Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (966)

Search Parameters:
Keywords = lower carbon fuels

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 962 KB  
Article
Renewable Energy Sources and Improved Energy Management as a Path to Energy Transformation: A Case Study of a Vodka Distillery in Poland
by Małgorzata Anita Bryszewska, Robert Staszków, Łukasz Ściubak, Jarosław Domański and Piotr Dziugan
Sustainability 2025, 17(17), 7652; https://doi.org/10.3390/su17177652 (registering DOI) - 25 Aug 2025
Abstract
The increasing awareness of the need for sustainable solutions to secure future energy supplies has spurred the search for innovative approaches. Energo-Efekt Sp. z o.o. has prepared a project for the green transformation of the energy system at a producer of spirits through [...] Read more.
The increasing awareness of the need for sustainable solutions to secure future energy supplies has spurred the search for innovative approaches. Energo-Efekt Sp. z o.o. has prepared a project for the green transformation of the energy system at a producer of spirits through the rectification of raw alcohol. An installation was conceptualised to develop the system to convert energy from biomass fuels into electricity and heat. The innovation of the installation is the use of an expander—a Heliex system which is the twin-screw turbine generator converting energy in the form of wet steam into electrical power integrated with pressure-reducing valve. This system captures all or part of the available steam flow and reduces the steam pressure, not only delivering steam at the same, lower pressure but also generating rotary energy that can be used to produce electricity with the power output range of 160 to 600 kWe. Currently, the company utilises natural gas as a fuel source and acquires electricity from the external grid. Implementing the system could reduce the carbon footprint associated with the production of vodka at the plant by 97%, to 102 t CO2 annually. This reduction would account for approximately 21% of the total carbon footprint of the entire alcohol production process. The system could also be applied to other low-power systems that produce < 250 kW, making it a viable option for use in distributed energy networks, and can be used as a model solution for other distillery plants. The transformation project dedicated to Polmos Żyrardów involves a comprehensive change in both the energy source and its management. The fossil fuels used until now are being replaced with a renewable energy source in the form of biomass. The steam and electricity cogeneration system meets the rectification process’s energy demand and can supply the central heating node. Heat recovery exchangers recuperate heat from the boiler room exhaust gases and the rectification cooling process. Potentially, all of these changes lead to the company’s energy self-sufficiency and reduce its overall environmental impact with almost zero CO2 emissions. Full article
Show Figures

Figure 1

21 pages, 1562 KB  
Article
Synergistic Valorization of Refuse-Derived Fuel and Animal Fat Waste Through Dry and Hydrothermal Co-Carbonization
by Andrei Longo, Paulo Brito, Margarida Gonçalves and Catarina Nobre
Appl. Sci. 2025, 15(17), 9315; https://doi.org/10.3390/app15179315 - 25 Aug 2025
Abstract
The demand for clean energy to improve waste valorization and enhance resource utilization efficiency has been increasingly recognized in the last few years. In this context, the co-carbonization of different waste streams, aiming at solid fuel production, appears as a potential strategy to [...] Read more.
The demand for clean energy to improve waste valorization and enhance resource utilization efficiency has been increasingly recognized in the last few years. In this context, the co-carbonization of different waste streams, aiming at solid fuel production, appears as a potential strategy to address the challenges of the energy transition and divert waste from landfills. In this work, refuse-derived fuel (RDF) samples were subjected to the co-carbonization process with low-quality animal fat waste in different proportions to assess the synergistic effect of the mixture on producing chars with enhanced fuel properties. Dry (DC) and hydrothermal carbonization (HTC) tests were conducted at 425 °C and 300 °C, respectively, with a residence time of 30 min. The RDF sample and produced chars with different animal fat incorporation were analyzed for their physical, chemical, and fuel properties. The results demonstrated that increasing the fat proportion in the samples leads to an increase in mass yield and apparent density of the produced chars. Furthermore, char samples with higher fat addition presented a proportional increase in high heating value (HHV). The highest values for the HHV corresponded to the char samples produced with 30% fat incorporation for both carbonization techniques (27.9 MJ/kg and 32.9 MJ/kg for dry and hydrothermal carbonization, respectively). Fat addition also reduced ash content, improved hydrophobicity in hydrochars, and lowered ignition temperature, although additional washing was necessary to reduce chlorine to acceptable levels. Furthermore, fat incorporation reduced concentrations of elements linked to slagging and fouling. Overall, the results demonstrate that incorporating 30% fat into RDF during DC or HTC is the most effective condition for producing chars with improved physical, chemical, and fuel properties, enhancing their potential as alternative solid fuels. Full article
(This article belongs to the Special Issue Advances in Bioenergy from Biomass and Waste)
Show Figures

Figure 1

22 pages, 5387 KB  
Article
Cu@Phosphorene as a Promising Catalyst for CO2 to Formic Acid Conversion: A Mechanistic DFT Approach
by Zonia Bibi, Muhammad Ajmal, Shahaab Jilani, Aqsa Kamran, Fatima Yaseen, Muhammad Abid Zia, Ahmed Lakhani and Muhammad Ali Hashmi
Reactions 2025, 6(3), 45; https://doi.org/10.3390/reactions6030045 (registering DOI) - 23 Aug 2025
Viewed by 40
Abstract
Carbon dioxide is naturally present in the Earth’s atmosphere and plays a role in regulating and balancing the planet’s temperature. However, due to various human activities, the amount of carbon dioxide is increasing beyond safe limits, disrupting the Earth’s natural temperature regulation system. [...] Read more.
Carbon dioxide is naturally present in the Earth’s atmosphere and plays a role in regulating and balancing the planet’s temperature. However, due to various human activities, the amount of carbon dioxide is increasing beyond safe limits, disrupting the Earth’s natural temperature regulation system. Today, CO2 is the most prevalent greenhouse gas; as its concentration rises, significant climate change occurs. Therefore, there is a need to utilize anthropogenically released carbon dioxide in valuable fuels, such as formic acid (HCOOH). Single-atom catalysts are widely used, where a single metal atom is anchored on a surface to catalyze chemical reactions. In this study, we investigated the potential of Cu@Phosphorene as a single-atom catalyst (SAC) for CO2 reduction using quantum chemical calculations. All computations for Cu@Phosphorene were performed using density functional theory (DFT). Mechanistic studies were conducted for both bimolecular and termolecular pathways. The bimolecular mechanism involves one CO2 and one H2 molecule adsorbing on the surface, while the termolecular mechanism involves two CO2 molecules adsorbing first, followed by H2. Results indicate that the termolecular mechanism is preferred for formic acid formation due to its lower activation energy. Further analysis included charge transfer assessment via NBO, and interactions between the substrate, phosphorene, and the Cu atom were confirmed using quantum theory of atoms in molecules (QTAIM) and non-covalent interactions (NCI) analysis. Ab initio molecular dynamics (AIMD) calculations examined the temperature stability of the catalytic complex. Overall, Cu@Phosphorene appears to be an effective catalyst for converting CO2 to formic acid and remains stable at higher temperatures, supporting efforts to mitigate climate change. Full article
Show Figures

Figure 1

23 pages, 3380 KB  
Article
Environmental Performance of the Sewage Sludge Gasification Process Considering the Recovered CO2
by Daichi Terasawa, Mayu Hamazaki, Kanato Kumagai and Kiyoshi Dowaki
Energies 2025, 18(17), 4460; https://doi.org/10.3390/en18174460 - 22 Aug 2025
Viewed by 354
Abstract
An advanced gasification module (AGM) for green hydrogen production involves a small-scale biomass gasification process owing to the low energy density of biomass. Therefore, significant heat loss and the endothermic nature of gasification system require additional fossil fuel heat, increasing CO2 emissions. [...] Read more.
An advanced gasification module (AGM) for green hydrogen production involves a small-scale biomass gasification process owing to the low energy density of biomass. Therefore, significant heat loss and the endothermic nature of gasification system require additional fossil fuel heat, increasing CO2 emissions. This study focuses on bioenergy conversion with carbon capture and utilization (BECCU), where carbon-neutral CO2 from biomass gasification is captured and reused as a gasifying agent to reduce the greenhouse gas intensity of green hydrogen. BECCU is expected to achieve negative emissions and enhance gasification efficiency by promoting conversion of char and tar through CO2 gasification. To evaluate the effectiveness of BECCU in the AGM, we conducted a sensitivity analysis of the reformer temperature and S/C ratio using process simulation combined with life cycle assessment. In both sensitivity analyses, the GWP for CO2 capture was lower compared with conventional conditions, considering recovered CO2 from purification and the additional steam generated through heat recovery. This suggests improved hydrogen yields from enhanced char and tar conversion. Consequently, the GWP was reduced by more than 50%, demonstrating BECCU’s effectiveness in the AGM. This represents a step toward operating biomass gasification systems with lower environmental impact and contributing to sustainable energy production. Full article
Show Figures

Figure 1

22 pages, 1104 KB  
Article
Bio-Waste to Bioenergy: Critical Assessment of Sustainable Energy Supply Chain in Egypt
by Noha Said, Raid Alrowais, Mahmoud M. Abdel-Daiem and Noha A. Mostafa
Resources 2025, 14(8), 131; https://doi.org/10.3390/resources14080131 - 21 Aug 2025
Viewed by 455
Abstract
This study analyses the potential electricity output from different bio wastes using various energy conversion technologies to enhance the share of renewable energy. Furthermore, it evaluates the carbon emissions mitigated by replacing fossil fuels with bioenergy, contributing to efforts to reduce environmental pollution. [...] Read more.
This study analyses the potential electricity output from different bio wastes using various energy conversion technologies to enhance the share of renewable energy. Furthermore, it evaluates the carbon emissions mitigated by replacing fossil fuels with bioenergy, contributing to efforts to reduce environmental pollution. The findings reveal that Egypt’s annual biomass waste (BW) could total approximately 80 million tons, with the most significant contributions from agricultural crop residues and municipal solid waste (MSW). MSW incineration and crop residue combustion were found to have the highest power generation compared to other techniques. Additionally, the anaerobic digestion of various biomass types offers the benefits of lower greenhouse gas emissions while still generating significant energy. The electricity generation from different BW sources is approximately 49.14 TWh/year. This energy can be predominantly generated through direct combustion of agricultural crop residues (66%), incineration of MSW (29%), anaerobic digestion of sewage sludge (3%), and animal waste (2%). Furthermore, the reduction in carbon emissions from substituting fossil fuels with bioenergy is estimated at up to 30.47 million tons of CO2 annually, supporting efforts to mitigate climate change and combat global warming. Full article
Show Figures

Figure 1

31 pages, 3294 KB  
Article
Energy and Techno-Economic Assessment of Cooling Methods on Blue Hydrogen Production Processes
by William George Davies, Shervan Babamohammadi, Ilies Galloro, Mikhail Gorbounov, Francesco Coletti, Monomita Nandy and Salman Masoudi Soltani
Processes 2025, 13(8), 2638; https://doi.org/10.3390/pr13082638 - 20 Aug 2025
Viewed by 310
Abstract
Blue hydrogen is a promising low-carbon alternative to conventional fossil fuels. This technology has been garnering increasing attention with many technological advances in recent years, with a particular focus on the deployed materials and process configurations aimed at minimising the cost and CO [...] Read more.
Blue hydrogen is a promising low-carbon alternative to conventional fossil fuels. This technology has been garnering increasing attention with many technological advances in recent years, with a particular focus on the deployed materials and process configurations aimed at minimising the cost and CO2 emissions intensity of the process as well as maximising efficiency. However, less attention is given to the practical aspects of large-scale deployment, with the cooling requirements often being overlooked, especially across multiple locations. In particular, the literature tends to focus on CO2 emissions intensity of blue hydrogen production processes, with other environmental impacts such as water and electrical consumption mostly considered an afterthought. Notably, there is a gap to understand the impact of cooling methods on such environmental metrics, especially with technologies at a lower technology readiness level. Herein, two cooling methods (namely, air-cooling versus water-cooling) have been assessed and cross-compared in terms of their energy impact alongside techno-economics, considering deployment across two specific locations (United Kingdom and Saudi Arabia). A sorption-enhanced steam-methane reforming (SE-SMR) coupled with chemical-looping combustion (CLC) was used as the base process. Deployment of this process in the UK yielded a levelised cost of hydrogen (LCOH) of GBP 2.94/kg H2 with no significant difference between the prices when using air-cooling and water-cooling, despite the air-cooling approach having a higher electricity consumption. In Saudi Arabia, this process achieved a LCOH of GBP 0.70 and GBP 0.72 /kg H2 when using air- and water-cooling, respectively, highlighting that in particularly arid regions, air-cooling is a viable approach despite its increased electrical consumption. Furthermore, based on the economic and process performance of the SE-SMR-CLC process, the policy mechanisms and financial incentives that can be implemented have been discussed to further highlight what is required from key stakeholders to ensure effective deployment of blue hydrogen production. Full article
(This article belongs to the Special Issue Sustainable Hydrogen Production Processes)
Show Figures

Figure 1

33 pages, 2775 KB  
Article
Sustainable Solar Panel Efficiency Optimization with Chaos-Based XAI: An Autonomous Air Conditioning Cabinet-Based Approach
by Ebru Akpinar, Fatma Papatya, Mehmet Das, Suna Yildirim, Bilal Alatas, Murat Catalkaya and Orhan E. Akay
Sustainability 2025, 17(16), 7514; https://doi.org/10.3390/su17167514 - 20 Aug 2025
Viewed by 335
Abstract
This study introduces a climate chamber developed to evaluate the performance of photovoltaic (PV) and solar air heater (SAH) panels based on 12 months of climate data specific to the province of Antalya. In the test environment, the temperature can be controlled between [...] Read more.
This study introduces a climate chamber developed to evaluate the performance of photovoltaic (PV) and solar air heater (SAH) panels based on 12 months of climate data specific to the province of Antalya. In the test environment, the temperature can be controlled between −5 and +50 °C, relative humidity between 10% and 90%, irradiance between 0 and 1500 W/m2, and wind speed between 0 and 25 m/s. Experimental data revealed that PV panels achieved the lowest electricity production of 19.21 W in December and the highest of 73.47 W in June, while SAH panels reached an outlet temperature of 31.12 °C in July. As solar radiation increased, panel efficiency rose proportionally; however, an increase in relative humidity negatively impacted efficiency. The panel surface temperature increased from 16.86 °C in January to 39.33 °C in July. The original aspect of this study is the proposal and adaptation of chaos-integrated optimization-based explainable artificial intelligence (XAI) methods instead of classical regression-based models. These models have enabled the development of transparent, understandable, and interpretable rules based on environmental parameters, such as temperature, relative humidity, radiation, and airspeed, that affect panel performance. The methods used in this study make significant contributions to sustainable energy. In particular, the climate control test chamber developed to increase and optimize the efficiency of solar panels enables the investigation of the effects of environmental parameters on panel performance under realistic conditions, thereby facilitating the more effective use of renewable energy sources. Additionally, the use of chaos-integrated optimization-based explainable artificial intelligence (XAI) methods provides reliable, transparent, and understandable decision support models for the design and management of energy systems. This method promotes the adoption of renewable energy technologies, reduces dependence on fossil fuels, lowers carbon emissions, and supports long-term environmental sustainability. Full article
(This article belongs to the Section Energy Sustainability)
Show Figures

Figure 1

23 pages, 1971 KB  
Article
Characterization of Perfluoro Sulfonic Acid Membranes for Potential Electrolytic Hydrogen Production and Fuel Cell Applications for Local and Global Green Hydrogen Economy
by Lihle Mdleleni, Sithenkosi Mlala, Tobeka Naki, Edson L. Meyer, Mojeed A. Agoro and Nicholas Rono
Fuels 2025, 6(3), 63; https://doi.org/10.3390/fuels6030063 - 20 Aug 2025
Viewed by 337
Abstract
Fuel cells have become a fundamental technology in the development of clean energy systems, playing a vital role in the global shift toward a low-carbon future. With the growing need for sustainable hydrogen production, perfluoro sulfonic acid (PFSA) ionomer membranes play a critical [...] Read more.
Fuel cells have become a fundamental technology in the development of clean energy systems, playing a vital role in the global shift toward a low-carbon future. With the growing need for sustainable hydrogen production, perfluoro sulfonic acid (PFSA) ionomer membranes play a critical role in optimizing green hydrogen technologies and fuel cells. This study aims to investigate the effects of different environmental and solvent treatments on the chemical and physical properties of Nafion N−115 membranes to evaluate their suitability for both hydrogen production in proton exchange membrane (PEM) electrolyzers and hydrogen utilization in fuel cells, supporting integrated applications in the local and global green hydrogen economy. To achieve this, Nafion N−115 membranes were partially dissolved in various solvent mixtures, including ethanol/isopropanol (EI), isopropanol/water (IW), dimethylformamide/N-methyl-2-pyrrolidone (DN), and ethanol/methanol/isopropanol (EMI), evaluated under water immersion and thermal stress, and characterized for chemical stability, mechanical strength, water uptake, and proton conductivity using advanced electrochemical and spectroscopic techniques. The results demonstrated that the EMI-treated membrane showed the highest proton conductivity and maintained its structural integrity, making it the most promising for hydrogen electrolysis applications. Conversely, the DN-treated membrane exhibited reduced stability and lower conductivity due to solvent-induced degradation. This study highlights the potential of EMI as an optimal solvent mixture for enhancing PFSA membranes performance in green hydrogen production, contributing to the advancement of sustainable energy solutions. Full article
Show Figures

Figure 1

19 pages, 1563 KB  
Article
Effects of Biochar Application on Nitrogen Fixation and Water Use Efficiency of Understorey Acacia Species as well as Soil Carbon and Nitrogen Pools in a Subtropical Native Forest
by Ashrafun Nessa, Shahla Hosseini Bai, Zakaria Karim, Jiaping Yang and Zhihong Xu
Forests 2025, 16(8), 1350; https://doi.org/10.3390/f16081350 - 19 Aug 2025
Viewed by 242
Abstract
This study aimed to examine how biochar and Acacia species would affect biological nitrogen fixation (BNF) and water use efficiency (WUE) of understorey Acacia species as well as soil carbon (C) and nitrogen (N) pools 15 months after biochar application in the suburban [...] Read more.
This study aimed to examine how biochar and Acacia species would affect biological nitrogen fixation (BNF) and water use efficiency (WUE) of understorey Acacia species as well as soil carbon (C) and nitrogen (N) pools 15 months after biochar application in the suburban native forest of subtropical Australia. This experiment was established with wood biochar applied at 0, 5, and 10 t ha−1 at 20 months after prescribed burning. We collected foliar and soil samples 15 months after biochar application and used N isotope composition (δ15N) and carbon isotope composition (δ13C) to assess the BNF and WUE of two understorey Acacia species (Acacia leiocalyx and Acacia disparrima). We also characterised soil C and N pools and their δ15N and δ13C. Biochar did not influence Acacia plant BNF and WUE 15 months after biochar application. However, the BNF of A. leiocalyx was significantly greater compared with that of A. disparrima. The soil under A. leiocalyx had greater NH4+-N (i.e., 10–20 cm) but lower δ15N than A. disparrima. This study represents one of the few attempts to apply the 15N natural abundance (δ15N) techniques to quantify the soil–plant–microbe interactions for N cycling in a native forest ecosystem. Understorey A. leiocalyx was more effective in improving N recovery post-fire via BNF. Soil under A. leiocalyx had greater N availability with lower δ15N, influencing plant available N sources and δ15N. Thus, A. leiocalyx would be able to fix more N2 from the air compared with that of A. disparrima in the suburban native forest ecosystem subject to periodical fuel reduction prescribed burning. Full article
(This article belongs to the Section Forest Soil)
Show Figures

Figure 1

22 pages, 1474 KB  
Review
A Review Focused on 3D Hybrid Composites from Glass and Natural Fibers Used for Acoustic and Thermal Insulation
by Shabnam Nazari, Tatiana Alexiou Ivanova, Rajesh Kumar Mishra and Miroslav Muller
J. Compos. Sci. 2025, 9(8), 448; https://doi.org/10.3390/jcs9080448 - 19 Aug 2025
Viewed by 269
Abstract
This review is focused on glass fibers and natural fibers, exploring their applications in vehicles and buildings and emphasizing their significance in promoting sustainability and enhancing performance across various industries. Glass fibers, or fiberglass, are lightweight, have high-strength (3000–4500 MPa) and a Young’s [...] Read more.
This review is focused on glass fibers and natural fibers, exploring their applications in vehicles and buildings and emphasizing their significance in promoting sustainability and enhancing performance across various industries. Glass fibers, or fiberglass, are lightweight, have high-strength (3000–4500 MPa) and a Young’s modulus range of 70–85 GPa, and are widely used in automotive, aerospace, construction, and marine applications due to their excellent mechanical properties, thermal conductivity of ~0.045 W/m·K, and resistance to fire and corrosion. On the other hand, natural fibers, derived from plants and animals, are increasingly recognized for their environmental benefits and potential in sustainable construction, offering advantages such as biodegradability, lower carbon footprints, and reduced energy consumption, with a sound absorption coefficient (SAC) range of 0.7–0.8 at frequencies above 2000 Hz and thermal conductivity range of 0.07–0.09 W/m·K. Notably, the integration of these materials in construction and automotive sectors reflects a growing trend towards sustainable practices, driven by the need to mitigate carbon emissions associated with traditional building materials and enhance fuel efficiency, as seen in hybrid composites achieving 44.9 dB acoustic insulation at 10,000 Hz and a thermal conductivity range of 0.05–0.06 W/m·K in applications such as the BMW i3 door panels. Natural fibers contribute to reducing reliance on fossil fuels, supporting a circular economy through the recycling of agricultural waste, while glass fibers are instrumental in creating lightweight composites for improved vehicle performance and structural integrity. However, both materials face distinct challenges. Glass fibers, while offering superior strength, are vulnerable to chemical degradation and can pose recycling difficulties due to the complex processes involved. On the other hand, natural fibers may experience moisture absorption, affecting their durability and mechanical properties, necessitating innovations to enhance their application in demanding environments. The ongoing research into optimizing the performance of both materials highlights their relevance in future sustainable engineering practices. In summary, this review underscores the growing importance of glass and natural fibers in addressing modern environmental challenges while also improving product performance. As industries increasingly prioritize sustainability, these materials are poised to play crucial roles in shaping the future of construction and transportation, driving innovations that align with ecological goals and consumer expectations. Full article
(This article belongs to the Special Issue Recent Progress in Hybrid Composites)
Show Figures

Figure 1

20 pages, 1238 KB  
Review
Stefan Flow in Char Combustion: A Critical Review of Mass Transfer and Combustion Differences Between Air-Fuel and Oxy-Fuel Conditions
by Wenfei Bao, Zongwei Gan, Yuzhong Li and Yan Ma
Energies 2025, 18(16), 4347; https://doi.org/10.3390/en18164347 - 15 Aug 2025
Viewed by 342
Abstract
Fuel combustion is a crucial process in energy utilization. As a key bulk transport mechanism, Stefan flow significantly affects heat and mass transfer during char combustion. However, its physical nature and engineering implications have long been underestimated, and no systematic review has been [...] Read more.
Fuel combustion is a crucial process in energy utilization. As a key bulk transport mechanism, Stefan flow significantly affects heat and mass transfer during char combustion. However, its physical nature and engineering implications have long been underestimated, and no systematic review has been conducted. This paper presents a comprehensive review of Stefan flow in char combustion, with a focus on its impact on mass transfer and combustion behavior under both air-fuel and oxy-fuel conditions. It also highlights the critical role of Stefan flow in enhancing energy conversion efficiency and optimizing carbon capture processes. The analysis reveals that Stefan flow has been widely neglected in traditional combustion models, resulting in significant errors in calculated mass transfer coefficients (up to 21% in air-fuel combustion and as high as 74% in oxy-fuel combustion). This long-overlooked deviation severely compromises the accuracy of combustion efficiency predictions and model reliability. In oxy-fuel combustion, the gasification reaction (C + CO2 = 2CO) induces a much stronger outward Stefan flow, reducing CO2 transport by up to 74%, weakening local CO2 enrichment, and substantially increasing the energy cost of carbon capture. In contrast, the oxidation reaction (2C + O2 = 2CO) results in only an 18% reduction in O2 transport. Stefan flow hinders the inward mass transfer of O2 and CO2 toward the char surface and increases heat loss during combustion, resulting in reduced reaction rates and lower particle temperatures. These effects contribute to incomplete fuel conversion and diminished thermal efficiency. Simulation studies that neglect Stefan flow produce significant errors when predicting combustion characteristics, particularly under oxy-fuel conditions. The impact of Stefan flow on energy balance is more substantial in the kinetic/diffusion-controlled regime than in the diffusion-controlled regime. This review is the first to clearly identify Stefan flow as the fundamental physical mechanism responsible for the differences in combustion behavior between air-fuel and oxy-fuel environments. It addresses a key gap in current research and offers a novel theoretical framework for improving low-carbon combustion models, providing important theoretical support for efficient combustion and clean energy conversion. Full article
Show Figures

Figure 1

15 pages, 2015 KB  
Article
Influence of Calcination and Reduction Conditions of Ni-Al-LDH Catalysts for CO2 Methanation
by Nailma Martins and Oscar W. Perez-Lopez
Catalysts 2025, 15(8), 760; https://doi.org/10.3390/catal15080760 - 8 Aug 2025
Viewed by 470
Abstract
CO2 methanation offers a sustainable route to reduce greenhouse gas emissions by converting carbon dioxide into methane, a valuable renewable fuel. This exothermic reaction not only mitigates its environmental impact but also provides energy-efficient benefits, as the heat generated can be reused [...] Read more.
CO2 methanation offers a sustainable route to reduce greenhouse gas emissions by converting carbon dioxide into methane, a valuable renewable fuel. This exothermic reaction not only mitigates its environmental impact but also provides energy-efficient benefits, as the heat generated can be reused in industrial applications. In this study, CO2 methanation was carried out in a continuous flow reactor with a CO2:H2 molar ratio of 1:4 and a gas hourly space velocity (GHSV) of 12,000 h−1, using a Ni-Al-LDH catalyst with a molar ratio of 2.3. The research focused on how calcination and reduction conditions affect catalyst structure and activity. Characterization techniques such as BET, XRD, TPR, H2-TPD, and CO2-TPD revealed that these conditions significantly influence surface area, crystallinity, phase composition, and metal dispersion. A higher reduction temperature decreased the surface area and increased both the crystallite size and basicity. The findings highlight that thermal treatment play a crucial role in optimizing the catalytic properties of NiAl catalyst. The sample calcined at 600 °C showed greater activity at lower reaction temperatures, while the catalyst calcined at 400 °C performed better above 300 °C. Additionally, the evaluation of the effect of the reduction atmosphere during catalyst activation showed that H2 is a more effective reducing gas at lower reaction temperatures, whereas biogas showed a better performance at higher temperatures. Importantly, XRD results showed the catalysts maintained their structural integrity post-reaction, with no significant carbon deposition in the H2 atmosphere, confirming their potential for long-term application in CO2 methanation. Full article
(This article belongs to the Special Issue Catalysis and Technology for CO2 Capture, Conversion and Utilization)
Show Figures

Graphical abstract

12 pages, 8263 KB  
Proceeding Paper
Comparing Dynamic Traffic Flow Between Human-Driven and Autonomous Vehicles Under Cautious and Aggressive Vehicle Behavior
by Maftuh Ahnan and Dukgeun Yun
Eng. Proc. 2025, 102(1), 11; https://doi.org/10.3390/engproc2025102011 - 5 Aug 2025
Viewed by 192
Abstract
This study explores the impact of driving behaviors, specifically cautious and aggressive, on the performance of human-driven vehicles (HDVs) and autonomous vehicles (AVs) in traffic flow dynamics. It focuses on various metrics, including level of service (LOS), average speed, traffic volume, queue delays, [...] Read more.
This study explores the impact of driving behaviors, specifically cautious and aggressive, on the performance of human-driven vehicles (HDVs) and autonomous vehicles (AVs) in traffic flow dynamics. It focuses on various metrics, including level of service (LOS), average speed, traffic volume, queue delays, carbon emissions, and fuel consumption, to assess their effects on overall performance. The findings reveal significant differences between cautious and aggressive AVs, particularly at varying market penetration rates (MPRs). Aggressive autonomous vehicles demonstrate greater traffic efficiency compared to their cautious counterparts. They achieve higher levels of service, improving from poor performance at low MPRs to significantly better performance at higher MPRs and in fully autonomous scenarios. In contrast, cautious AVs often experience poor service ratings at low MPRs, with an improvement in performance only at higher MPRs. Regarding environmental performance, aggressive AVs outperform cautious ones in terms of reduced emissions and fuel consumption. The emissions produced by aggressive AVs are significantly lower than those from cautious AVs, and they further decrease as the MPRs increases. Additionally, aggressive AVs show a considerable reduction in fuel usage compared to cautious AVs. While cautious AVs improve slightly at higher MPRs, they continue to generate higher emissions and consume more fuel than their aggressive counterparts. In conclusion, aggressive AVs offer better traffic efficiency and environmental performance than both cautious AVs. Their ability to improve road efficiency and reduce congestion positions them as a valuable asset for sustainable transportation. Strategically incorporating aggressive AVs into transportation systems could lead to significant advancements in traffic management and environmental sustainability. Full article
(This article belongs to the Proceedings of The 2025 Suwon ITS Asia Pacific Forum)
Show Figures

Figure 1

42 pages, 3290 KB  
Article
Hydroprocessed Ester and Fatty Acids to Jet: Are We Heading in the Right Direction for Sustainable Aviation Fuel Production?
by Mathieu Pominville-Racette, Ralph Overend, Inès Esma Achouri and Nicolas Abatzoglou
Energies 2025, 18(15), 4156; https://doi.org/10.3390/en18154156 - 5 Aug 2025
Viewed by 562
Abstract
Hydrotreated ester and fatty acids to jet (HEFA-tJ) is presently the most developed and economically attractive pathway to produce sustainable aviation fuel (SAF). An ongoing systematic study of the critical variables of different pathways to SAF has revealed significantly lower greenhouse gas (GHG) [...] Read more.
Hydrotreated ester and fatty acids to jet (HEFA-tJ) is presently the most developed and economically attractive pathway to produce sustainable aviation fuel (SAF). An ongoing systematic study of the critical variables of different pathways to SAF has revealed significantly lower greenhouse gas (GHG) reduction potential for the HEFA-tJ pathway compared to competing markets using the same resources for road diesel production. Moderate yield variations between air and road pathways lead to several hundred thousand tons less GHG reduction per project, which is generally not evaluated thoroughly in standard environmental assessments. This work demonstrates that, although the HEFA-tJ market seems to have more attractive features than biodiesel/renewable diesel, considerable viability risks might manifest as HEFA-tJ fuel market integration rises. The need for more transparent data and effort in this regard, before envisaging making decisions regarding the volume of HEFA-tJ production, is emphasized. Overall, reducing the carbon intensity of road diesel appears to be less capital-intensive, less risky, and several times more efficient in reducing GHG emissions. Full article
(This article belongs to the Special Issue Sustainable Approaches to Energy and Environment Economics)
Show Figures

Figure 1

21 pages, 3452 KB  
Article
Features of Ash and Slag Formation During Incomplete Combustion of Coal from the Karazhyra Deposit in Small- and Medium-Scale Power Plants
by Natalya Seraya, Vadim Litvinov, Gulzhan Daumova, Maksat Shaikhov, Raigul Ramazanova and Roza Aubakirova
Processes 2025, 13(8), 2467; https://doi.org/10.3390/pr13082467 - 4 Aug 2025
Viewed by 291
Abstract
The study presents a comprehensive assessment of the combustion efficiency of low-grade coal from the Karazhyra deposit in small- and medium-capacity boiler units of the energy workshops operated by Vostokenergo LLP (East Kazakhstan Region, Kazakhstan). It was found that the average annual thermal [...] Read more.
The study presents a comprehensive assessment of the combustion efficiency of low-grade coal from the Karazhyra deposit in small- and medium-capacity boiler units of the energy workshops operated by Vostokenergo LLP (East Kazakhstan Region, Kazakhstan). It was found that the average annual thermal energy output amounts to 2,387,348.85 GJ with a coal consumption of 164,328.5 tons. Based on operational data from 2016 to 2017, the average thermal efficiency (boiler efficiency) was 66.03%, with a maximum value of 75% recorded at the Zhezkent energy workshop. The average lower heating value (LHV) of the coal was 19.41 MJ/kg, which is below the design value of 20.52 MJ/kg, indicating the use of coal with reduced energy characteristics and elevated ash content (21.4%). The unburned carbon content in the ash and slag waste (ASW) was determined to be between 14 and 35%, indicating incomplete combustion. Scanning electron microscopy (SEM) and X-ray diffraction (XRD) analyses revealed the presence of microspheres, porous granules, and coal residues, with silicon and aluminum oxides dominating the composition (up to 70.49%). Differences in the pollutant potential of ash from different boiler units were identified. Recommendations were substantiated regarding the adjustment of the air–fuel regime, modernization of combustion control systems, and utilization of ASW. The results may be used to develop measures aimed at improving the energy efficiency and environmental safety of coal-fired boiler plants. Full article
(This article belongs to the Section Chemical Processes and Systems)
Show Figures

Figure 1

Back to TopTop