Sustainable Biocatalytic Synthesis of a Second-Generation Biolubricant
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Biocatalytic Synthesis
2.3. Biocatalyst Reusability
2.4. Characterization of the 2-Octyl-1-dodecanoyl 2-Methylhexanoate
2.5. Energy Consumption
3. Results and Discussion
3.1. Biocatalyst Amount Influence in the Reaction Evolution
3.2. Temperature’s Influence on the Reaction Evolution
3.3. Optimum Temperature Determination Based on Preliminary Economic Study
3.4. The Influence of Biocatalyst Reutilization in the Process Economic Profitability
3.5. Analysis of Process Sustainability by Measurements of Green Metrics
3.6. The Characterization of 2-Octyl-1-dodecanoyl 2-Methylhexanoate as a Biolubricant
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Waykole, C.S.; Malib, S.N.; Mahalea, D.D.; Pratapa, A.P. Guerbet alcohol esters: Practical synthesis and applications. J. Indian Chem. Soc. 2022, 99, 100304. [Google Scholar] [CrossRef]
- Ribeiro Filho, P.R.C.F.; do Nascimiento, M.R.; Cavalcante, C.L.; de Luna, F.M.T. Synthesis and tribological properties of bio-based lubricants from soybean oil. Biomass Conv. Bioref. 2023, May, 1–13. [Google Scholar] [CrossRef]
- Attia, N.K.; El-Mekkawi, S.A.; Elardy, O.A.; Abdelkader, E.A. Chemical and rheological assessment of produced biolubricants from different vegetable oils. Fuel 2020, 271, 117578. [Google Scholar] [CrossRef]
- Waled, A.A.; Salih, N.; Salimon, J. Synthesis, characterization, tribological and rheological properties of di (2-butyloctyl) dicarboxylate esters for environmentally friendly biolubricant applications. Biointerface Res. Appl. Chem. 2023, 13, 278. [Google Scholar] [CrossRef]
- Carvalho, W.C.A.; Luiz, J.H.H.; Fernandez-Lafuente, R.; Hirata, D.B.; Mendes, A.A. Eco-friendly production of trimethylolpropane triesters from refined and used soybean cooking oils using an immobilized low-cost lipase (Eversa>® Transform 2.0) as heterogeneous catalyst. Biomass Bioenerg. 2021, 155, 106302. [Google Scholar] [CrossRef]
- García-Colomer, A. Diseño, Selección y Producción de Nuevos Biolubricantes. Ph.D. Thesis, Universidad Ramón Llul, Barcelona, Spain, 3 November 2011. [Google Scholar]
- Zhou, F.; Yang, K.; Li, D.; Shi, X. Acid number prediction model of lubricating oil based on mid-infrared spectroscopy. Lubricants 2022, 10, 205. [Google Scholar] [CrossRef]
- O’Lenick, A.J., Jr. Guerbet chemistry. J. Surfactants. Deterg. 2001, 4, 311–315. [Google Scholar] [CrossRef]
- Appiah, G.; Tulashie, S.K.; Akpari, E.E.A.; Rene, E.R.; Dodoo, D. Biolubricant production via esterification and transesterification processes: Current updates and perspectives. Int. J. Energy Res. 2022, 46, 3860–3890. [Google Scholar] [CrossRef]
- Anastas, P.; Zimmerman, J.B. Sustainability requires objectives at the molecular, product, process, and system levels. Environ. Sci. Technol. 2003, 37, 94–101. [Google Scholar] [CrossRef] [PubMed]
- Afifah, A.N.; Syahrullail, S.; Wan Azlee, N.I.; Sidik, N.A.C.; Yahya, W.J.; Rahim, E.A. Biolubricant production from palm stearin through enzymatic transesterification method. Biochem. Eng. J. 2019, 148, 178–184. [Google Scholar] [CrossRef]
- Aguieiras, E.C.G.; Cavalcanti, E.D.C.; da Silva, P.R.; Soares, V.F.; Fernandez-Lafuente, R.; Assunção, C.L.B.; da Silva, J.A.C.; Freire, D.M.G. Enzymatic synthesis of neopentyl glycol-bases biolubricants using biodiesel from soybean and castor bean as raw materials. Renew. Energ. 2020, 148, 689–696. [Google Scholar] [CrossRef]
- de Araujo-Silva, R.; Vieira, A.C.; de Campos Giordano, R.; Fernandez-Lafuente, R.; Tardioli, P.W. Enzymatic synthesis of fatty acid isoamyl monoesters from soybean oil deodorizer distillate: A renewable and ecofriendly base stock for lubricant industries. Molecules 2022, 27, 2692. [Google Scholar] [CrossRef] [PubMed]
- Barbosa, M.S.; Freire, C.C.C.; Brandão, L.M.S.; Pereira, E.B.; Mendes, A.A.; Pereira, M.M.; Lima, A.S.; Soares, C.M.F. Biolubricant production under zero-waste Moringa oleifera Lam biorefinery approach for boosting circular economy. Ind. Crops Prod. 2021, 167, 113542. [Google Scholar] [CrossRef]
- Cavalcanti, E.D.C.; Aguieiras, E.C.G.; da Silva, P.R.; Duarte, J.G.; Cipolattia, E.P.; Fernandez-Lafuente, R.; da Silva, J.A.C.; Freire, D.M.G. Improved production of biolubricants from soybean oil and different polyols via esterification reaction catalyzed by immobilized lipase from Candida rugosa. Fuel 2018, 215, 705–713. [Google Scholar] [CrossRef]
- Cerón, A.A.; Vilas-Bôas, R.N.; Biaggio, F.C.; de Castro, H.F. Synthesis of biolubricant by transesterification of palm kernel oil with simulated fusel oil: Batch and continuous processes. Biomass Bioenerg. 2018, 119, 166–172. [Google Scholar] [CrossRef]
- Da Silva, A.P.T.; Breddab, E.H.; de Castro, H.F.; da Rósa, P.C.M. Enzymatic catalysis: An environmentally friendly method to enhance the transesterification of microalgal oil with fusel oil for production of fatty acid esters with potential application as biolubricants. Fuel 2020, 273, 117786. [Google Scholar] [CrossRef]
- Fernandes, K.V.; Papadaki, A.; da Silva, J.A.C.; Fernandez-Lafuente, R.; Koutinas, A.A.; Freire, D.M.G. Enzymatic esterification of palm fatty-acid distillate for the production of polyol esters with biolubricant properties. Ind. Crops Prod. 2018, 116, 90–96. [Google Scholar] [CrossRef]
- Fernandes, K.V.; Cavalcanti, E.D.C.; Cipolatti, E.P.; Aguieiras, E.C.G.; Pinto, M.C.C.; Tavares, F.A.; da Silva, P.R.; Lafuente-Fernandez, R.; Arana-Peña, S.; Pinto, J.C.; et al. Enzymatic synthesis of biolubricants from by-product of soybean oil processing catalyzed by different biocatalysts of Candida rugosa lipase. Catal. Today 2021, 362, 122–129. [Google Scholar] [CrossRef]
- Guimarães, J.R.; Miranda, L.P.; Fernandez-Lafuente, R.; Tardioli, P.W. Immobilization of Eversa® transform via CLEA technology converts it in a suitable biocatalyst for biolubricant production using waste cooking oil. Molecules 2021, 26, 193. [Google Scholar] [CrossRef]
- Guedes Júnior, J.G.E.; Mattos, F.R.; Sabi, G.J.; Carvalho, W.C.A.; Luiz, J.H.H.; Cren, C.A.; Fernandez-Lafuente, R.; Mendes, A.A. Design of a sustainable process for enzymatic production of ethylene glycol diesters via hydroesterification of used soybean cooking oil. J. Environ. Chem. Eng. 2022, 10, 107062. [Google Scholar] [CrossRef]
- Kim, J.W.; Kim, B.H.; Kim, Y.; Lee, M.W.; Im, D.J.; Kim, I.H. Lipase-mediated synthesis of neopentyl glycol diester using a combination of reduced and standard pressure. J. Am. Oil Chem. Soc. 2021, 98, 1001–1007. [Google Scholar] [CrossRef]
- Ma, X.; Zhang, Y.; Song, Z.; Yu, K.; He, C.; Zhang, X. Enzyme-catalyzed synthesis and properties of polyol ester biolubricant produced from Rhodotorula glutinis lipid. Biochem. Eng. J. 2021, 173, 108101. [Google Scholar] [CrossRef]
- Papadaki, A.; Fernandes, K.V.; Chatzifragkou, A.; Aguieiras, E.C.G.; da Silva, J.A.C.; Fernandez-Lafuente, R.; Papanikolaou, S.; Koutinas, A.; Freire, D.M.G. Bioprocess development for biolubricant production using microbial oil derived via fermentation from confectionery industry wastes. Bioresour. Technol. 2018, 267, 311–318. [Google Scholar] [CrossRef]
- Sabi, G.J.; Gama, R.S.; Fernandez-Lafuente, R.; Cancino-Bernardi, J.; Mendes, A.A. Decyl esters production from soybean-based oils catalyzed by lipase immobilized on differently functionalized rice husk silica and their characterization as potential biolubricants. Enzym. Microb. Technol. 2022, 157, 110019. [Google Scholar] [CrossRef]
- Sarno, M.; Iuliano, M.; Cirillo, C. Optimized procedure for the preparation of an enzymatic nanocatalyst to produce a bio-lubricant from waste cooking oil. Chem. Eng. J. 2019, 377, 120273. [Google Scholar] [CrossRef]
- Unugul, T.; Kutluk, T.; Kutluk, B.G.; Kapucu, N. Environmentally friendly processes from coffee wastes to trimethylolpropane esters to be considered biolubricants. J. Air Waste Manag. Assoc. 2020, 70, 1198–1215. [Google Scholar] [CrossRef] [PubMed]
- Bôas, R.N.V.; de Lima, R.; Mendes, A.A.; Freitas, L.; Bento, H.B.S.; de Carvalho, A.K.F.; de Castro, H.F. Batch and continuous production of biolubricant from fusel oil and oleic acid: Lipase screening, reactor system development, and reaction optimization. Chem. Eng. Process. 2021, 168, 108568. [Google Scholar] [CrossRef]
- Wafti, N.S.A.; Yunus, R.; Lau, H.L.N.; Yaw, T.C.S.; Aziz, S.A. Immobilized lipase-catalyzed transesterification for synthesis of biolubricant from palm oil methyl ester and trimethylolpropane. Bioprocess Biosyst Eng. 2021, 44, 2429–2444. [Google Scholar] [CrossRef]
- Zhang, W.; Ji, H.; Song, Y.; Ma, S.; Xiong, W.; Chen, C.; Chen, B.; Zhang, X. Green preparation of branched biolubricant by chemically modifying waste cooking oil with lipase and ionic liquid. J. Clean. Prod. 2020, 274, 122918. [Google Scholar] [CrossRef]
- Gryglewicz, S. Enzyme catalysed synthesis of some adipic esters. J. Mol. Catal. B Enzym. 2001, 15, 9–13. [Google Scholar] [CrossRef]
- He, X.L.; Chen, B.Q.; Tan, T.W. Enzymatic synthesis of 2-ethylhexyl esters of fatty acids by immobilized lipase from Candida sp. 99–125. J. Mol. Catal. B Enzym. 2002, 18, 333–339. [Google Scholar] [CrossRef]
- Gryglewicz, S. Lipase catalysed synthesis of sebacic and phthalic esters. Enzym. Microb. Technol. 2003, 33, 952–957. [Google Scholar] [CrossRef]
- Tan, T.; Chen, B.Q.; Ye, H. Enzymatic synthesis of 2-ethylhexyl palmitate by lipase immobilized on fabric membranes in the batch reactor. Biochem. Eng. J. 2006, 29, 41–45. [Google Scholar] [CrossRef]
- Verma, M.; Chauhan, G.; Kanwar, S. Purification and characterization of a low molecular mass alkaliphilic lipase of Bacillus cereus MTCC 8372. Acta Microbiol. Immunol. Hung. 2008, 55, 327–342. [Google Scholar] [CrossRef] [PubMed]
- Richetti, A.; Leite, S.G.F.; Antunes, O.A.C.; Lerin, L.A.; Dallago, R.M.; Emmerich, D.; di Luccio, M.; Oliveira, J.V.; Treichel, H.; de Oliveira, D. Assessment of process variables on 2-ethylhexyl palmitate production using Novozym 435 as catalyst in a solvent-free system. Bioprocess Biosyst. Eng. 2010, 33, 331–337. [Google Scholar] [CrossRef] [PubMed]
- Richetti, A.; Leite, S.G.F.; Antunes, O.A.C.; de Souza, A.L.F.; Lerin, L.A.; Dallago, R.M.; Paroul, N.; di Luccio, M.; Oliveira, J.V.; Treichel, H.; et al. Optimization of 2-ethylhexyl palmitate production using lipozyme RM IM as catalyst in a solvent-free system. Appl. Biochem. Biotechnol. 2010, 260, 2498–2508. [Google Scholar] [CrossRef] [PubMed]
- Åkerman, C.O.; Hagström, A.E.V.; Mollaahmad, M.A.; Karlsson, S.; Hatti-Kaul, R. Biolubricant synthesis using immobilised lipase: Process optimisation of trimethylolpropane oleate production. Process Biochem. 2011, 46, 2225–2231. [Google Scholar] [CrossRef]
- Brenneis, R.; Baeck, B. Esterification of fatty acids using Candida antarctica lipase A in water-abundant systems. Biotechnol Lett. 2012, 34, 1459–1463, Epub 18 April 2012PMID: 22526422. [Google Scholar] [CrossRef]
- Tao, Y.; Chen, B.; Liu, L.; Tan, T. Synthesis of trimethylolpropane esters with immobilized lipase from Candida sp. 99–125. J. Mol. Catal. B Enzym. 2012, 74, 151–155. [Google Scholar] [CrossRef]
- Tao, Y.; Cui, C.; Shen, H.; Liu, L.; Chen, B.; Tan, T. Enhancing trimethylolpropane esters synthesis through lipase immobilized on surface hydrophobic modified support and appropriate substrate feeding methods. Enzym. Microb. Technol. 2014, 58–59, 60–67. [Google Scholar] [CrossRef]
- Trivedi, J.; Aila, M.; Sharma, C.D.; Gupta, P.; Kaul, S. Clean synthesis of biolubricant range esters using novel liquid lipase enzyme in solvent free medium. SpringerPlus 2015, 4, 165. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Zhang, Y.; Zhang, Y.; Zheng, L.; Huang, H.; Wang, Z. Synthesis of 2-ethylhexyl palmitate catalyzed by enzyme under microwave. Appl. Biochem. Biotechnol. 2018, 185, 347–356. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.; Kim, T.; Choi, N.; Kim, B.H.; Oh, S.W.; Kim, I.H. Synthesis of diethylhexyl adipate by Candida antarctica lipase-catalyzed esterification. Process Biochem. 2019, 78, 58–62. [Google Scholar] [CrossRef]
- Lee, A.; Kim, H.; Choi, N.; Yoon, S.W.; Kim, Y.; Kim, H.R.; Kim, I.H. Preparation of diisononyl adipate in a solvent-free system via an immobilized lipase-catalyzed esterification. Enzym. Microb. Technol. 2019, 131, 109340. [Google Scholar] [CrossRef] [PubMed]
- Zhu, W.; Liang, F.; Hou, H.; Chen, Y.; Liu, X.; Zhu, X. Enzymatic synthesis of a polyol ester from levulinic acid and trimethylolpropane and its tribological behavior as potential biolubricant basestock. Polymers 2020, 12, 2256. [Google Scholar] [CrossRef]
- Murcia, M.D.; Serrano-Arnaldos, M.; Ortega-Requena, S.; Máximo, F.; Bastida, J.; Montiel, M.C. Optimization of a sustainable biocatalytic process for the synthesis of ethylhexyl fatty acids esters. Catal. Today 2020, 346, 98–105. [Google Scholar] [CrossRef]
- Serrano-Arnaldos, M.; Ortega-Requena, S.; Sánchez, J.A.; Hernández, A.; Montiel, M.C.; Máximo, F.; Bastida, J. Sustainable synthesis of branched-chain diesters. J. Biotechnol. 2021, 325, 91–99. [Google Scholar] [CrossRef]
- He, C.; Guo, Z.; Deng, Z.; Li, S.; Zhang, X. Enzyme-catalyzed preparation of polyol ester lubricants and performance research-based on pelargonic acid, oleic acid and trimethylolpropane. Biochem. Eng. J. 2022, 187, 108641. [Google Scholar] [CrossRef]
- Máximo, F.; Asensi, M.; Serrano-Arnaldos, M.; Ortega-Requena, S.; Montiel, C.; Bastida, J. Biocatalytic intensified process for the synthesis of neopentyl glycol dicaprylate/dicaprate. Sustain. Chem. Phar. 2022, 30, 100882. [Google Scholar] [CrossRef]
- Montiel, C.; Gimeno-Martos, S.; Ortega-Requena, S.; Serrano-Arnaldos, M.; Máximo, F.; Bastida, J. Green production of a high-value branched-chain diester: Optimization based on operating conditions and economic and sustainability criteria. Appl. Sci. 2023, 13, 6177. [Google Scholar] [CrossRef]
- Chen, H.C.; Kuo, C.H.; Chen, H.H.; Liu, Y.C.; Shieh, C.J. Optimization of enzymatic synthesis of cetyl 2-ethylhexanoate by Novozym® 435. J. Am. Oil Chem. Soc. 2011, 88, 1917–1923. [Google Scholar] [CrossRef]
- Ghaziaskar, H.S.; Daneshfar, A.; Calvo, L. Continuous esterification or dehydration in supercritical carbon dioxide. Green Chem. 2006, 8, 576–581. [Google Scholar] [CrossRef]
- Montiel, M.C.; Asensi, M.; Gimeno-Martos, S.; Máximo, F.; Bastida, J. Sustainable biocatalytic procedure for obtaining new branched acid esters. Materials 2021, 14, 6847. [Google Scholar] [CrossRef] [PubMed]
- Roschangar, F.; Sheldon, R.A.; Senanayake, C.H. Overcoming barriers to green chemistry in the pharmaceutical industry—The Green Aspiration Level TM concept. Green Chem. 2015, 17, 752. [Google Scholar] [CrossRef]
- Sheldon, R.A. The E factor 25 years on: The rise of green chemistry and sustainability. Green Chem. 2017, 19, 18. [Google Scholar] [CrossRef]
- Jimenez-Gonzalez, C.; Lund, C. Green metrics in pharmaceutical development. Curr. Opin. Green Sustain. Chem. 2022, 33, 100564. [Google Scholar] [CrossRef]
- de María, P.B. Biocatalysis, sustainability, and industrial applications: Show me the metrics. Curr. Opin. Green Sustain. Chem. 2021, 31, 100514. [Google Scholar] [CrossRef]
- ASTM D974-02e1; Standard Test Method for Acid and Base Number by Color-Indicator Titration. ASTM International: West Conshohocken, PA, USA, 2002.
- ASTM D2270; Standard Practice for Calculating Viscosity Index from Kinematic Viscosity at 40 °C and 100 °C. ASTM International: West Conshohocken, PA, USA, 2016.
- Wang, X.; Chen, Y.; Ma, Y.; Jin, Q.; Wang, X. Lipozyme 435-catalyzed synthesis of eicosapentaenoyl ethanolamidein a solvent-free system. J. Mol. Catal. B Enzym. 2015, 122, 233–239. [Google Scholar] [CrossRef]
- Yu, D.; Zhang, X.; Wang, T.; Geng, H.; Wang, L.; Jiang, L.; Elfalleh, W. Immobilized Candida antarctica lipase B (CALB) on functionalized MCM-41: Stability and catalysis of transesterification of soybean oil and phytosterol. Food Biosci. 2021, 40, 100906. [Google Scholar] [CrossRef]
- Sheldon, R.A.; Woodley, J.M. Role of biocatalysis in sustainable chemistry. Chem. Rev. 2018, 118, 801–838. [Google Scholar] [CrossRef]
- Hessel, V.; Escribà-Gelonch, M.; Bricout, J.; Tran, N.N.; Anastasopoulou, A.; Ferlin, F.; Valentini, F.; Lanari, D.; Vaccaro, L. Quantitative sustainability assessment of flow chemistry−from simple metrics to holistic assessment. ACS Sustain. Chem. Eng. 2021, 9, 9508–9540. [Google Scholar] [CrossRef]
- Lima-Ramos, J.; Tufvesson, P.; Woodley, J.M. Application of environmental and economic metrics to guide the development of biocatalytic processes. Green Process Synth. 2014, 3, 195–213. [Google Scholar] [CrossRef]
- Sheldon, R.A. Metrics of green chemistry and sustainability: Past, present, and future. ACS Sustain. Chem. Eng. 2018, 6, 32–48. [Google Scholar] [CrossRef]
- Sheldon, R.A. The E factor at 30: A passion for pollution prevention. Green Chem. 2023, 25, 1704–1728. [Google Scholar] [CrossRef]
- Badgujar, K.C.; Bhanage, B.M. The green metric evaluation and synthesis of diesel-blend compounds from biomass derived levulinic acid in supercritical carbon dioxide. Biomass Bioenerg. 2016, 84, 12–21. [Google Scholar] [CrossRef]
- Ni, Y.; Holtmann, D.; Hollmann, F. How green is biocatalysis? To calculate is to know. ChemCatChem 2014, 6, 930–943. [Google Scholar] [CrossRef]
- Martínez, A.; Mijangos, G.E.; Romero-Ibarra, I.C.; Hernández-Altamirano, R.; Mena-Cervantes, V.Y.; Gutiérrez, S. A novel green one-pot synthesis of biodiesel from Ricinus communis seeds by basic heterogeneous catalysis. J. Clean. Prod. 2018, 196, 340–349. [Google Scholar] [CrossRef]
Cost | Cost (EUR /kg Ester) | ||
---|---|---|---|
80 °C | 90 °C | ||
Substrates | |||
2-methylhexanoic acid 1 | 3 EUR /kg | 0.96 | |
2-octyl-1-dodecanol 2 | 15 EUR /kg | 11.03 | |
Biocatalyst | |||
Lipozyme® 435 3 | 1600 EUR /kg | 42.22 | |
Energy | |||
Thermostatic bath | |||
Initial | 6.8 10−3 EUR /min | 5.02 | 5.02 |
Maintenance | 1.3 10−4 EUR /min | 10.13 | 12.35 |
Overhead stirrer | 10−4 EUR /min | 1.34 | 1.02 |
Total direct cost | 70.7 | 72.6 |
Cost | Cost (EUR /kg Ester) | |
---|---|---|
Substrates | ||
2-methylhexanoic acid 1 | 3 EUR /kg | 0.97 |
2-octyl-1-dodecanol 2 | 15 EUR /kg | 11.16 |
Biocatalyst | ||
Lipozyme® 435 3 | 1600 EUR /kg | 8.54 |
Energy | ||
Thermostatic bath | ||
Initial | 6.8 10−3 EUR /min | 5.08 |
Maintenance | 1.3 10−4 EUR /min | 10.77 |
Overhead stirrer | 10−4 EUR /min | 1.42 |
Total direct cost | 37.94 |
Green Metric | Equation | Value |
---|---|---|
Atom economy (AE) | 95.63% | |
E factor (EF) | 0.0375 | |
Complete E factor (cEF) | 0.083 | |
Carbon mass efficiency (CME) | 94.75 | |
Process mass intensity | 1.082 |
Temperature (°C) | Density (g cm−3) | Dynamic Viscosity (mPa s) | Kinematic Viscosity (mm2 s−1) |
---|---|---|---|
40 | 0.83991 | 8.17 | 9.728 |
100 | 0.80249 | 2.484 | 3.095 |
Viscosity index = 204.43 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Montiel, M.C.; Gómez, M.; Murcia, M.D.; Ortega-Requena, S.; Máximo, F.; Bastida, J. Sustainable Biocatalytic Synthesis of a Second-Generation Biolubricant. Sustainability 2024, 16, 1615. https://doi.org/10.3390/su16041615
Montiel MC, Gómez M, Murcia MD, Ortega-Requena S, Máximo F, Bastida J. Sustainable Biocatalytic Synthesis of a Second-Generation Biolubricant. Sustainability. 2024; 16(4):1615. https://doi.org/10.3390/su16041615
Chicago/Turabian StyleMontiel, María Claudia, María Gómez, María Dolores Murcia, Salvadora Ortega-Requena, Fuensanta Máximo, and Josefa Bastida. 2024. "Sustainable Biocatalytic Synthesis of a Second-Generation Biolubricant" Sustainability 16, no. 4: 1615. https://doi.org/10.3390/su16041615
APA StyleMontiel, M. C., Gómez, M., Murcia, M. D., Ortega-Requena, S., Máximo, F., & Bastida, J. (2024). Sustainable Biocatalytic Synthesis of a Second-Generation Biolubricant. Sustainability, 16(4), 1615. https://doi.org/10.3390/su16041615