Hydrophilized MoS2 as Lubricant Additive
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials and Sample Preparation
2.2. Characterization
2.3. Tribotesting
2.4. DFT Simulation
3. Results and Discussion
3.1. Morphology of Urea-MoS2
3.2. Tribological Performance
3.3. Crystal Structure of U-MoS2
3.4. Roles of Layered Structure in Tribo-Performance
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Holmberg, K.; Erdemir, A. Influence of Tribology on Global Energy Consumption, Costs and Emissions. Friction 2017, 5, 263–284. [Google Scholar] [CrossRef]
- Lugt, P.M. Modern Advancements in Lubricating Grease Technology. Tribol. Int. 2016, 97, 467–477. [Google Scholar] [CrossRef]
- Mu, L.; Shi, Y.; Ji, T.; Chen, L.; Yuan, R.; Wang, H.; Zhu, J. Ionic Grease Lubricants: Protic [Triethanolamine][Oleic Acid] and Aprotic [Choline][Oleic Acid]. ACS Appl. Mater. Interfaces 2016, 8, 4977–4984. [Google Scholar] [CrossRef] [PubMed]
- Cai, M.; Liang, Y.; Zhou, F.; Liu, W. Tribological Properties of Novel Imidazolium Ionic Liquids Bearing Benzotriazole Group as the Antiwear/Anticorrosion Additive in Poly(Ethylene Glycol) and Polyurea Grease for Steel/Steel Contacts. ACS Appl. Mater. Interfaces 2011, 3, 4580–4592. [Google Scholar] [CrossRef] [PubMed]
- Arole, K.; Tajedini, M.; Sarmah, A.; Athavale, S.; Green, M.J.; Liang, H. Effects of Ti3C2Tz MXene Nanoparticle Additive on Fluidic Properties and Tribological Performance. J. Mol. Liq. 2023, 386, 122435. [Google Scholar] [CrossRef]
- Chen, Y.; Wang, X.; Han, Z.; Sinyukov, A.; Clearfield, A.; Liang, H. Amphiphilic Zirconium Phosphate Nanoparticles as Tribo-Catalytic Additives of Multi- Performance Lubricants. J. Tribol. 2022, 144, 071901. [Google Scholar] [CrossRef]
- Wang, Y.; Shi, N.; Liu, M.; Han, S.; Yan, J. Enhanced Thermally Conductive Silicone Grease by Modified Boron Nitride. Lubricants 2023, 11, 198. [Google Scholar] [CrossRef]
- Dong, Y.; Ma, B.; Xiong, C.; Liu, Y.; Zhao, Q. Study on the Lubricating Characteristics of Graphene Lubricants. Lubricants 2023, 11, 506. [Google Scholar] [CrossRef]
- Lee, J.H.; Cho, D.H.; Park, B.H.; Choi, J.S. Nanotribology of 2D Materials and Their Macroscopic Applications. J. Phys. D Appl. Phys. 2020, 53, 393001. [Google Scholar] [CrossRef]
- Liu, J.; Qi, Y.; Li, Q.; Duan, T.; Yue, W.; Vadakkepatt, A.; Ye, C.; Dong, Y. Vacancy-Controlled Friction on 2D Materials: Roughness, Flexibility, and Chemical Reaction. Carbon 2019, 142, 363–372. [Google Scholar] [CrossRef]
- Guo, Y.; Zhou, X.; Lee, K.; Yoon, H.C.; Xu, Q.; Wang, D. Recent Development in Friction of 2D Materials: From Mechanisms to Applications. Nanotechnology 2021, 32, 312002. [Google Scholar] [CrossRef] [PubMed]
- Rejhon, M.; Lavini, F.; Khosravi, A.; Shestopalov, M.; Kunc, J.; Tosatti, E.; Riedo, E. Relation between Interfacial Shear and Friction Force in 2D Materials. Nat. Nanotechnol. 2022, 17, 1280–1287. [Google Scholar] [CrossRef] [PubMed]
- Bondarev, A.; Ponomarev, I.; Muydinov, R.; Polcar, T. Friend or Foe? Revising the Role of Oxygen in the Tribological Performance of Solid Lubricant MoS2. ACS Appl. Mater. Interfaces 2022, 14, 55051–55061. [Google Scholar] [CrossRef] [PubMed]
- Baş, H.; Özen, O.; Beşirbeyoğlu, M.A. Tribological Properties of MoS2 and CaF2 Particles as Grease Additives on the Performance of Block-on-Ring Surface Contact. Tribol. Int. 2022, 168, 107433. [Google Scholar] [CrossRef]
- Wu, P.R.; Kong, Y.C.; Ma, Z.S.; Ge, T.; Feng, Y.M.; Liu, Z.; Cheng, Z.L. Preparation and Tribological Properties of Novel Zinc Borate/MoS2 Nanocomposites in Grease. J. Alloys Compd. 2018, 740, 823–829. [Google Scholar] [CrossRef]
- Hu, E.Z.; Xu, Y.; Hu, K.H.; Hu, X.G. Tribological Properties of 3 Types of MoS2 Additives in Different Base Greases. Lubr. Sci. 2017, 29, 541–555. [Google Scholar] [CrossRef]
- Vazirisereshk, M.R.; Martini, A.; Strubbe, D.A.; Baykara, M.Z. Solid Lubrication with MoS2: A Review. Lubricants 2019, 7, 57. [Google Scholar] [CrossRef]
- Xu, D.; Wang, C.; Espejo, C.; Wang, J.; Neville, A.; Morina, A. Understanding the Friction Reduction Mechanism Based on Molybdenum Disulfide Tribofilm Formation and Removal. Langmuir 2018, 34, 13523–13533. [Google Scholar] [CrossRef]
- Bagi, S.D.; Aswath, P.B. Mechanism of Friction and Wear in MoS2 and ZDDP/F-PTFE Greases under Spectrum Loading Conditions. Lubricants 2015, 3, 687–711. [Google Scholar] [CrossRef]
- Afanasiev, P.; Lorentz, C. Oxidation of Nanodispersed MoS2 in Ambient Air: The Products and the Mechanistic Steps. J. Phys. Chem. C 2019, 123, 7486–7494. [Google Scholar] [CrossRef]
- Spychalski, W.L.; Pisarek, M.; Szoszkiewicz, R. Microscale Insight into Oxidation of Single MoS2 Crystals in Air. J. Phys. Chem. C 2017, 121, 26027–26033. [Google Scholar] [CrossRef]
- Kozbial, A.; Gong, X.; Liu, H.; Li, L. Understanding the Intrinsic Water Wettability of Molybdenum Disulfide (MoS2). Langmuir 2015, 31, 8429–8435. [Google Scholar] [CrossRef] [PubMed]
- Stella, M.; Lorenz, C.D.; Clelia Righi, M. Effects of Intercalated Water on the Lubricity of Sliding Layers under Load: A Theoretical Investigation on MoS2. 2D Mater. 2021, 8, 035052. [Google Scholar] [CrossRef]
- Levita, G.; Righi, M.C. Effects of Water Intercalation and Tribochemistry on MoS2 Lubricity: An Ab Initio Molecular Dynamics Investigation. ChemPhysChem 2017, 18, 1475–1480. [Google Scholar] [CrossRef]
- Wang, Y.; Du, Y.; Deng, J.; Wang, Z. Friction Reduction of Water Based Lubricant with Highly Dispersed Functional MoS2 Nanosheets. Colloids Surf. A Physicochem. Eng. Asp. 2019, 562, 321–328. [Google Scholar] [CrossRef]
- Chen, Y.; Renner, P.; Liang, H. A Review of Current Understanding in Tribochemical Reactions Involving Lubricant Additives. Friction 2023, 11, 489–512. [Google Scholar] [CrossRef]
- Yang, Z.; Guo, Z.; Yuan, C. Effects of MoS2 Microencapsulation on the Tribological Properties of a Composite Material in a Water-Lubricated Condition. Wear 2019, 432–433, 102919. [Google Scholar] [CrossRef]
- Rasamani, K.D.; Alimohammadi, F.; Sun, Y. Interlayer-Expanded MoS2. Mater. Today 2017, 20, 83–91. [Google Scholar] [CrossRef]
- Xiao, H.; Dai, W.; Kan, Y.; Clearfield, A.; Liang, H. Amine-Intercalated α-Zirconium Phosphates as Lubricant Additives. Appl. Surf. Sci. 2015, 329, 384–389. [Google Scholar] [CrossRef]
- Dappe, Y.J.; Basanta, M.A.; Flores, F.; Ortega, J. Weak Chemical Interaction and van Der Waals Forces between Graphene Layers: A Combined Density Functional and Intermolecular Perturbation Theory Approach. Phys. Rev. B Condens. Matter Mater. Phys. 2006, 74, 205434. [Google Scholar] [CrossRef]
- Chermahini, A.N.; Teimouri, A.; Farrokhpour, H. Theoretical Studies of Urea Adsorption on Single Wall Boron-Nitride Nanotubes. Appl. Surf. Sci. 2014, 320, 231–236. [Google Scholar] [CrossRef]
- Singh, R.; Paily, R. Adsorption of Urea over Transition Metal-Doped Graphene: A DFT Study. J. Electron. Mater. 2019, 48, 6940–6948. [Google Scholar] [CrossRef]
- Min, C.; He, Z.; Liu, D.; Zhang, K.; Dong, C. Urea Modified Fluorinated Carbon Nanotubes: Unique Self-Dispersed Characteristic in Water and High Tribological Performance as Water-Based Lubricant Additives. New J. Chem. 2019, 43, 14684–14693. [Google Scholar] [CrossRef]
- Giannozzi, P.; Baroni, S.; Bonini, N.; Calandra, M.; Car, R.; Cavazzoni, C.; Ceresoli, D.; Chiarotti, G.L.; Cococcioni, M.; Dabo, I.; et al. QUANTUM ESPRESSO: A Modular and Open-Source Software Project for Quantum Simulations of Materials. J. Phys. Condens. Matter 2009, 21, 395502. [Google Scholar] [CrossRef]
- Perdew, J.P.; Burke, K.; Ernzerhof, M. Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 1996, 77, 3865–3868. [Google Scholar] [CrossRef] [PubMed]
- Al-Temimy, A.; Anasori, B.; Mazzio, K.A.; Kronast, F.; Seredych, M.; Kurra, N.; Mawass, M.A.; Raoux, S.; Gogotsi, Y.; Petit, T. Enhancement of Ti3C2 MXene Pseudocapacitance after Urea Intercalation Studied by Soft X-ray Absorption Spectroscopy. J. Phys. Chem. C 2020, 124, 5079–5086. [Google Scholar] [CrossRef]
- Baheri, Y.T.; Maleki, M.; Karimian, H.; Javadpoor, J.; Masoudpanah, S.M. Well-Distributed 1T/2H MoS2 Nanocrystals in the N-Doped Nanoporous Carbon Framework by Direct Pyrolysis. Sci. Rep. 2023, 13, 7492. [Google Scholar] [CrossRef] [PubMed]
- Liu, Q.; Li, X.; He, Q.; Khalil, A.; Liu, D.; Xiang, T.; Wu, X.; Song, L. Gram-Scale Aqueous Synthesis of Stable Few-Layered 1T-MoS2: Applications for Visible-Light-Driven Photocatalytic Hydrogen Evolution. Small 2015, 11, 5556–5564. [Google Scholar] [CrossRef] [PubMed]
- Tang, Y.; Zhang, X.; Choi, P.; Xu, Z.; Liu, Q. Contributions of van Der Waals Interactions and Hydrophobic Attraction to Molecular Adhesions on a Hydrophobic MoS2 Surface in Water. Langmuir 2018, 34, 14196–14203. [Google Scholar] [CrossRef] [PubMed]
- Jaiswal, M.K.; Singh, K.A.; Lokhande, G.; Gaharwar, A.K. Superhydrophobic States of 2D Nanomaterials Controlled by Atomic Defects Can Modulate Cell Adhesion. Chem. Commun. 2019, 55, 8772–8775. [Google Scholar] [CrossRef]
- Koh, E.; Lee, Y.T. Development of Hybrid Hydrophobic Molybdenum Disulfide (MoS2) Nanoparticles for Super Water Repellent Self-Cleaning. Prog. Org. Coat. 2021, 153, 106161. [Google Scholar] [CrossRef]
- Ye, X.; Ma, L.; Yang, Z.; Wang, J.; Wang, H.; Yang, S. Covalent Functionalization of Fluorinated Graphene and Subsequent Application as Water-Based Lubricant Additive. ACS Appl. Mater. Interfaces 2016, 8, 7483–7488. [Google Scholar] [CrossRef] [PubMed]
- Vaitkunaite, G.; Espejo, C.; Wang, C.; Thiébaut, B.; Charrin, C.; Neville, A.; Morina, A. MoS2 Tribofilm Distribution from Low Viscosity Lubricants and Its Effect on Friction. Tribol. Int. 2020, 151, 106531. [Google Scholar] [CrossRef]
- Rai, Y.; Neville, A.; Morina, A. Transient Processes of MoS2 Tribofilm Formation under Boundary Lubrication. Lubr. Sci. 2016, 28, 449–471. [Google Scholar] [CrossRef]
- Dai, W.; Kheireddin, B.; Gao, H.; Kan, Y.; Clearfield, A.; Liang, H. Formation of Anti-Wear Tribofilms via α-ZrP Nanoplatelet as Lubricant Additives. Lubricants 2016, 4, 28. [Google Scholar] [CrossRef]
- Barboza, A.P.M.; Chacham, H.; Oliveira, C.K.; Fernandes, T.F.D.; Ferreira, E.H.M.; Archanjo, B.S.; Batista, R.J.C.; De Oliveira, A.B.; Neves, B.R.A. Dynamic Negative Compressibility of Few-Layer Graphene, h-BN, and MoS2. Nano Lett. 2012, 12, 2313–2317. [Google Scholar] [CrossRef]
- Nehme, G.; Mourhatch, R.; Aswath, P.B. Effect of Contact Load and Lubricant Volume on the Properties of Tribofilms Formed under Boundary Lubrication in a Fully Formulated Oil under Extreme Load Conditions. Wear 2010, 268, 1129–1147. [Google Scholar] [CrossRef]
- Morina, A.; Neville, A. Tribofilms: Aspects of Formation, Stability and Removal. J. Phys. D Appl. Phys. 2007, 40, 5476–5487. [Google Scholar] [CrossRef]
- Wang, Q.H.; Kalantar-Zadeh, K.; Kis, A.; Coleman, J.N.; Strano, M.S. Electronics and Optoelectronics of Two-Dimensional Transition Metal Dichalcogenides. Nat. Nanotechnol. 2012, 7, 699–712. [Google Scholar] [CrossRef] [PubMed]
- Zhao, W.; Pan, J.; Fang, Y.; Che, X.; Wang, D.; Bu, K.; Huang, F. Metastable MoS2: Crystal Structure, Electronic Band Structure, Synthetic Approach and Intriguing Physical Properties. Chem. A Eur. J. 2018, 24, 15942–15954. [Google Scholar] [CrossRef]
- Zhao, Z.Y.; Liu, Q.L. Study of the Layer-Dependent Properties of MoS2 Nanosheets with Different Crystal Structures by DFT Calculations. Catal. Sci. Technol. 2018, 8, 1867–1879. [Google Scholar] [CrossRef]
- Krishnan, U.; Kaur, M.; Singh, K.; Kumar, M.; Kumar, A. A Synoptic Review of MoS2: Synthesis to Applications. Superlattices Microstruct. 2019, 128, 274–297. [Google Scholar] [CrossRef]
- Meng, F.; Seredych, M.; Chen, C.; Gura, V.; Mikhalovsky, S.; Sandeman, S.; Ingavle, G.; Ozulumba, T.; Miao, L.; Anasori, B.; et al. MXene Sorbents for Removal of Urea from Dialysate: A Step toward the Wearable Artificial Kidney. ACS Nano 2018, 12, 10518–10528. [Google Scholar] [CrossRef]
- Mashtalir, O.; Naguib, M.; Mochalin, V.N.; Dall’Agnese, Y.; Heon, M.; Barsoum, M.W.; Gogotsi, Y. Intercalation and Delamination of Layered Carbides and Carbonitrides. Nat. Commun. 2013, 4, 1716. [Google Scholar] [CrossRef] [PubMed]
- Tang, Y.J.; Wang, Y.; Wang, X.L.; Li, S.L.; Huang, W.; Dong, L.Z.; Liu, C.H.; Li, Y.F.; Lan, Y.Q. Molybdenum Disulfide/Nitrogen-Doped Reduced Graphene Oxide Nanocomposite with Enlarged Interlayer Spacing for Electrocatalytic Hydrogen Evolution. Adv. Energy Mater. 2016, 6, 1600116. [Google Scholar] [CrossRef]
- Zhang, S.; Yu, X.; Yu, H.; Chen, Y.; Gao, P.; Li, C.; Zhu, C. Growth of Ultrathin MoS2 Nanosheets with Expanded Spacing of (002) Plane on Carbon Nanotubes for High-Performance Sodium-Ion Battery Anodes. ACS Appl. Mater. Interfaces 2014, 6, 21880–21885. [Google Scholar] [CrossRef]
- Godfrey, P.D.; Brown, R.D.; Hunter, A.N. The Shape of Urea. J. Mol. Struct. 1997, 413–414, 405–414. [Google Scholar] [CrossRef]
- Lu, N.; Guo, H.; Zhuo, Z.; Wang, L.; Wu, X.; Zeng, X.C. Twisted MX2/MoS2 Heterobilayers: Effect of van Der Waals Interaction on the Electronic Structure. Nanoscale 2017, 9, 19131–19138. [Google Scholar] [CrossRef] [PubMed]
- Li, B.; Yin, J.; Liu, X.; Wu, H.; Li, J.; Li, X.; Guo, W. Probing van Der Waals Interactions at Two-Dimensional Heterointerfaces. Nat. Nanotechnol. 2019, 14, 567–572. [Google Scholar] [CrossRef]
- Gómez-Santos, G. Thermal van Der Waals Interaction between Graphene Layers. Phys. Rev. B Condens. Matter Mater. Phys. 2009, 80, 245424. [Google Scholar] [CrossRef]
Compounds | Energy (Ry) | Lattice Parameters | Volume (Å3) | Density (g/cm3) | |
---|---|---|---|---|---|
a(Å) | c(Å) | ||||
MoS2 | −2890.48 | 3.183 | 13.494 | 118.734 | 4.477 |
U-MoS2 | −2978.23 | 3.179 | 15.838 | 138.954 | 3.916 |
Bond Lengths (Å) | Bond Angles (°) | ||||||
---|---|---|---|---|---|---|---|
C=O | C-N | N-H | O-C-N | N-C-N | C-N-H | H-N-H | |
This Study | 1.242 | 1.374 | 1.007 | 122.495 | 113.576 | 118.642 | 118.695 |
Reference [57] | 1.221 | 1.378 | 1.021 | 122.64 | 114.71 | 119.21 | 118.61 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kabir, M.H.; Dias, D.; Arole, K.; Bahrami, R.; Sue, H.-J.; Liang, H. Hydrophilized MoS2 as Lubricant Additive. Lubricants 2024, 12, 80. https://doi.org/10.3390/lubricants12030080
Kabir MH, Dias D, Arole K, Bahrami R, Sue H-J, Liang H. Hydrophilized MoS2 as Lubricant Additive. Lubricants. 2024; 12(3):80. https://doi.org/10.3390/lubricants12030080
Chicago/Turabian StyleKabir, M. Humaun, Darrius Dias, Kailash Arole, Reza Bahrami, Hung-Jue Sue, and Hong Liang. 2024. "Hydrophilized MoS2 as Lubricant Additive" Lubricants 12, no. 3: 80. https://doi.org/10.3390/lubricants12030080
APA StyleKabir, M. H., Dias, D., Arole, K., Bahrami, R., Sue, H.-J., & Liang, H. (2024). Hydrophilized MoS2 as Lubricant Additive. Lubricants, 12(3), 80. https://doi.org/10.3390/lubricants12030080