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Abstract: Organisms in nature have evolved a variety of surfaces with different tribological properties
to adapt to the environment. By studying, understanding, and summarizing the friction and lubrication
regulation phenomena of typical surfaces in nature, researchers have proposed various biomimetic
friction regulation theories and methods to guide the development of new lubrication materials and
lubrication systems. The design strategies for biomimetic friction/lubrication materials and systems
mainly include the chemistry, surface structure, and mechanics. With the deepening understanding of the
mechanism of biomimetic lubrication and the increasing application requirements, the design strategy of
multi-strategy coupling has gradually become the center of attention for researchers. This paper focuses
on the interfacial chemistry, surface structure, and surface mechanics of a single regulatory strategy and
multi-strategy coupling approach. Based on the common biological friction regulation mechanism in
nature, this paper reviews the research progress on biomimetic friction/lubrication materials in recent
years, discusses and analyzes the single and coupled design strategies as well as their advantages and
disadvantages, and describes the design concepts, working mechanisms, application prospects, and
current problems of such materials. Finally, the development direction of biomimetic friction lubrication
materials is prospected.

Keywords: friction control; lubrication regulation; chemistry; surface structure; mechanics

1. Introduction

Friction, the process of energy dissipation when two surfaces slide relative to each
other, can be found everywhere in daily life and industrial manufacturing. On the one hand,
friction plays a vital role in everyday life and production; on the other hand, friction causes
severe wear and tear phenomena and requires colossal energy consumption. Therefore, it
is necessary to develop various lubricant materials to regulate interfacial friction in specific
situations. People have studied friction extensively and intensively for sustaining industrial
production, conserving energy, and improving the quality of life, which has continued to
drive the development of mechanical and materials science. However, with the improve-
ment of people’s quality of life and rapid technological innovation, traditional lubrication
materials sometimes find it challenging to meet the requirements of specific friction systems,
which requires us to propose new strategies for controlling interfacial friction.

The diversity of life in nature showcases the beauty and functionality of matching form
and purpose across all scales. The unique structures that have evolved in organisms due to
common materials or specific physiological processes can inspire us to design materials,
devices, or processes with desirable functions, which is the fundamental concept behind
“bionics.” Over 3.8 billion years, a wide range of natural organisms have evolved organs
and structures that can be adapted to complex operating conditions, including a wide range
of ingenious friction and lubrication systems. Many of these organisms realize a wide
range of tribological properties through different interfacial chemistry, surface structures at
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various scales, and mechanical properties of the biological structures to achieve the desired
lubrication effect in a long-lasting and efficient manner. By further understanding how the
complex functionalization and modulation of biological structures can be achieved, we can
optimize the performance and realize the intellectualization of materials.

Humans have long noticed the excellent tribological properties of various organisms’
internal and external physiological structures and have conducted a series of related studies.
From the perspective of solid surface lubrication, organisms in nature exhibit three main
types of friction regulation strategies (Figure 1). One is the particular chemical nature of
the surface, which realizes lubrication through the macromolecular layer on the surface of
organisms with unique functions or the secretion of chemical substances with lubricating
effects, such as the mucus secreted by the plant [1] and the synovial fluid and cartilage layer
of mammals [2]. The second is the formation of structures on surfaces at various scales,
such as the arrays of gecko feet [3] and the grooves on the surface of shark skin [4]. The
third is to change the mechanical properties of the surface or subsurface to drastically alter
the friction state at the interface, such as the hardening of the dermis of the sea cucumber
and the contraction of fish muscles [5,6]. In the face of complex environmental conditions,
it is often challenging to design biomimetic lubrication materials based on a single strategy
to cope with the wide range of influencing factors in real situations, so researchers usually
need to couple multiple strategies for material development.
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Figure 1. The schematic shows the three biomimetic strategies for achieving friction control.

This paper introduces the common forms of bio-lubrication modulation in nature and
the corresponding application of biomimetic materials in friction systems from the standard
lubrication systems in nature. This paper introduces the mechanisms of biomodulation of
interfacial friction from three perspectives, namely, interfacial chemistry, surface structure,
and surface mechanics, respectively, and analyzes the advantages and disadvantages of
various biomimetic strategies, discusses the possibilities and superiority of multi-strategy
coupling, and looks forward to the direction of the development of biomimetic interfacial
friction modulation and the prospects for its application.

2. Surface Chemistry-Dominated Friction

It has long been noted that many plants and animals in nature can achieve lubrication
effects through good hydration of their secretions or soft tissue surfaces. Jacob Klein, a
famous tribologist, proposed the concept of hydration lubrication, described the role of
the hydration layer in water lubrication, and explained the principles of many biological
lubrication systems [7]. The water molecule appears to be electrically neutral. However,
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due to the dipoles caused by residual charges on the hydrogen and oxygen atoms, the water
molecules will form a hydration layer around the polar groups (Figure 2). The hydration
charges will repel each other when they are close, making it difficult for the hydration
layer to overlap [8,9]. During aqueous lubrication, the charged groups at the interface can
immobilize the oppositely charged hydrated groups during sliding via strong electrostatic
interactions, meaning that the hydrated layer also reduces interfacial friction under high
normal pressures, which is consistent with the working conditions in many cases in living
organisms [10,11].
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Figure 2. (a) The large dipole of water and the formation of hydration shells about charges. (b) The
mechanism of hydration lubrication between charged surfaces across trapped hydrated ions [7].
Copyright Permission from Springer Nature, 2013.

Researchers have studied biological structures with good lubricating properties and
found that the mucus or surface with lubricating functions in plants and animals usually has
a special chemical composition. For example, the components of plant secretions that play
a lubricating role mainly include well-hydrated macromolecules such as polysaccharides
and cellulose. One of the strategies for developing new lubricants is to analyze the mucus
by extracting specific components or designing based on its composition. The mucilage
in aloe vera is a suitable polysaccharide water-based bio-lubricant. Aloe leaves are rich
in mucilage, whose main component is polysaccharides. Xu et al. [12] investigated the
tribological properties of aloe mucilage and found that the mucilage can exhibit friction
consistent with thin-film lubrication. Hakala et al. [13] extracted mucilage with a lubricating
effect from fresh papaya fruit (Figure 3a–c), and the combination of nanofibers and water-
soluble polysaccharides can form a gel-like structure. Arad et al. [14] evaluated the sulfated
polysaccharide obtained from the red microalga Porphyridium sp., which showed good
lubrication properties in rheological studies. Li et al. [15] reported the excellent lubricating
properties of Brasenia schreberi mucilage (Figure 3d–f), in which there are a large number of
polysaccharide cross-linked nanosheets, which can be combined into a solid polysaccharide
layer on the glass surface through hydrogen bonding and the adsorption of a large number
of water molecules during the lubrication process, and they form a hydration layer between
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the layers in order to effectively reduce the friction. The plant secretions mentioned in this
paragraph and their tribological properties have been summarised in Table 1.
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Figure 3. (a) Photograph of gel-like mucus obtained from papaya seeds, (b) gel-like layer formed
on the surface of the seeds after being dissolved for 20 min using calcium fluoride solution, and
(c) AFM morphology image of fresh papaya mucus aggregated on a mica sheet [13]. Copyright
Permission from Elsevier, 2014. (d) Brasenia schreberi mucilage and its lubrication, (e) SEM image of
Brasenia schreberi mucilage after treatment by the vacuum freeze-drying method, and (f) schematic
of polysaccharide nanosheets in mucilage during lubrication [15]. Copyright Permission from
ACS, 2012.

Table 1. Friction-reducing properties of the secretions of natural plants.

Creature/Tissue Friction Substitutes and Velocity COF Reference

Aloe mucilage WC ball/DLC flat; 150 mm·s−1 0.04 [12]
Papaya seed mucilage Polyethylene flat/stainless steel flat; 100 mm·s−1 0.03 [13]

Red microalga secretion Si3N4 ball/alumina flat; 0.2 mm·s−1 0.003 [14]
Brasenia mucilage Glass flat/glass flat; 0.01 mm·s−1 0.005 [15]

Compared to the limited lubricating properties of plant mucus, the lubrication system
in animals usually maintains a lower COF and efficient lubrication under more complex
and demanding conditions, as required for the proper functioning of various functions. In
the human body, biological lubrication plays a role in almost every organ and tissue in the
body all the time, such as the blinking lubrication by the tear fluid between the cornea and
the eyelids [16], the lubrication of the esophagus by mucus containing biomolecules when
swallowing food [17], the boundary lubricant film formed by salivary proteins in the oral
cavity [18], and the synergistic lubrication of synovial fluid and cartilage in the joints [19].
Among them, the human joint lubrication system has been widely studied because of its
close correlation with people’s quality of life and its excellent lubrication performance,
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which can work normally with a very low COF under high load conditions and shows
excellent lubricating and anti-wear properties [20]. The synergistic effect of synovial fluid
and structurally specialized cartilage in the joint system contributes to the excellent and
stable lubricating properties.

The main components of synovial fluid include hyaluronic acid (HA), polyproteogly-
cans, and lubricin (Figure 4) [21]. HA is a high-molecular-weight linear polysaccharide that
can bind many water molecules and separate the cartilage on both sides of the joint during
sliding, which is essential for increasing synovial fluid viscosity [22]. At the same time,
HA binds to phospholipids to anchor to the vesicle surface, and the combination of the
two dramatically improves the hydration properties of synovial fluid. Polyproteoglycans
have a natural hierarchical bottle-brush structure, with a backbone capable of forming
interconnections or adsorbing onto the cartilage surface and hydrophilic glycan side chains
capable of binding to water molecules [23]. Lubricin is also a glycoprotein with a bottle-
brush structure that can act as a protective agent for chondrocytes. Klein et al. [24,25]
explained the mechanism in detail for the specific form of action in polymer brush joint
lubrication. Hydrophilic macromolecules contract in the dry state, ionize to form high
osmotic pressures when hydrated, and maintain a stretched and swollen morphology,
which prevents interfacial contact and resists applied loads [26,27]. At the same time, the
hydration of polymer brushes causes them to aggregate at the sliding interface to form a
boundary lubrication layer, further reducing friction [28].
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Figure 4. (a) Illustration of the natural articular cartilage system and the functional biomolecules in
it: HA (blue), polyproteoglycan (red bottle-brush molecule), and lubricin (green) [21]. Copyright
Permission from AAAS, 2009. (b) Highly hydrated phosphorylcholine groups are a highly effective
lubricating element, and the figure illustrates the hydrated phosphorylcholine headgroups exposed
on the surface of the liposomes as they slide relative to one another [27]. Copyright Permission from
ACS, 2015.

Researchers have discovered or synthesized many macromolecular bio-lubricants with
excellent properties based on understanding the lubrication mechanism of synovial fluid.
Natural chitosan is a naturally available cationic glycan that functions similarly to HA
and can act as a bio-lubricant for treating arthritis. The clinical lubrication properties of
KiOmedine® CM-chitosan, a non-animal carboxymethyl chitosan, have been evaluated
by Vandeweerd et al. [29]. In vitro tribological experiments showed that this chitosan
significantly reduced the COF due to the lubricating ability of the cross-linked HA formula-
tions. In addition, chondroitin sulfate with glucosamine has also been used as a biological
lubricant, which is commonly used clinically for arthritis relief and treatment [30,31]. Syn-
thetic bio-lubricants have also shown good performance in terms of the lubrication and
therapeutic effects. Through the ring-opening disproportionation polymerization of methyl
5-oxonorbornene-2-carboxylate, Wathier et al. [32] synthesized a polyanionic bio-lubricant
(Figure 5). Friction experiments have shown that the polymers with low molecular weight
showed a lower COF and significantly enhanced the viscosity of synovial fluid compared
to saline, Synvisc, and bovine synovial fluid (BSF). Inspired by the bottle-brush structure
possessed by biomolecules, Hartung et al. [33,34] prepared a series of brush lubricants with
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poly-L-lysine (PLL) or polyallylamine (PAAm) as the main chain and flexible PEG as the
side chain, and their lubricating properties were also related to the length of the PEG chain
and the grafting density. The PLL or PAAm can be bonded to negatively charged surfaces
by electrostatic interactions to form a boundary lubrication layer [35]. Pettersson et al. [36]
copolymerized PEO45MEMA with methacryloxyethyl trimethyl ammonium chloride to
obtain a new type of bio-lubricant, which can also form a boundary lubrication layer on
the substrate surface through electrostatic interaction, and the lubrication performance is
mainly determined by its chain density.
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Figure 5. (a) Structural formula for Poly(7-oxanorbornene-2carboxylate) and (b) schematic diagram
of its lubrication test model. (c) Polymer 3a with the lowest molecular weight has the lowest COF,
(d) and exhibits lubricating properties superior to those of BSF [32]. Copyright Permission from
ACS, 2013.

While synovial fluid provides good lubrication as a fluid environment, the articular
cartilage plays a more critical role in lubrication. The synovial joints of the human body
are covered with a thin layer of articular cartilage (1–3 mm thick), which has a sponge-
like macromolecular network structure. The synovial fluid’s water will penetrate the
network during the sliding process, while charged water-soluble biomolecules can be
assembled onto the cartilage surface to realize boundary lubrication [37]. The surface of
the cartilage is also covered with HA, polyproteoglycans, and lubricin. The size of these
macromolecules creates a site-barrier effect, and their strong hydration capacity allows
them to freely extend into the solution and form a hydration layer [38]. This stable and
dense layer has good adhesion and hydrated fluidity, allowing it to withstand high loads
while maintaining a low friction factor. Inspired by the human joint lubrication mechanism,
polymer brushes have been utilized to obtain superior tribological properties and good
biocompatibility by grafting them onto desired surfaces to achieve functional mimicry of
the joint lubrication system. Surface-grafted biomimetic polymer brushes mainly refer to
the grafting of polymers from or onto surfaces by physical adsorption or covalent bonding,
with the hydrophilic portion at the other end having no or only weak forces with the
substrate. When the polymer chains are densely distributed, spatial repulsion causes
the polymer to elongate and form a dense polymer brush layer of a certain thickness on
the surface of the substrate [39]. In aqueous environments, the polymer brushes have
a high penetration pressure and thus exhibit excellent lubricating properties with high
load carrying.
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Based on the inherent lubricating properties of natural polymers in living organisms,
natural polymers were first modified, and their tribological properties were investigated. By
functionalizing the natural macromolecules present in synovial joints, such as hyaluronic
acid [40–42], polysaccharide [43–45], and phospholipid [46–48], researchers well modeled
the tribological properties of mammalian joint lubrication systems. Based on the promoted
understanding of the hydration lubrication mechanism of articular cartilage surfaces, the
researchers further synthesized various types of cartilage-mimicking surface lubrication
materials by various methods, such as surface-grafted polymer brush layers, surface-
adsorbed polymer brush layers, and gel matrices with intrinsic surface lubrication [49].

In addition to the use of polymer brushes to achieve efficient lubrication, by adjust-
ing the external conditions to apply stimuli to the lubrication layer, such as solvent [50],
light [51], temperature [52], pH [53], electric field [54], and shear stress [55], the conforma-
tion of some polymers can be changed accordingly to achieve further modulation of the
interface lubricating properties. For example, based on the mimicry of the lubrication per-
formance of fish skin, Wu et al. [56] further introduced the pH-sensitive monomers sodium
methacrylate (NaMA) and 2-(dimethylamino)ethyl methacrylate into the temperature-
sensitive graphene-pNIPAM gel system, obtaining a hydrogel with the dual responsiveness
of the pH and temperature (Figure 6a–d). The hydrogel has an ultra-low COF (≈0.05), which
can be gradually varied from 0.05 to 1.2 by sequentially adjusting the pH and temperature of
the solution reversibly, without structural damage to the gel. Wang et al. [57] prepared semi-
transformable hydrogels with reversible photo-responsive supramolecular lubrication prop-
erties by integrating a responsive supramolecular system of α-cyclodextrin/poly(ethylene
glycol) (α-CD/PEG) and a competing guest, 1-[p-(Phenylazo)benzyl]pyridinium bromide
(AzoPB), into the frameworks of poly(vinyl alcohol) (PVA) and PAAm. Upon irradiation
using UV and visible light, respectively, the competitive host–guest interactions between
the α-CD/PEG supramolecular network and AzoPB led to the repeated formation and dis-
appearance of sol–gel layers on the surface of the hydrogels, whereas the PVA and PAAm
were unaffected and maintained their backbone properties, thus providing a reversible
photo-responsive lubrication capability with variable toughness (Figure 6e,f). Inspired
by the mechanism of transition from lubrication to astringency in the oral environment,
Deng et al. [58] simulated this transition from ultra-low friction to a high friction state
by combining mucin with PVA and achieved a large span of lubrication state switching
(µ~0.009 to µ~0.47) by the interactions between mucin and tannic acid (Figure 6g–i).

Inspired by the lubrication mechanism in living organisms, the modulation of friction
through the chemical properties of surfaces, as exemplified by polymer brushes, can
fundamentally regulate the lubricating properties by controlling the degree of hydration to
change the molecular state of the surface and achieve a significant reduction or reversible
modulation of the COF in aqueous environments, which has brought great convenience
and manipulability. However, most of the strategies for modulating interfacial interactions
through interfacial chemistry find it difficult to take into account the surface roughness,
hardness, deformability, and other factors that may result in a non-ideal contact state under
real conditions, which may lead to a significant reduction in the lubricating performance
of the material under real conditions. In addition, for friction modulation systems with
stimulus-response capability, the surface’s molecular state or the response layer’s size limits
the magnitude of the lubrication regulation. In addition, the actual application environment
is far less stable than in the laboratory, and the required conditions imposed in the response
process may be difficult to realize precisely in real use.
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3. Surface Structure-Dominated Friction

The successful application of the surface structure in tribological performance opti-
mization dates back to the 1940s, and surface geometry has also been extensively studied as
an essential influence in tribology, in addition to interfacial chemistry [59,60]. Researchers
have long noted that many organisms in nature have evolved various types and scales of
surface structures to significantly change the tribological properties to adapt to complex
living environments. We can find many examples in nature, such as lotus leaves [61],
gecko toe pads [3], shark skin [62], and snake skin [63], where the structures of different
surfaces confer different tribological properties (Figure 7a–f). Accordingly, researchers have
designed a variety of surface-structured arrays to modulate the contact condition at the
interface, thus obtaining tribological properties similar to those of biological surfaces.

For example, the lotus, one of the most famous organisms with superhydrophobic
surfaces in nature, has attracted the attention of biologists and materials scientists since the
last century and has been extensively studied in the field of drag reduction at solid–liquid
interfaces [64]. The surface of the lotus leaf is rough and randomly distributed with many
microcapillaries with branching nano-stratified structures at the top of the papillae. Thus,
an air-lubricated membrane layer can be formed between the solid phase surface and the
liquid phase due to the combined effect of the micropapillary structure and epidermal
waxes [65]. The lubrication reduces the frictional resistance at the air–liquid interface,
which allows the water droplets to roll easily on the surface of the leaf [66]. Bidkar et al. [67]
further demonstrated the drag reduction capability of this type of hydrophobic surface by
preparing randomly textured surfaces on flat plates and performing turbulence experiments.
The skin-friction resistance was reduced by 20~30% in the experiments. Inspired by the
surface structure of the lotus leaf, researchers have also prepared various surfaces with
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micro- and nano-graded structures, which have been widely used in waterproofing [68],
ice-proofing [69], and self-cleaning [70,71].

Shark skin is also a rough surface capable of providing less frictional resistance, with
oriented ribs of ordered size and space covering the shark’s dermis [72]. The rib-like teeth
of the skin are present as grooves along the direction of the water flow, which reduces the
friction between the water and the surface of the shark’s skin by decreasing the intensity of
the turbulence [4]. At the same time, the interstices between these grooved structures also
reduce the adhesion of the surface, making it difficult for tiny aquatic organisms to adhere
to the shark’s body. Inspired by the shark skin structure, researchers have conducted a series
of studies on this type of drag-reducing surface. Berchert et al. theoretically investigated the
effect of several types of rib geometries on drag reduction, providing theoretical guidance
for subsequent designs [73]. Shark skin-inspired rib structures have been demonstrated to
reduce drag by up to 9.9% [74]. Xing et al. [75] prepared bionic shark skin textures with
DLC coatings on Si3N4 ceramic. The sample exhibited a COF of 0.21 at 300 ◦C, which was
37.26% lower than that of the blank ceramic. Qin et al. [76] investigated the friction behavior
of soft materials by preparing a bionic shark texture on polydimethylsiloxane (PDMS).
Based on the synergistic effect of the bionic aligned texture and plasma treatment, the
friction on the PDMS surface was effectively reduced. In addition, this type of structure has
also been used in various applications, such as fluid drag reduction and antifouling [77].

As a limbless reptile with an elongated body covered with scales, snakes rely on friction
between their body and the ground for locomotion [78]. This type of locomotion requires
that the scales on their body surfaces generate sufficient friction to support the forward
movement of the body but also provide a low coefficient of friction when the body is sliding.
Researchers have studied the tribological properties of snakes’ body surfaces in different
locomotion states and found that snakes exhibit significant anisotropy when moving in
other directions. The COF was higher when the snake moved in the other direction and
1/4 to 1/2 of the other direction when moving forward [79,80]. The snake’s scales have
a multiscale surface structure, with fibrous structures constituting micrometer-scale fiber
waves with asymmetric tips. During changes in a snake’s state of locomotion, the interface
between the fibers and the ground constantly changes between the tips and the lateral,
causing the contact area to change, resulting in the snake’s body surface displaying different
friction coefficients in different motion directions. The regulation mechanism of the snake’s
skin originates from the variations brought about by the multilayers of the surface structure
and asymmetries in the contact interfaces. The researchers have already achieved drag
reduction and the lubrication effect by mimicking and optimizing this microstructure in
the wet and dry state and on various organic and inorganic surfaces [81–84].
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With the wide variety of plants and animals in nature, researchers have developed a
variety of biomimetic lubrication materials with unique tribological properties inspired by
various surface structures, either through alternative approaches or by focusing on their
strengths. For example, based on the microstructure of the head of the dung beetle, You
et al. [87] developed a structured surface that reduces friction by decreasing the contact area
and trapping abrasive particles, and its resistance to cutting decreased by 30.41% compared
with conventional materials. The gill covers of water snails continuously rub against their
hard shells without significant wear. Xu et al. [88] revealed the fluid lubrication mechanism
by observing and numerically analyzing the microgroove structure on the gill cover surface,
which provides a COF as low as 0.012 in a liquid environment. Gregory et al. [89] studied
the low resistance structures of rice blades and butterfly wings and coated nanostructures
with the lotus effect onto polyurethane products with shark skin structures. The composite
surfaces successfully mimicked the functions of rice blades and butterfly wings, advancing
the understanding of surface design elements of biomimetic structures.

Currently, the means of obtaining the surface structures of materials include 3D
printing technology and photolithography, which are greatly affected by the manufacturing
cost, process precision, and time required. A large part of the material is still in the stage
of laboratory preparation in small quantities, making it difficult to realize large-scale
industrial preparation. For rigid substrates, the excessive load in the loading, friction, and
unloading process is prone to cause severe damage to the structure, which leads to a decline
in tribological performance and to lubrication failure; for soft substrates, the deformation
after loading will also have an impact on the actual state of the surface structure during
the friction process. Especially for systems that require the adaptive adjustment of the
tribological performance, it is often difficult to achieve satisfying and continuous lubrication
in complex working conditions by relying on only the surface structure to reduce friction.

4. Mechanics-Dominated Friction

Many organisms in nature have evolved surfaces with unique tribological properties
and, at the same time, functional organs with specific or adjustable mechanical properties
to maintain the adaptive working status under extreme conditions or to switch working
states rapidly [90,91]. For example, sea cucumbers can escape danger by hardening the
dermis to achieve sudden changes in surface stiffness, and many fish can escape from their
captors by contraction hardening and deformation of the muscles [92,93] (Figure 8a,b).
The mechanical properties of material surfaces greatly influence the contact state of the
surface interface and directly affect the total friction force [94]. Researchers have long
been concerned with deformation due to differences in the surface mechanical properties
when studying elastomers such as rubber and the significant effect of hysteresis and
loss on the total friction. In studies on the tribological behavior of human skin, friction
brings about a large amount of lateral deformation, and the contribution of deformation
friction to the total friction can be close to 50% at high speeds [95,96] (Figure 8c). For the
mammalian joint system, the orderly hierarchical fibrous structure of nano/micro-collagen



Biomimetics 2024, 9, 200 11 of 20

fibers endows the articular cartilage with excellent mechanical properties, which allows
the shear forces in joint motion to be well carried and dispersed, thus cooperating with
the synovial fluid and hydrophilic polymer layer on the cartilage to provide long-lasting
adaptive lubrication [97,98] (Figure 8d).
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In the friction lubrication system described above, the surface mechanics of the ma-
terial greatly determine the contact state between the biological surface and the target
substrate. If we can further modulate the mechanical properties based on considering the
chemical properties and structure of the surface, further optimization of specific tribologi-
cal properties or inducible switching of lubrication states can be achieved. Materials that
change surface/subsurface stiffness in response to stimuli have been used in soft actuators
and soft robotics research [99–101]. Modulating friction and lubrication performance via
changes in the surface mechanical properties is easier for engineering applications than
materials that modulate friction through interfacial chemistry. However, obtaining good
friction and lubrication properties is difficult when relying on only a single change in
mechanical properties without structuring or chemically treating the material’s surface.

5. Multiple Strategies Coupling-Dominated Friction

Many lubricating materials and devices based on a single biomimetic design strategy
have been reported. However, obvious functional limitations still make it difficult to fully
meet people’s production and life needs. Some of the materials remain at the stage of
conceptual design and laboratory validation, and it is not easy to advance to the level of
actual technological transformation. Therefore, it has become a hotspot and a challenge to
study and understand the friction control mechanism of biological organs in nature from
multiple perspectives and to develop high-performance or intelligent materials by coupling
the design strategies of interfacial chemistry, surface structure, and surface mechanics.

5.1. Surface Chemistry Coupling Structure

The strategy of coupling the interfacial chemistry and surface structure enables friction
reduction by reducing the contact area through the surface structure and further enhancing
the lubrication effect through chemicals on the surface. For example, plants such as the
Nepenthes pitcher plant use the structure on the surface to lock in the mucus it secretes [102].
Through an excellent match of solid and liquid surface energies, coupled with the roughness
due to the microstructure, the surface can form a stable and effective liquid film that allows
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errant insects to slide down [103,104]. Wong et al. [105] were the first to introduce the
concept of a slippery liquid-infused porous surface (SLIPS) and prepared surfaces with
excellent stability, liquid repellency, and adhesion resistance using inexpensive materials
such as Teflon. Ma et al. [106] used a simple nanosecond laser treatment method to prepare
SLIPSs on carbon steel substrates. In addition to excellent hydrophobicity and corrosion
resistance, the tribological properties of the smooth surfaces were improved, with the COF
decreasing from about 0.52 to about 0.13 for the base steel. Tong et al. [107] further prepared
a smart SLIPS coating inspired by the mucus-secreting behavior of the blind eel. Based on
the responsive supramolecular interactions between azobenzene and α-cyclodextrin, the
surface could achieve self-replenishment of the lubricant on the surface by contraction of
the polymer chains under visible light or thermal stimulation.

The epidermal friction reduction of earthworms is also based on the synergistic
effect of mucus secreted by their epidermal glands and annular grooves on the body
surface [108,109]. The mucus secreted by the glands forms a lubricating layer on the earth-
worm’s body, while the grooves store the mucus and keep the lubricating layer stable while
forming a gap between the body and the soil. Zhao et al. [110] mimicked the lubrication
mechanism of earthworms and introduced textured structures onto the liquid-releasing
polymer coatings, and the lubricants were stored as discrete droplets in a supramolecular
matrix prepared from urea and polydimethylsiloxane copolymers. When the rough surface
is subjected to localized pressure, the lubricant is released from the matrix and covers the
corresponding area, achieving self-replenishing lubrication. Ruan et al. [111] combined the
advantages of porous polyimide and phase change materials by impregnating paraffin wax
into the porous material. They constructed smart lubrication materials with the ability to
self-repair the lubrication layer. The material can release the internal lubricant under ther-
mal stimulation and form a new paraffin lubrication layer on the surface quickly after the
original layer is worn out. This type of coupling strategy can optimize the contact condition
of the interface to some extent and improve the interfacial interaction, as well as optimize
the stability and continuity of the lubrication layer. However, for solid lubrication, most
interfacial chemical interactions are complicated to regulate and require specific means to
immobilize the corresponding molecules onto the structured surface, making it difficult to
achieve stable and rapid preparation in practical applications.

5.2. Surface Chemistry Coupling Mechanics

Combining the surface chemistry with the surface mechanics can lead to materials
with outstanding performance through specific surface modification and substrate stiffness
selection, as well as realize large-span lubricating state switching through the change
in mechanical properties. The superior lubrication performance of mammalian articular
cartilage is attributed to the dense and stable hydrophilic macromolecular layer on its
surface and the well-organized layered structure with excellent adaptive load-bearing
capacity. Inspired by the lubrication mechanism of articular cartilage, researchers have
designed and synthesized a variety of high-performance propriety polymer lubrication
materials [112–114] and surface-modified polymer lubrication materials [115–118], aim-
ing to realize the effective combination of surface lubrication and propriety load-bearing
of real cartilage. In addition, researchers have also achieved substantial tuning of the
lubricating properties by hydrating the lubrication layer with a responsive substrate.
Liu et al. [119] reported a temperature-responsive layered material prepared by brush-
grafting the poly(potassium salt of 3-sulfopropyl methacrylate) onto the sub-surface of an
initiator-embedded, high-strength hydrogel [poly(N-isopropylacrylamide-co-acrylic acid-
co-initiator/Fe3+)] [P(NIPAAm-AA-iBr/Fe3+)]. The soft hydrogel/brush on the top layer
provides hydration lubrication, and the temperature-sensitive hydrogel layer at the bottom
provides adaptive load-bearing capacity, exhibiting tunable mechanical properties in re-
sponse to temperatures above or below the lower critical solubilization temperature (LCST)
(Figure 9a,b). Fish exhibit unique locomotion and lubrication mechanisms based on a highly
hydrated body surface with modulus-adaptive muscle enhancement. Zhang et al. [93] pro-
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posed a modulation strategy for interfacial lubrication control based on modulus changes.
The modulus-adaptive lubrication hydrogel (MALH) consists of a hydrophilic lubrication
layer at the top and a thermally hardened phase-separated layer at the bottom, in which
the bottom hydrogel can change from a soft state (20 ◦C, modulus of elasticity ~0.3 MPa) to
a rigid state (80 ◦C, modulus of elasticity ~120 MPa), which enables the material to achieve
switchable lubrication states in water when heated (COF from ~0.37 to ~0.027) (Figure 9c–g).
The researchers further designed the Modulus Adaptive Switching Lubrication Device
(MASLD) and demonstrated the promising application of this regulatory strategy in flexi-
ble devices and smart lubrication systems. The above strategy optimizes the lubrication
performance through further knowledge and understanding of the lubrication mechanism
of biological organs. The coupling of the two possible means of responsive modulation
makes substantial tribological performance tuning possible. However, most of the materials
studied so far are limited to single-component externally stimulated modulation, and it is
not easy to realize synergistic modulation between the lubrication layer and the substrate
material, which makes it difficult to realize a wide range of applications.
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hydrogel/brush composite layer and the change in the mechanical strength of the underlying
hydrogel layer as the material network shrinks during heating; (c) improvement of the interfacial
lubrication of this hydrogel during the heating process, which exhibits dynamic adaptation [119].
Copyright Permission from ACS, 2020. (d) Struggling behavior of a fish during capture and its skin
muscle modulus versus COF; (e) evolution of the COF during in situ heating and cooling of the
MALH; (f) demonstration of the MALH as a smart bullet; (g) schematic diagram of the underwater
in situ capture device of the MASLD [93]. Copyright Permission from Springer Nature, 2022.

5.3. Simultaneous Coupling of Three Strategies

Considering the advantages and disadvantages of the above two design strategies, we
can combine the three previous single strategies to develop novel biomimetic lubricating
materials. Interfacial chemistry provides specific interaction force properties and regulatory
mechanisms, surface structure provides optimized contact states, and surface mechan-
ics provide the desired load-bearing capacity and dynamically tunable response states.
Zhang et al. [120] proposed a method to synthesize a large-span viscous-slip switchable
hydrogel by combining dynamic multiscale contact and coordinate regulation, which can
achieve temperature-responsive viscous-slip switching. The responsive process mainly
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consists of molecular-scale chemical modulation that mimics the adhesion mechanism of
mussels and mesoscale modulation based on surface roughness and modulus changes
(Figure 10a–c). This smart hydrogel (DMCS-hydrogel) with dynamic multiscale contact
synergistic modulation can be applied to various substrate surfaces and exhibits fast switch-
ing capability. Considering the coupled design of the three factors, Liu et al. [121] created a
biomimetic high-strength anisotropic layered lubrication hydrogel (ALLH) with an ultra-
low COF by coupling a hydrophilic polyelectrolyte brush, an anisotropic surface microstruc-
ture inspired by scallion leaf, and a high-mechanical-strength substrate mimicking human
cartilage (Figure 10d–g). The artificial scallion leaves exhibit low friction (COF < 0.01) in
different sliding directions under a wide range of contact stresses (≈0.2 to 2.4 MPa, corre-
sponding to loads of ≈5 to 60 N) and ultra-low friction (COF ≈ 0.006) along the microstrip
structure. For high contact pressure and long-term durability tests, the material achieves
almost zero surface wear, which mimics human cartilage’s physiological function.
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at low (b) and high (c) temperatures in the images and time–distance curves of crawling on a vertical
metal plate, and infrared images showing the heat transfer process from the substrate to the DMSC-
hydrogel [120]. Copyright Permission from Springer Nature, 2022. (d) Oriented distribution of
substrate fibers and well-hydrated mucilage on the surface; (e) SEM images and schematic diagrams
of the surface structure of scallion leaves; (f) schematic diagrams of ALLH samples; (g) the COF
curves of the ALLH sample in the entire 50,000 sliding cycles under the normal loads of 10 N (contact
pressure = 0.4 MPa) and 60 N (contact pressure = 2.4 MPa) in two perpendicular directions with
water as the lubricant [121]. Copyright Permission from Wiley, 2024.

By coupling the three strategies, the problems of the single chemical property of the
material itself and the unsatisfactory interfacial contact state are improved. However, the
more factors that are combined, the more complicated the process links that need to be
considered and the more parameters that to be regulated during the material preparation.
Considering the laboratory operation limitations, most current materials and devices are
multi-material composites, and the performance differences between different materials
and the weak interfacial bonding remain to be solved. In the future, integrating the advan-
tages of various materials and developing propriety functional materials with excellent
performance or easy modification to realize the on-demand design and manufacturing of
bionic lubrication materials will remain a significant challenge.

6. Summary and Perspective

With people’s deepening understanding of the mechanism of biological lubrication,
a variety of biomimetic lubricating materials with better design strategies have been
reported one after another. The single biomimetic lubrication strategy has been widely
used in developing practical and functional lubricating materials. Polymer brush systems
inspired by articular cartilage have made a big splash in water lubrication systems and bio-
lubrication, while structuring processes based on animal and plant surface structures have
been widely used in self-cleaning, fluid drag reduction and antifouling. The comprehensive
influence of surface mechanics on the friction or lubrication performance of materials has
also been gradually emphasized by researchers.

However, most of the development of bionic lubrication materials and devices is still
limited to the laboratory stage. It is difficult to meet the harsh conditions of use, which
puts forward new practical requirements. Given the inadequacy of a single biomimetic
strategy, researchers have begun to develop biomimetic materials by coupling multiple
factors. Surface modifications such as hydrophilicity/hydrophobicity can further optimize
the properties of structured surfaces produced by conventional processes. In contrast, the
surface structure, in turn, improves the contact state of the host material or optimizes the
durability and stability of tribological properties. In addition, by introducing the factor of
the surface/subsurface mechanical properties, the lubrication state is expected to be further
optimized and drastically regulated.

Coupling strategies can compensate for the shortcomings of a single strategy to a cer-
tain extent while highlighting its advantages and maximizing the utility of each mechanism.
However, multiple regulatory factors often bring about more complex design strategies
and manufacturing processes, and researchers often need to integrate and regulate the
performance of multiple functionalized systems. The differences in properties of various
materials can easily bring about insufficient bonding power and difficulties in regulation.
In this case, how to reasonably couple the advantages to obtain a responsive propriety
functionalized material that is easy to regulate or develop a composite material with better
performance is still a great challenge. From the engineering point of view, to ensure the
efficient, continuous and reliable lubrication performance of materials or devices under
complex and harsh conditions, realizing adaptive lubrication performance under real
and variable working conditions is also a major focus and difficulty. With the deepen-
ing research and understanding of the interfacial lubrication mechanism in the biological
movement process and the continuous innovation of the material synthesis process, the
development of new biomimetic friction lubrication materials with the ability to adapt
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to the working conditions or environment will become one of the critical development
directions in the field in the future, with a focus on the adjustable interfacial contact state,
through the combination of polymer design and synthesis, multiscale surface structuring,
surface mechanical property regulation and mechanical deformation, and so on. In the
future, these materials are expected to shine in biomedicine, intelligent electronic sensor
devices, soft robots, and precision manufacturing.
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