and-play reactor designs are identified as a promising approach to flexible, scalable, and sustainable esterification. Overall, the interaction of catalyst development, membrane technology, and digital process control offers a transformative platform for next-generation ester synthesis aligned with green chemistry and industrial scalability. Full article
(This article belongs to the Section Biochemistry)
Show Figures

Figure 1

37 pages, 4353 KiB  
Article
Tribo-Electrochemical Characterization of Brush-Scrubbed Post-CMP Cleaning: Results for Tartrate-Supported Removal of Residual Oxides from Copper Films
by Collin M. Reff, Kassapa U. Gamagedara, David R. Santefort and Dipankar Roy
Lubricants 2025, 13(7), 301; https://doi.org/10.3390/lubricants13070301 - 8 Jul 2025
Viewed by 537
Abstract
Wafer cleaning after chemical mechanical planarization (CMP) is a critical processing step for copper metallization in integrated circuits. Post-CMP cleaning (PCMPC) commonly combines surface (electro)chemistry with the tribology of brush scrubbing to remove CMP residues from wafer surfaces. While the complex mechanisms of [...] Read more.
Wafer cleaning after chemical mechanical planarization (CMP) is a critical processing step for copper metallization in integrated circuits. Post-CMP cleaning (PCMPC) commonly combines surface (electro)chemistry with the tribology of brush scrubbing to remove CMP residues from wafer surfaces. While the complex mechanisms of brush-operated PCMPC are supported by this combination, the conventional electroanalytical methods of assessing PCMPC efficiency are typically operated in the absence of surface brushing. Using a model experimental system with tartaric acid (TA) as a cost-effective cleaner of Cu-oxides, we illustrate here how post-CMP Cu samples can be electrochemically examined using brush cleaning to design/assess PCMPC test solutions. A pH-neutral cleaning solution is employed, where TA also serves as a partial dissolution suppressor of Cu, and CMP-treated wafer samples are scrubbed with a commercial PCMPC brush as sample surfaces are simultaneously probed with electrochemical measurements. The results show the active roles of tribology/lubrication and surface chemistry in the removal of CMP residues. The electrochemically determined residue removal efficiencies of PCMPC are found to be ~97% and ~56% in the presence and in the absence of surface brushing, respectively. The implications of these findings are explored in the general context of evaluating PCMPC formulations. Full article
(This article belongs to the Special Issue Advances in Tribochemistry)
Show Figures

Figure 1

16 pages, 6647 KiB  
Article
Influence of Starch Cross-Linking on the Performance of Cellulose Aerogels for Oil Spills Sorption
by Rafael Picazo Espinosa, Jochen Uebe, Marija Katarzyte and Tatjana Paulauskiene
Gels 2025, 11(6), 386; https://doi.org/10.3390/gels11060386 - 24 May 2025
Viewed by 513
Abstract
Oil spills represent a significant environmental threat due to the toxicity of hydrocarbons, particularly in aquatic environments where oil rapidly spreads across the surface. Sustainable sorbents are needed for an efficient and eco-friendly response to oil spills. Cellulose aerogels produced from recycled paper [...] Read more.
Oil spills represent a significant environmental threat due to the toxicity of hydrocarbons, particularly in aquatic environments where oil rapidly spreads across the surface. Sustainable sorbents are needed for an efficient and eco-friendly response to oil spills. Cellulose aerogels produced from recycled paper and cardboard exhibit promising properties such as buoyancy, light weight, biocompatibility, and recyclability. Mechanical stability and reusability can be enhanced using cross-linkers such as starch. This study evaluated the impact of starch on cellulose aerogel morphology, sorption capacity for various petroleum products (crude oil, marine diesel, and lubricating oil), and reusability using scanning electron microscopy (SEM) and elemental mapping. Aerogels containing 0.5 and 1 wt% starch showed higher porosity, sorption capacity, and reusability. Starch did not affect hydrophobization or significantly alter nitrogen and carbon levels, indicating limited influence on surface chemistry and adsorption performance. Full article
(This article belongs to the Special Issue Cellulose Gels: Properties and Prospective Applications)
Show Figures

Figure 1

23 pages, 3482 KiB  
Article
Comparative Study of Squalane Products as Sustainable Alternative to Polyalphaolefin: Oxidation Degradation Products and Impact on Physicochemical Properties
by Jessica Pichler, Adam Agocs, Lucia Pisarova, Ichiro Minami, Marcella Frauscher and Nicole Dörr
Lubricants 2025, 13(2), 48; https://doi.org/10.3390/lubricants13020048 - 24 Jan 2025
Cited by 1 | Viewed by 1962
Abstract
The growing demand for sustainable lubricant solutions is driving the exploration of bio-based materials that deliver comparable performance to conventional, primarily fossil-based lubricant chemistries. This study focuses on squalane as a sustainable base oil, which can be derived from different renewable sources. A [...] Read more.
The growing demand for sustainable lubricant solutions is driving the exploration of bio-based materials that deliver comparable performance to conventional, primarily fossil-based lubricant chemistries. This study focuses on squalane as a sustainable base oil, which can be derived from different renewable sources. A total of two squalane products were evaluated for thermal-oxidative stability and benchmarked against a polyalphaolefin, PAO 4, of the same total carbon number. Oils artificially altered in a closed reactor were sampled and subjected to conventional lubricant analyses, including infrared spectroscopy, to determine the changes due to autoxidation over time. For in-depth information, direct-infusion high-resolution mass spectrometry and gas chromatography coupled with triple quadrupole mass spectrometry were employed to identify degradation products from thermo-oxidative stress. The results revealed substantial variability in the stability of squalane products, suggesting that differences in raw materials and production processes have a major impact on their performance, including rheological properties. The degradation products of polyalphaolefin and squalane, identified through detailed mass spectrometry, were analyzed to understand their impact on conventional physicochemical properties. While polyalphaolefin predominantly generated carboxylic acids with short to medium chain lengths as degradation products, squalane oxidation produced carboxylic acids with medium to long chain lengths as well as several alcohols and ketones. Despite these differences, squalane demonstrates its potential as a non-fossil hydrocarbon base oil, as squalane products matched and even exceeded PAO 4 stability. Full article
(This article belongs to the Special Issue Progress and Challenges in Lubrication: Green Tribology)
Show Figures

Graphical abstract

15 pages, 4162 KiB  
Article
Understanding the Enzymatic Synthesis of a New Biolubricant: Decane-1,10-diyl bis(2-methylpentanoate)
by Salvadora Ortega-Requena, Fuensanta Máximo, María Claudia Montiel, María Gómez, María Dolores Murcia and Josefa Bastida
Molecules 2025, 30(1), 52; https://doi.org/10.3390/molecules30010052 - 26 Dec 2024
Viewed by 1006
Abstract
The value of branched esters comes from the special properties they have in cold environments, which allow them to remain liquid over a wide range of temperatures. These properties make them useful for application in the cosmetic industry or as lubricant additives. This [...] Read more.
The value of branched esters comes from the special properties they have in cold environments, which allow them to remain liquid over a wide range of temperatures. These properties make them useful for application in the cosmetic industry or as lubricant additives. This paper presents the studies carried out to ascertain the operational feasibility of the enzymatic esterification of 2-methylpentanoic acid (MPA) with 1,10-decanediol (DD), with the objective of obtaining a novel molecule: decane-1,10-diyl bis(2-methylpentanoate) (DDBMP). The enzymatic reaction is conducted in a thermostated batch reactor, utilizing the commercially available immobilized lipase Lipozyme® 435 in a solvent-free medium. The reaction conversion is determined by an acid number determination and a gas chromatographic analysis. The most optimal result is achieved at a temperature of 80 °C, a biocatalyst concentration of 2.5% (w/w), and a non-stoichiometric substrate relation. A preliminary economic study and the calculation of Green Metrics has established that the operation with a 30% molar excess of acid is the best option to obtain a product with 92.6% purity at a lower cost than the other options and in accordance with the 12 Principles of Green Chemistry. The synthetized diester has a viscosity index of 210, indicating that this new molecule can be used as a biolubricant at extreme temperatures. Full article
(This article belongs to the Special Issue 10th Anniversary of Green Chemistry Section)
Show Figures

Figure 1

24 pages, 6499 KiB  
Article
Sliding Contact Fatigue Damage of Metallic Implants in a Simulated Body Fluid Environment
by Mihir V. Patel, Edward Cudjoe and Jae Joong Ryu
Lubricants 2024, 12(12), 437; https://doi.org/10.3390/lubricants12120437 - 8 Dec 2024
Cited by 1 | Viewed by 1148
Abstract
At the modular interface of the joint implants, repeated contact stresses in a corrosive synovial environment cause surface degradation that worsens over time. The lubricating mechanisms at the joints are altered by the deteriorated synovial fluid by the wear debris and corrosion products. [...] Read more.
At the modular interface of the joint implants, repeated contact stresses in a corrosive synovial environment cause surface degradation that worsens over time. The lubricating mechanisms at the joints are altered by the deteriorated synovial fluid by the wear debris and corrosion products. As a result, the joint implants’ unsatisfactory performance will be exacerbated by the synergistic combination of wear and corrosion. In this work, reciprocal sliding contact tests in simulated synovial fluid were conducted on the two main metallic implant materials, CoCrMo and Ti6Al4V. The mechanical and electrochemical reactions were described by monitoring the open-circuit potential (OCP) and coefficient of friction (COF). The electrochemical damage that altered the oxidation chemistry on both surfaces was illustrated by the potentiostatic test findings. The surface damage process of CoCrMo under all contact loads presented unstable chemomechanical responses. On the other hand, the Ti6Al4V results revealed a moderate decrease in fretting current and stable changes in the coefficient of friction. Consequently, the experimental investigation determined that, when mechanical loadings and electrochemical stimulus are combined, Ti6Al4V’s biocompatibility would be superior to CoCrMo’s. Full article
(This article belongs to the Special Issue Biomechanics and Tribology)
Show Figures

Figure 1

29 pages, 4541 KiB  
Article
Impact of Soot on Internal Combustion Engine Lubrication—Oil Condition Monitoring, Tribological Properties, and Surface Chemistry
by Adam Agocs, Marcella Frauscher, Andjelka Ristic and Nicole Dörr
Lubricants 2024, 12(11), 401; https://doi.org/10.3390/lubricants12110401 - 20 Nov 2024
Cited by 2 | Viewed by 1324
Abstract
In the study at hand, a systemic investigation regarding the tribochemical effects of crankcase soot is presented. Sooted oils were generated via an engine dynamometer test. Both conventional as well as advanced oil condition monitoring methods indicated a mild degradation of additives. The [...] Read more.
In the study at hand, a systemic investigation regarding the tribochemical effects of crankcase soot is presented. Sooted oils were generated via an engine dynamometer test. Both conventional as well as advanced oil condition monitoring methods indicated a mild degradation of additives. The wear volume was greatly increased with the sooted oils in model tribometer tests, despite the high residual zinc dialkyl dithiophosphate (ZDDP) antiwear (AW) levels. Once the soot was removed via ultracentrifugation, the wear volume returned to levels comparable to the fresh oil. Surface investigations revealed that ZDDP tribofilms could not form in the sooted oils, as only a thin sulfide layer was present on the metal surfaces. Meanwhile, typical tribofilms were observable with centrifuged oils. The results indicated that a tribocorrosive mechanism is most likely responsible for the elevated wear in the sooted oils, where only the iron sulfide base layer of ZDDP films is formed, which is then rapidly removed by the soot particles in an abrasive manner. Full article
(This article belongs to the Special Issue Recent Advances in Automotive Powertrain Lubrication)
Show Figures

Figure 1

11 pages, 9625 KiB  
Article
Running-In of DLC–Third Body or Transfer Film Formation
by Joachim Faller and Matthias Scherge
Lubricants 2024, 12(9), 314; https://doi.org/10.3390/lubricants12090314 - 4 Sep 2024
Viewed by 1538
Abstract
Amorphous carbon coatings are widely used due to their beneficial friction and wear characteristics. A detailed understanding of their behavior during running-in, apart from model tribosystems, has yet to be obtained. Multiple analytical methods were used to detect the physical and chemical changes [...] Read more.
Amorphous carbon coatings are widely used due to their beneficial friction and wear characteristics. A detailed understanding of their behavior during running-in, apart from model tribosystems, has yet to be obtained. Multiple analytical methods were used to detect the physical and chemical changes in a ta-C coating and its thermally sprayed, metallic counterpart after a running-in procedure with pin-on-disk experiments. Both coatings exhibited changes in their surface and near-surface chemistry. The mechanisms in and on the metallic coating were identified to be a mixture of the third-body type, with the formation of gradients in the microstructure and chemistry and an additional carbon-rich tribofilm formation on top. The ta-C coating’s changes in chemistry with sp2 enrichment and lubricant element inclusions proved to be too complex to allocate them to tribofilm or third-body formation. Full article
(This article belongs to the Special Issue Tribology in Germany: Latest Research and Development)
Show Figures

Figure 1

21 pages, 8416 KiB  
Article
Wear Mechanisms, Composition and Thickness of Antiwear Tribofilms Formed from Multi-Component Lubricants
by Anna E. Tsai and Kyriakos Komvopoulos
Materials 2024, 17(10), 2324; https://doi.org/10.3390/ma17102324 - 14 May 2024
Cited by 2 | Viewed by 1650
Abstract
The antiwear properties of tribofilms formed on steel surfaces lubricated with various multi-component lubricants were investigated at an elevated temperature and under load-speed conditions conducive to sliding in the boundary lubrication regime. The lubricants contained base oil, reduced-level (secondary) zinc dialkyl dithiophosphate (ZDDP), [...] Read more.
The antiwear properties of tribofilms formed on steel surfaces lubricated with various multi-component lubricants were investigated at an elevated temperature and under load-speed conditions conducive to sliding in the boundary lubrication regime. The lubricants contained base oil, reduced-level (secondary) zinc dialkyl dithiophosphate (ZDDP), and nitrogenous dispersant. The wear resistance of the tribofilms produced from different oil blends was evaluated in the context of the rate of change in the sliding track volume (wear rate for material loss) and the load-bearing capacity, chemical composition, and thickness of the tribofilms. Surface profilometry and scanning electron microscopy were used to quantify the wear performance and detect the prevailing wear mechanisms, whereas X-ray photoelectron spectroscopy elucidated the chemical composition and thickness of the tribofilms. The oil blends without ZDDP did not produce tribofilms with adequate antiwear properties, whereas the oil blends containing ZDDP and dispersant generated tribofilms with antiwear characteristics comparable to those of tribofilms produced from blends with a higher ZDDP content. Although dispersants can suspend oil contaminants and preserve the cleanness of the sliding surfaces, it was found that they can also reduce the antiwear efficacy of ZDDP. This was attributed to an additive-dispersant antagonistic behavior for surface adsorption sites affecting tribofilm chemistry and mechanical properties. Among the blends containing a mixture of ZDDP and dispersant, the best antiwear properties were demonstrated by the tribofilm produced from the blend consisting of base oil, 0.05 wt% ZDDP, and a bis-succinimide dispersant treated with ethylene carbonate. The findings of this investigation demonstrate the potential of multi-component lubricants with reduced-content ZDDP and nitrogen-based dispersant to form effective antiwear tribofilms. Full article
(This article belongs to the Special Issue Advances in Metal Coatings for Wear and Corrosion Applications)
Show Figures

Graphical abstract

21 pages, 13889 KiB  
Review
Bioinspired Interfacial Friction Control: From Chemistry to Structures to Mechanics
by Yunsong Kong, Shuanhong Ma and Feng Zhou
Biomimetics 2024, 9(4), 200; https://doi.org/10.3390/biomimetics9040200 - 27 Mar 2024
Cited by 5 | Viewed by 2422
Abstract
Organisms in nature have evolved a variety of surfaces with different tribological properties to adapt to the environment. By studying, understanding, and summarizing the friction and lubrication regulation phenomena of typical surfaces in nature, researchers have proposed various biomimetic friction regulation theories and [...] Read more.
Organisms in nature have evolved a variety of surfaces with different tribological properties to adapt to the environment. By studying, understanding, and summarizing the friction and lubrication regulation phenomena of typical surfaces in nature, researchers have proposed various biomimetic friction regulation theories and methods to guide the development of new lubrication materials and lubrication systems. The design strategies for biomimetic friction/lubrication materials and systems mainly include the chemistry, surface structure, and mechanics. With the deepening understanding of the mechanism of biomimetic lubrication and the increasing application requirements, the design strategy of multi-strategy coupling has gradually become the center of attention for researchers. This paper focuses on the interfacial chemistry, surface structure, and surface mechanics of a single regulatory strategy and multi-strategy coupling approach. Based on the common biological friction regulation mechanism in nature, this paper reviews the research progress on biomimetic friction/lubrication materials in recent years, discusses and analyzes the single and coupled design strategies as well as their advantages and disadvantages, and describes the design concepts, working mechanisms, application prospects, and current problems of such materials. Finally, the development direction of biomimetic friction lubrication materials is prospected. Full article
(This article belongs to the Special Issue Biological Attachment Systems and Biomimetics)
Show Figures

Figure 1

14 pages, 6758 KiB  
Article
Hydrophilized MoS2 as Lubricant Additive
by M. Humaun Kabir, Darrius Dias, Kailash Arole, Reza Bahrami, Hung-Jue Sue and Hong Liang
Lubricants 2024, 12(3), 80; https://doi.org/10.3390/lubricants12030080 - 5 Mar 2024
Cited by 10 | Viewed by 2715
Abstract
Molybdenum disulfide (MoS2) has been used in a variety of lubrication products due to its highly tunable surface chemistry. However, the performance of MoS2-derived tribofilms falls short when compared to other commercially available antiwear additives. The primary objective of [...] Read more.
Molybdenum disulfide (MoS2) has been used in a variety of lubrication products due to its highly tunable surface chemistry. However, the performance of MoS2-derived tribofilms falls short when compared to other commercially available antiwear additives. The primary objective of this study is to improve the tribological performance of MoS2 as an additive for lithium-based greases. This was achieved by functionalizing the particle with hydrophilic molecules, such as urea. Experimental results indicate that the urea-functionalized MoS2 (U-MoS2) leads to a notable decrease in the coefficient of friction of 22% and a substantial reduction in the wear rate of 85% compared to its unmodified state. These results are correlated with the density functional theory (DFT) calculation of U-MoS2 to theorize two mechanisms that explain the improved performance. Urea has the capability to reside both on the surface of MoS2 and within its interlayer spacing. Weakened van der Waals forces due to interlayer expansion and the hydrophilicity of the functionalized U-MoS2 surface are catalysts for both friction reduction and the longevity of tribofilms on hydrophilic steel surfaces. These findings offer valuable insights into the development of a novel class of lubricant additives using functionalized hydrophilic molecules. Full article
Show Figures

Figure 1

45 pages, 8748 KiB  
Review
Experimental Strategies for Studying Tribo-Electrochemical Aspects of Chemical–Mechanical Planarization
by Kassapa Gamagedara and Dipankar Roy
Lubricants 2024, 12(2), 63; https://doi.org/10.3390/lubricants12020063 - 19 Feb 2024
Cited by 6 | Viewed by 3087
Abstract
Chemical–mechanical planarization (CMP) is used to smoothen the topographies of a rough surface by combining several functions of tribology (friction, lubrication), chemistry, and electrochemistry (corrosion, wear, tribo-corrosion). The surface layer of interest is structurally weakened by the chemical and/or electrochemical reactions of selected [...] Read more.
Chemical–mechanical planarization (CMP) is used to smoothen the topographies of a rough surface by combining several functions of tribology (friction, lubrication), chemistry, and electrochemistry (corrosion, wear, tribo-corrosion). The surface layer of interest is structurally weakened by the chemical and/or electrochemical reactions of selected additives in a polishing slurry, and the modified surface is flattened by the abrasion of a polishing pad with or without abrasive particles. The chemically active CMP slurry also serves as a lubricant for polishing and enables planarization at a microscopic level while avoiding the formation of defects at the processed surface. Applications of CMP are wide-ranging in various material-processing technologies and, specifically, it is a critical manufacturing step of integrated circuits. The CMP of metals is a significant part of this processing scheme and is associated with highly complex tribo-electrochemical mechanisms that are now additionally challenging due to various new requirements of the advanced technology nodes. The present review examines the current statuses of experimental strategies for collecting important mechanistic details of metal CMP that are necessary to design and assess CMP consumables. Both traditional and underexplored experimental techniques are discussed with illustrative results, including many previously unpublished findings for certain CMP systems of current interest. Full article
Show Figures

Figure 1

13 pages, 1857 KiB  
Article
Sustainable Biocatalytic Synthesis of a Second-Generation Biolubricant
by María Claudia Montiel, María Gómez, María Dolores Murcia, Salvadora Ortega-Requena, Fuensanta Máximo and Josefa Bastida
Sustainability 2024, 16(4), 1615; https://doi.org/10.3390/su16041615 - 15 Feb 2024
Cited by 3 | Viewed by 1982
Abstract
Background: Biolubricants represent a category of lubricating substances derived from sustainable sources such as vegetable oils, animal fats, and other bio-based materials. They are considered more environmentally friendly than mineral-based lubricants because they are biodegradable and nontoxic. Biolubricants derived from vegetable oils or [...] Read more.
Background: Biolubricants represent a category of lubricating substances derived from sustainable sources such as vegetable oils, animal fats, and other bio-based materials. They are considered more environmentally friendly than mineral-based lubricants because they are biodegradable and nontoxic. Biolubricants derived from vegetable oils or animal fats were used as first-generation biolubricants. They have limited performance at extreme temperatures, both high and low, as well as low oxidative stability. Substitution of the double bonds by branching improves the performance and stability of the resulting second-generation biolubricants. Methods: In the past, the production of these compounds has relied on the chemical pathway. This method involves elevated temperatures and inorganic catalysts, leading to the necessity of additional purification steps, which decreases environmental sustainability and energy efficiency. A more environmentally friendly alternative, the enzymatic route, has been introduced, in accordance with the principles of “Green Chemistry”. Results: In this paper, the esterification of 2-methylhexanoic acid with 2-octyl-1-dodecanol and its optimization were developed for the first time. The synthesis was conducted within a jacketed batch reactor connected to a thermostatic bath in a solvent-free reaction medium and using Lipozyme® 435 as biocatalyst. Conclusions: The high viscosity index value of this new hyperbranched ester (>200, ASTM D2270) suggests that it may be an excellent biolubricant to be used under extreme temperature conditions. Regarding sustainability, the main green metrics calculated point to an environmentally friendly process. Full article
Show Figures

Figure 1

29 pages, 13129 KiB  
Article
The Influence of Peripheral Components in Test Rig Creation of White Etching Cracks
by Jürgen Wranik, Walter Holweger and Ling Wang
Lubricants 2024, 12(2), 45; https://doi.org/10.3390/lubricants12020045 - 4 Feb 2024
Cited by 1 | Viewed by 2169
Abstract
White Etching Cracks (WEC) have become a subject of extensive research in material science, chemistry and lubrication, and even operational mathematics by AI learning. Initially reported in the 1960s and considered an exotic anomaly, the failures gained importance with the global rise of [...] Read more.
White Etching Cracks (WEC) have become a subject of extensive research in material science, chemistry and lubrication, and even operational mathematics by AI learning. Initially reported in the 1960s and considered an exotic anomaly, the failures gained importance with the global rise of wind energy power and the automotive industry. Unexpectedly high failure rates in various bearing applications have led to the need for a deeper understanding and prevention of WEC. It has come a long way from materials inspection, to parametrically studying WECs on test rigs, to the understanding that WEC is a stand-alone phenomenon and sparingly related to common failures in bearing technology. It has been commonly accepted that WEC drivers have multiple dimensions, e.g., material, contact mechanics, chemistry, and electricity. The impact of these factors on WEC failures is frequently studied using test rigs at the component level, such as the FE8 test rig. The FE8 has been utilized in numerous investigations due to its ability to replicate WEC failures without requiring artificial electricity or hydrogen charging by using specific lubricant chemistry and operating conditions. However, through intensive testing, it was observed in this study that a standard material in an FE8 rig component demonstrated a profound influence on WEC formation. This paper presents the details of the testing and analysis, aiming to investigate the mechanisms of interactions between the hose material and the low reference lubricant. The results demonstrate that the chemistry of the component material plays an important role in WEC formation. This finding may have significant impact in WEC studies, especially when the FE8 rig is used. Full article
Show Figures

Figure 1

33 pages, 32167 KiB  
Article
Crankcase Explosions in Marine Diesel Engines: A Computational Study of Unvented and Vented Explosions of Lubricating Oil Mist
by Vladislav S. Ivanov, Sergey M. Frolov, Ilya V. Semenov and Marina S. Belotserkovskaya
J. Mar. Sci. Eng. 2024, 12(1), 82; https://doi.org/10.3390/jmse12010082 - 29 Dec 2023
Cited by 2 | Viewed by 3226
Abstract
Accidental crankcase explosions in marine diesel engines are presumably caused by the inflammation of lubricating oil in air followed by flame propagation and pressure buildup. This manuscript deals with the numerical simulation of internal unvented and vented crankcase explosions of lubricating oil mist [...] Read more.
Accidental crankcase explosions in marine diesel engines are presumably caused by the inflammation of lubricating oil in air followed by flame propagation and pressure buildup. This manuscript deals with the numerical simulation of internal unvented and vented crankcase explosions of lubricating oil mist using the 3D CFD approach for two-phase turbulent reactive flow with finite-rate turbulent/molecular mixing and chemistry. The lubricating oil mist was treated as either monodispersed with a droplet size of 60 μm or polydispersed with a trimodal droplet size distribution (10 μm (10 wt%), 250 μm (10 wt%), and 500 μm (80 wt%)). The mist was partly pre-evaporated with pre-evaporation degrees of 60%, 70%, and 80%. As an example, a typical low-speed two-stroke six-cylinder marine diesel engine was considered. Four possible accidental ignition sites were considered in different linked segments of the crankcase, namely the leakage of hot blow-by gases through the faulty stuffing box, a hot spot on the crankpin bearing, electrostatic discharge in the open space at the A-frame, and a hot spot on the main bearing. Calculations show that the most important parameter affecting the dynamics of crankcase explosion is the pre-evaporation degree of the oil mist, whereas the oil droplet size distribution plays a minor role. The most severe unvented explosion was caused by the hot spot ignition of the oil mist on the main bearing and flame breaking through the windows connecting the crankcase segments. The predicted maximum rate of pressure rise in the crankcase attained 0.6–0.7 bar/s, whereas the apparent turbulent burning velocity attained 7–8 m/s. The rate of heat release attained a value of 13 MW. Explosion venting caused the rate of pressure rise to decrease and become negative. However, vent opening does not lead to an immediate pressure drop in the crankcase: the pressure keeps growing for a certain time and attains a maximum value that can be a factor of 2 higher than the vent opening pressure. Full article
(This article belongs to the Special Issue Two-Phase Flows in Marine Propulsion and Engineering)
Show Figures

Figure 1

Back to TopTop