Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (236)

Search Parameters:
Keywords = low-saline water irrigation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 3488 KiB  
Article
Effects of Continuous Saline Water Irrigation on Soil Salinization Characteristics and Dryland Jujube Tree
by Qiao Zhao, Mingliang Xin, Pengrui Ai and Yingjie Ma
Agronomy 2025, 15(8), 1898; https://doi.org/10.3390/agronomy15081898 - 7 Aug 2025
Viewed by 253
Abstract
The sustainable utilization of saline water resources represents an effective strategy for alleviating water scarcity in arid regions. However, the mechanisms by which prolonged saline water irrigation influences soil salinization and dryland crop growth are not yet fully understood. This study examined the [...] Read more.
The sustainable utilization of saline water resources represents an effective strategy for alleviating water scarcity in arid regions. However, the mechanisms by which prolonged saline water irrigation influences soil salinization and dryland crop growth are not yet fully understood. This study examined the effects of six irrigation water salinity levels (CK: 0.87 g·L−1, S1: 2 g·L−1, S2: 4 g·L−1, S3: 6 g·L−1, S4: 8 g·L−1, S5: 10 g·L−1) on soil salinization dynamics and jujube growth during a three-year field experiment (2020–2022). The results showed that soil salinity within the 0–1 m profile significantly increased with rising irrigation water salinity and prolonged irrigation duration, with the 0–0.4 m layer accounting for 50.27–74.95% of the total salt accumulation. A distinct unimodal salt distribution was observed in the 0.3–0.6 m soil zone, with the salinity peak shifting downward from 0.4 to 0.5 m over time. Meanwhile, soil pH and sodium adsorption ratio (SAR) increased steadily over the study period. The dominant hydrochemical type shifted from SO42−-Ca2+·Mg2+ to Cl-Na+·Mg2+. Crop performance exhibited a nonlinear response to irrigation salinity levels. Low salinity (2 g·L−1) significantly enhanced plant height, stem diameter, leaf area index (LAI), vitamin C content, and yield, with improvements of up to 12.11%, 3.96%, 16.67%, 16.24%, and 16.52% in the early years. However, prolonged exposure to saline irrigation led to significant declines in both plant growth and water productivity (WP) by 2022. Under high-salinity conditions (S5), yield decreased by 16.75%, while WP declined by more than 30%. To comprehensively evaluate the trade-off between economic effects and soil environment, the entropy weight TOPSIS method was employed to identify S1 as the optimal irrigation treatment for the 2020–2021 period and control (CK) as the optimal treatment for 2022. Through fitting analysis, the optimal irrigation water salinity levels over 3 years were determined to be 2.75 g·L−1, 2.49 g·L−1, and 0.87 g·L−1, respectively. These findings suggest that short-term irrigation of jujube trees with saline water at concentrations ≤ 3 g·L−1 is agronomically feasible. Full article
(This article belongs to the Section Water Use and Irrigation)
Show Figures

Figure 1

18 pages, 3738 KiB  
Article
Effect of Alternate Sprinkler Irrigation with Saline and Fresh Water on Soil Water–Salt Transport and Corn Growth
by Yue Jiang, Luya Wang, Yanfeng Li, Hao Li and Run Xue
Agronomy 2025, 15(8), 1854; https://doi.org/10.3390/agronomy15081854 - 31 Jul 2025
Viewed by 492
Abstract
To address freshwater scarcity and the underutilization of low-saline water in the North China Plain, a field study was conducted to evaluate the effects of alternating sprinkler irrigation using saline and fresh water on soil water–salt dynamics and corn growth. Two salinity levels [...] Read more.
To address freshwater scarcity and the underutilization of low-saline water in the North China Plain, a field study was conducted to evaluate the effects of alternating sprinkler irrigation using saline and fresh water on soil water–salt dynamics and corn growth. Two salinity levels (3 and 5 g·L−1, representing S1 and S2, respectively) and three irrigation strategies—saline–fresh–saline–fresh (F1), saline–fresh (F2), and mixed saline–fresh (F3)—were tested, resulting in six treatments: S1F1, S1F2, S1F3, S2F1, S2F2, and S2F3. S1F1 significantly improved soil water retention at a 30–50 cm depth and reduced surface electrical conductivity (EC) and Na+ concentration (p < 0.05). S1F1 also promoted more uniform Mg2+ distribution and limited Ca2+ loss. Under high salinity (5 g·L−1), surface salt accumulation and ion concentration (Na+, Mg2+, and Ca2+) increased, particularly in S2F3. Corn growth under alternating irrigation (F1/F2) outperformed the mixed mode (F3), with S1F1 achieving the highest plant height, leaf area, grain number, and 100-grain weight. The S1F1 yield surpassed others by 0.4–3.0% and maintained a better ion balance. These results suggest that alternating irrigation with low-salinity water (S1F1) effectively regulates root-zone salinity and improves crop productivity, offering a practical strategy for the sustainable use of low-saline water resources. Full article
Show Figures

Figure 1

25 pages, 5012 KiB  
Article
Monitoring Salinity Stress in Moringa and Pomegranate: Comparison of Different Proximal Remote Sensing Approaches
by Maria Luisa Buchaillot, Henda Mahmoudi, Sumitha Thushar, Salima Yousfi, Maria Dolors Serret, Shawn Carlisle Kefauver and Jose Luis Araus
Remote Sens. 2025, 17(12), 2045; https://doi.org/10.3390/rs17122045 - 13 Jun 2025
Viewed by 387
Abstract
Cultivating crops in the hot, arid conditions of the Arabian Peninsula often requires irrigation with brackish water, which exposes plants to salinity and heat stress. Timely, cost-effective monitoring of plant health can significantly enhance crop management. In this context, remote sensing techniques offer [...] Read more.
Cultivating crops in the hot, arid conditions of the Arabian Peninsula often requires irrigation with brackish water, which exposes plants to salinity and heat stress. Timely, cost-effective monitoring of plant health can significantly enhance crop management. In this context, remote sensing techniques offer promising alternatives. This study evaluates several low-cost, ground-level remote sensing methods and compares them with benchmark analytical techniques for assessing salt stress in two economically important woody species, moringa and pomegranate. The species were irrigated under three salinity levels: low (2 dS m−1), medium (5 dS m−1), and high (10 dS m−1). Remote sensing tools included RGB, multispectral, and thermal cameras mounted on selfie sticks for canopy imaging, as well as portable leaf pigment and chlorophyll fluorescence meters. Analytical benchmarks included sodium (Na) accumulation, carbon isotope composition (δ13C), and nitrogen (N) concentration in leaf dry matter. As salinity increased from low to medium, canopy temperatures, vegetation indices, and δ13C values rose. However, increasing salinity from medium to high levels led to a rise in Na accumulation without further significant changes in other remote sensing and analytical parameters. In moringa and across the three salinity levels, the Normalized Difference Red Edge (NDRE) and leaf chlorophyll content on an area basis showed significant correlations with δ13C (r = 0.758, p < 0.001; r = 0.423, p < 0.05) and N (r = 0.482, p < 0.01; r = 0.520, p < 0.01). In pomegranate, the Normalized Difference Vegetation Index (NDVI) and chlorophyll were strongly correlated with δ13C (r = 0.633, p < 0.01 and r = 0.767, p < 0.001) and N (r = 0.832, p < 0.001 and r = 0.770, p < 0.001). Remote sensing was particularly effective at detecting plant responses between low and medium salinity, with stronger correlations observed in pomegranate. Full article
(This article belongs to the Section Remote Sensing in Agriculture and Vegetation)
Show Figures

Graphical abstract

34 pages, 7396 KiB  
Article
Sustainable Groundwater Management in the Coastal Aquifer of the Témara Plain, Morocco: A GIS-Based Hydrochemical and Pollution Risk Assessment
by Abdessamia El Alaoui, Imane Haidara, Nawal Bouya, Bennacer Moussaid, Khadeijah Yahya Faqeih, Somayah Moshrif Alamri, Eman Rafi Alamery, Afaf Rafi AlAmri, Youness Moussaid and Mohamed Ait Haddou
Sustainability 2025, 17(12), 5392; https://doi.org/10.3390/su17125392 - 11 Jun 2025
Viewed by 921
Abstract
Morocco’s Témara Plain relies heavily on its aquifer system as a critical resource for drinking water, irrigation, and industrial activities. However, this essential groundwater reserve is increasingly threatened by over-extraction, seawater intrusion, and complex hydrogeochemical processes driven by the region’s geological characteristics and [...] Read more.
Morocco’s Témara Plain relies heavily on its aquifer system as a critical resource for drinking water, irrigation, and industrial activities. However, this essential groundwater reserve is increasingly threatened by over-extraction, seawater intrusion, and complex hydrogeochemical processes driven by the region’s geological characteristics and anthropogenic pressures. This study aims to assess groundwater quality and its vulnerability to pollution risks and map the spatial distribution of key hydrochemical processes through an integrated approach combining Geographic Information System (GIS) techniques and multivariate statistical analysis, as well as applying the DRASTIC model to evaluate water vulnerability. A total of fifty-eight groundwater samples were collected across the plain and analyzed for major ions to identify dominant hydrochemical facies. Spatial interpolation using Inverse Distance Weighting (IDW) within GIS revealed distinct patterns of sodium chloride (Na-Cl) facies near the coastal areas with chloride concentrations exceeding the World Health Organization (WHO) drinking water guideline of 250 mg/L—indicative of seawater intrusion. In addition to marine intrusion, agricultural pollution constitutes a major diffuse pressure across the aquifer. Shallow groundwater zones in agricultural areas show heightened vulnerability to salinization and nitrate contamination, with nitrate concentrations reaching up to 152.3 mg/L, far surpassing the WHO limit of 45 mg/L. Furthermore, other anthropogenic pollution sources—such as wastewater discharges from septic tanks in peri-urban zones lacking proper sanitation infrastructure and potential leachate infiltration from informal waste disposal sites—intensify stress on the aquifer. Principal Component Analysis (PCA) identified three key factors influencing groundwater quality: natural mineralization due to carbonate rock dissolution, agricultural inputs, and salinization driven by seawater intrusion. Additionally, The DRASTIC model was used within the GIS environment to create a vulnerability map based on seven key parameters. The map revealed that low-lying coastal areas are most vulnerable to contamination. Full article
(This article belongs to the Section Pollution Prevention, Mitigation and Sustainability)
Show Figures

Figure 1

22 pages, 6506 KiB  
Article
Long-Term Irrigation Deficits Impair Microbial Diversity and Soil Quality in Arid Maize Fields
by Dongdong Zhong, Renhua Sun, Zhen Huo, Jian Chen, Shengtianzi Dong and Hegan Dong
Agronomy 2025, 15(6), 1355; https://doi.org/10.3390/agronomy15061355 - 31 May 2025
Viewed by 603
Abstract
Water scarcity in arid regions poses a severe threat to agricultural sustainability, necessitating optimized irrigation strategies. This study investigates the cumulative impacts of long-term irrigation deficits on soil quality, microbial diversity, and maize yield in the arid maize fields of Xinjiang, China, where [...] Read more.
Water scarcity in arid regions poses a severe threat to agricultural sustainability, necessitating optimized irrigation strategies. This study investigates the cumulative impacts of long-term irrigation deficits on soil quality, microbial diversity, and maize yield in the arid maize fields of Xinjiang, China, where consistent irrigation patterns have been maintained over multiple years. Seven sites were monitored from April 2023 to March 2024, with a single end-of-cycle sampling in March 2024. Using the Irrigation Water Deficit Index (IWDI), the sites were classified into low (LD, 16.37–22.30%), moderate (MD, 30.54–38.10%), and high drought (HD, 47.49–50.00%) categories. The findings reveal that long-term consistent irrigation deficits exacerbate soil salinization, compaction, and nutrient loss, with organic matter declining significantly under HD conditions. Bacterial richness increased by ~6% under HD, driven by stress-tolerant taxa, while fungal diversity decreased by 14–50%, impairing nutrient cycling functions critical for soil health. The Soil Quality Index (SQI) and maize yield declined with drought severity (LD > MD by 26.18% and 21.05%; LD > HD by 45.02% and 13.13%), highlighting the pivotal role of sustained irrigation patterns in maintaining productivity. These results underscore the need for tailored irrigation management in arid regions, such as precision drip irrigation, to mitigate soil degradation and sustain maize yields, providing a scientific foundation for optimizing water use efficiency in water-scarce agroecosystems under long-term irrigation regimes. Full article
(This article belongs to the Section Water Use and Irrigation)
Show Figures

Figure 1

34 pages, 6650 KiB  
Article
Salinity of Irrigated and Non-Irrigated Chernozems and Kastanozems: A Case Study of Causes and Consequences in the Pavlodar Region, Kazakhstan
by Dauren Rakhmanov, Bořivoj Šarapatka, Marek Bednář, Jan Černohorský and Kamilla Alibekova
Soil Syst. 2025, 9(2), 57; https://doi.org/10.3390/soilsystems9020057 - 28 May 2025
Viewed by 585
Abstract
This study investigated soil salinization processes in the Pavlodar region of Kazakhstan by comparing key soil parameters—namely, electrical conductivity (EC), pH, exchangeable sodium percentage (ESP), and sodium adsorption ratio (SAR) under irrigated and non-irrigated conditions across different agro-climatic zones and soil types (Haplic [...] Read more.
This study investigated soil salinization processes in the Pavlodar region of Kazakhstan by comparing key soil parameters—namely, electrical conductivity (EC), pH, exchangeable sodium percentage (ESP), and sodium adsorption ratio (SAR) under irrigated and non-irrigated conditions across different agro-climatic zones and soil types (Haplic Chernozems, Haplic Kastanozems). The focus was on understanding the effects of irrigation and natural factors on soil salinization. Statistical analysis, including descriptive statistics and significance testing, was employed to evaluate differences between soil types, locations, and management practices. The research revealed secondary salinization (EC > 2 dS/m, ESP > 15%) in the topsoil of irrigated Haplic Kastanozems soils in the central Aksu district. This degradation was markedly higher than in non-irrigated plots or irrigated Haplic Chernozems in the northern Irtysh district, highlighting the high vulnerability of Haplic Kastanozems soils under current irrigation management given Aksu’s climatic conditions, which are characterized by high evaporative demand (driven by summer temperatures) and specific precipitation patterns that contribute to soil moisture deficits without irrigation. While ESP indicated sodicity, SAR values remained low. Natural factors, including potentially saline parent materials and likely shallow groundwater dynamics influenced by irrigation, appear to contribute to the observed patterns. The findings underscore the need for implementing optimized irrigation and drainage management, particularly in the Aksu district, potentially including water-saving techniques (e.g., drip irrigation) and selection of salt/sodicity-tolerant crops. A comprehensive approach integrating improved water management, agronomic practices, and potentially soil amendments is crucial for mitigating soil degradation and ensuring sustainable agriculture in the Pavlodar region. Further investigation including groundwater monitoring is recommended. Full article
(This article belongs to the Special Issue Research on Soil Management and Conservation: 2nd Edition)
Show Figures

Figure 1

21 pages, 2052 KiB  
Article
Optimizing Oilfield-Produced Water Reuse for Sustainable Irrigation: Impacts on Soil Quality and Mineral Accumulation in Plants
by Khaled Al-Jabri, Ahmed Al-Busaidi, Mushtaque Ahmed, Rhonda R. Janke and Alexandros Stefanakis
Water 2025, 17(10), 1497; https://doi.org/10.3390/w17101497 - 16 May 2025
Viewed by 1927
Abstract
The effective management of produced water (PW), a by-product of oil extraction in Oman, is essential for sustainable water use and environmental protection. PW contains petroleum residues, heavy metals, and salts, which require treatment before safe reuse. In the Nimr oil field, PW [...] Read more.
The effective management of produced water (PW), a by-product of oil extraction in Oman, is essential for sustainable water use and environmental protection. PW contains petroleum residues, heavy metals, and salts, which require treatment before safe reuse. In the Nimr oil field, PW undergoes partial treatment in constructed wetlands vegetated with buffelgrass (Cenchrus ciliaris). This study investigated the reuse potential of treated PW for irrigation through two parallel field experiments conducted at Sultan Qaboos University (SQU) and the Nimr wetlands site. At the SQU site, native halophytic plants were irrigated with three water sources: treated municipal wastewater, underground water (from an on-site well), and treated produced water. At the Nimr site, irrigation was conducted using underground water and treated PW. Two soil types were used: well-draining control soil and Nimr soil from southern Oman. The treatments included: (i) PW + control soil, (ii) PW + Nimr soil, (iii) PW + gypsum (3.5 g/kg soil), (iv) PW + biochar (10 g/kg soil), (v) underground water + control soil, and (vi) treated municipal wastewater + control soil. Biochar, produced from locally sourced buffelgrass via low-temperature pyrolysis (300 °C for 3 h), and gypsum (46.57% acid-extractable sulfate) were mixed into the soil before sowing. The impact of each treatment was assessed in terms of soil quality (salinity, boron, major cations), plant physiological responses, and mineral accumulation. PW irrigation (TDS ~ 6500–7000 mg/L) led to a sixfold increase in soil sodium and raised boron levels in plant tissues to over 200 mg/kg, exceeding livestock feed safety limits. Copper remained within acceptable thresholds (≤9.5 mg/kg). Biochar reduced boron uptake, but gypsum showed limited benefit. Neither amendment improved plant growth under PW irrigation. These findings highlight the need for regulated PW reuse, emphasizing the importance of soil management strategies and alternating water sources to mitigate salinity stress. Full article
(This article belongs to the Special Issue Effects of Hydrology on Soil Erosion and Soil Water Conservation)
Show Figures

Graphical abstract

20 pages, 4769 KiB  
Article
Evolution of Nuntași-Tuzla Lake Chemistry in the Context of Human Intervention
by Gabriel Dobrica, Carmen Elena Maftei, Ionela Carazeanu Popovici and Naliana Lupascu
Water 2025, 17(10), 1482; https://doi.org/10.3390/w17101482 - 14 May 2025
Viewed by 483
Abstract
This paper analyzes the chemical evolution of Nuntași-Tuzla Lake (Romania) in the context of human intervention. Situated on the shore of the Black Sea, approximately 35 km north of Constanța, Nuntași-Tuzla Lake is part of the Razim–Sinoe Lake complex and a component of [...] Read more.
This paper analyzes the chemical evolution of Nuntași-Tuzla Lake (Romania) in the context of human intervention. Situated on the shore of the Black Sea, approximately 35 km north of Constanța, Nuntași-Tuzla Lake is part of the Razim–Sinoe Lake complex and a component of the Danube Delta Biosphere Reserve. This area has undergone significant transformations over the past 120 years: canalization of the connecting channels with the St. George arm, construction of polders for agriculture, closure of the connections to the Black Sea, and construction of the Razim–Sinoe irrigation system. After the irrigation system stopped working (around 2000), due to the isolation of the lake and the low flow coming from the two rivers that supply the lake with fresh water, it completely dried up in 2020. All these interventions have led to the ecological, hydrological, and chemical deterioration of the lake’s water. The main effects are (i) a decrease in water salinity and (ii) reduction in the production of sapropelic mud as the salinity decreases due to the influx of fresh water. Full article
(This article belongs to the Special Issue Climate Change and Hydrological Processes, 2nd Edition)
Show Figures

Figure 1

26 pages, 11103 KiB  
Article
The Effect of Autumn Irrigation on the Water, Heat, and Salt Transport in Seasonally Frozen Soils Under Varying Groundwater Levels
by Zhiyu Yang, Xiao Tan, Aiping Chen, Yang Xu, Yang Zhang and Wenhua Zhuang
Water 2025, 17(7), 1049; https://doi.org/10.3390/w17071049 - 2 Apr 2025
Viewed by 497
Abstract
Seasonal freeze–thaw irrigation areas face challenges of soil salinization and water scarcity, requiring a deep understanding of soil freeze–thaw dynamics under the interaction between irrigation and groundwater. An in situ lysimeter experiment was conducted in the winters of 2020–2021 and 2023–2024 to investigate [...] Read more.
Seasonal freeze–thaw irrigation areas face challenges of soil salinization and water scarcity, requiring a deep understanding of soil freeze–thaw dynamics under the interaction between irrigation and groundwater. An in situ lysimeter experiment was conducted in the winters of 2020–2021 and 2023–2024 to investigate the effects of autumn irrigation (AI) timing (late AI conducted in late November and icing AI conducted in early December) and quota (0, 35, 135, 270 mm) on soil water, heat, and salt transport under varying groundwater levels in the Hetao Irrigation District, Northwest China. Results showed that AI had a strong short-term effect on the groundwater depth and there was a significant negative correlation between groundwater depth and air temperature on a monthly scale. The quota and air temperature during AI were the key factors in utilizing the “refrigerator effect”—where irrigation water pre-cooled by frozen layer accelerates soil freezing—to regulate soil water and salt transport under freeze–thaw cycles. The drastic reduction in AI water consumption lowered the groundwater level, highlighting air temperature as the dominant driver of soil dynamics. Thus, icing AI with low quota (35 mm) can optimize water use (water saving of 77% compared to the traditional quota of 150 mm) while maintaining soil moisture (an increase of 17.4% in water storage) and salinity control (a decrease of 41.6% in salt storage) in the root zone (0–40 cm) through the “refrigerator effect”, demonstrating its potential for sustainable irrigation in water-scarce cold regions. Full article
(This article belongs to the Special Issue Advances in Soil Hydrology in Cold Regions)
Show Figures

Figure 1

22 pages, 2307 KiB  
Review
Bio-Resource Availability in Ireland: A Practical Review of Potential Replacement Materials for Use in Horticultural Growth Media
by Akinson Tumbure, Christian Pulver, Lisa Black, Lael Walsh, Munoo Prasad, James J. Leahy, Eoghan Corbett and Michael T. Gaffney
Horticulturae 2025, 11(4), 378; https://doi.org/10.3390/horticulturae11040378 - 31 Mar 2025
Cited by 1 | Viewed by 896
Abstract
The ability to substitute peat use in horticulture with potentially more sustainable alternatives hinges on the local availability of suitable biomass resources and whether these resources can be easily processed to achieve similar agronomic effectiveness to peat. This review estimates potential biomass availability [...] Read more.
The ability to substitute peat use in horticulture with potentially more sustainable alternatives hinges on the local availability of suitable biomass resources and whether these resources can be easily processed to achieve similar agronomic effectiveness to peat. This review estimates potential biomass availability in Ireland by reviewing production statistics and industry reports and identifying current uses and hypothetical processed biomass quantities. Annual estimates of the major biomass resources available in Ireland are 488,935 m3 of woody residues (mainly Sitka spruce pine) and 789,926 m3 of arable straws (from oats, wheat, barley, oil seed rape). The potential major processing pathways for the available biomass are mechanical (extruded, thinscrew, hammer milled, disc refined), carbonization (pyrolysis and hydrothermal carbonization) and composting. This review of the literature indicates that the major challenges to pyrolyzed alternatives in growth media include high alkalinity, high salinity and low water holding capacity. When biomass is processed into fibers, it requires additional processing to address nutrient immobilization (nitrogen and calcium) and the presence of phytotoxic compounds. We discuss possible solutions to these challenges in terms of agronomic management (altering fertigation, irrigation rates etc.), biomass conversion process optimization (changing conditions of processes and applying additives) and novel growth media formulations with various material inputs that complement each other. We conclude that while national alternative biomass resources are available in sufficient volumes to potentially meet growing media requirements, significant further research and demonstration are required to convert these materials to growth media acceptable to both commercial and retail sectors. Research needs to focus on transforming these materials into growth media, and how they will impact agronomic management of crops. Furthermore to this, the optimization of biomass conversion processes and novel formulations incorporating multiple types of biomass need to be the focus as we transition from peat products in professional horticulture. Full article
(This article belongs to the Section Processed Horticultural Products)
Show Figures

Figure 1

20 pages, 2654 KiB  
Article
The Potential Use of Solid Waste and Mine Water for Land Rehabilitation of the Coal Mine-Affected Area in Slovenia
by Angelika Więckol-Ryk, Alicja Krzemień, Łukasz Pierzchała and Matjaž Kamenik
Resources 2025, 14(4), 57; https://doi.org/10.3390/resources14040057 - 31 Mar 2025
Viewed by 897
Abstract
The rehabilitation of post-mining sites is crucial due to the severe environmental impacts of mining, including land degradation, heavy metal pollution, and loss of biodiversity. Effective reclamation strategies are essential to reverse these impacts and enable sustainable land use. This study presents the [...] Read more.
The rehabilitation of post-mining sites is crucial due to the severe environmental impacts of mining, including land degradation, heavy metal pollution, and loss of biodiversity. Effective reclamation strategies are essential to reverse these impacts and enable sustainable land use. This study presents the possibility of the rehabilitation of a post-mining area in Velenje, Slovenia, using artificial soils made from combustion by-products amended with lignite and organic compost, and explores the potential of lignite mine water for irrigation. This approach introduces an innovative solution that differs from the traditional methods of rehabilitating degraded areas. Physicochemical and phytotoxicity tests were conducted to determine the quality of the soil substitutes. The analysis revealed that the pH, salinity, and chemical composition of soils positively impacted Sinapis alba growth as a test plant, with the most promising compositions containing 20–30% of lignite by weight as a replacement for organic compost. Irrigation water quality parameters, such as electrical conductivity (0.87 dS/m), the sodium absorption ratio (2.09 meq/L), and boron content (0.05 mg/L), indicated a low soil dispersion risk, while the residual sodium carbonate (3.02 meq/L) suggested a medium risk. Although, the concentration of toxic elements did not exceed the threshold limits; the long-term irrigation with mine water requires the monitoring of the molybdenum levels. These results suggest the potential for using artificial soils and mine water in post-mining land reclamation but highlight the need for the monitoring of their quality. Full article
(This article belongs to the Special Issue Mine Ecological Restoration)
Show Figures

Figure 1

22 pages, 7662 KiB  
Article
Saturated Hydraulic Conductivity of Nine Soils According to Water Quality, Soil Texture, and Clay Mineralogy
by Clarissa Buarque Vieira, Gabriel Henrique Maximo Clarindo Silva, Brivaldo Gomes de Almeida, Luiz Guilherme Medeiros Pessoa, Fernando José Freire, Valdomiro Severino de Souza Junior, Hidelblandi Farias de Melo, Luara Gabriella Gomes de Lima, Rodrigo Francisco do Nascimento Paiva, Jorge Freire da Silva Ferreira and Maria Betânia Galvão dos Santos Freire
Agronomy 2025, 15(4), 864; https://doi.org/10.3390/agronomy15040864 - 30 Mar 2025
Cited by 1 | Viewed by 1173
Abstract
Water quality affects soils by promoting their degradation by the accumulation of salts that will lead to salinization and sodification. However, the magnitude of these processes varies with soil attributes. Saturated hydraulic conductivity (Ksat) is the rate at which water passes [...] Read more.
Water quality affects soils by promoting their degradation by the accumulation of salts that will lead to salinization and sodification. However, the magnitude of these processes varies with soil attributes. Saturated hydraulic conductivity (Ksat) is the rate at which water passes through saturated soil, which is fundamental to determining water movement through the soil profile. The Ksat may differ from soil to soil according to the sodium adsorption ratio (SAR), water electrical conductivity (ECw), soil texture, and clay mineralogical assemblage. In this study, an experiment with vertical columns and constant-load permeameters was conducted to evaluate changes in soil Ksat with waters comprising five ECw values (128, 718, 1709, 2865, and 4671 µS cm−1) and five SAR values [0, 5, 12, 20, and 30 (mmolc L−1)0.5] in combination. Horizons from nine northeastern Brazilian soils (ranging from tropical to semiarid) were selected according to their texture and clay mineralogical composition. The data obtained were fit with multiple regression equations for Ksat as a function of ECw and SAR. This study also determined the null SAR at each ECw level, using Ksat = 0 on each equation, to predict the SAR needed to achieve zero drainage on each soil for each ECw level and the threshold electrolyte concentration (CTH) that would lead to a 20% reduction of maximum Ksat. Neither the ECw nor SAR of the applied waters affected the Ksat of soils with a mineralogical assemblage of oxides and kaolinite such as Ferralsol, Nitisol, and Lixisol, with an average Ksat of 2.75, 6.06, and 3.33 cm h−1, respectively. In smectite- and illite-rich soils, the Ksat increased with higher ECw levels and decreased with higher SAR levels, especially comparing the soil’s estimated Ksat for water with low ECw and high SAR in combination (ECw of 128 µS cm−1 and SAR 30) and water with high ECw and low SAR in combination (ECw of 4671 µS cm−1 and SAR 0) such as Regosol (4.95 to 10.94 cm h−1); Vertisol (0.28 to 2.04 cm h−1); Planosol (0 to 0.29 cm h−1); Luvisol (0.46 to 2.12 cm h−1); Cambisol (0 to 0.23 cm h−1); and Fluvisol (1.87 to 3.34 cm h−1). The CTH was easily reached in soils with high concentrations of highly active clays such as smectites. In sandy soils, the target CTH was only reached under extremely high SAR values, indicating a greater resistance of these soils to salinization/sodification. Due to their mineralogical assemblage, soils from tropical sub-humid/hot and semiarid climates were more affected by treatments than soils from tropical humid/hot climates, indicating serious risks of physical and chemical degradation. The results showed the importance of monitoring water quality for irrigation, mainly in less weathered, more clayey soils, with high clay activity to minimize the rate of salt accumulation in soils of the Brazilian semiarid region. Our study also proved that clay mineralogy had more influence on the Ksat than clay concentration, mainly in soils irrigated with saline and sodic waters, and that soils with highly active smectite are more prone to degradation than soils with high concentrations of kaolinite. Full article
(This article belongs to the Section Water Use and Irrigation)
Show Figures

Figure 1

12 pages, 2551 KiB  
Article
The Use of Spectral Vegetation Indices to Evaluate the Effect of Grafting and Salt Concentration on the Growth Performance of Different Tomato Varieties Grown Hydroponically
by Elkamil Tola, Khalid A. Al-Gaadi, Rangaswamy Madugundu, Ahmed M. Zeyada, Mohamed K. Edrris, Haroon F. Edrees and Omer Mahjoop
Horticulturae 2025, 11(4), 368; https://doi.org/10.3390/horticulturae11040368 - 28 Mar 2025
Cited by 2 | Viewed by 507
Abstract
Water scarcity has prompted researchers to intensify studies on the optimal use of saline water in irrigating agricultural crops to improve the efficiency of exploiting available water resources. Therefore, this study aimed to use selected spectral vegetation indices to investigate the potential of [...] Read more.
Water scarcity has prompted researchers to intensify studies on the optimal use of saline water in irrigating agricultural crops to improve the efficiency of exploiting available water resources. Therefore, this study aimed to use selected spectral vegetation indices to investigate the potential of grafting in mitigating the effect of salinity on the growth of tomato plants grown under a hydroponic system. Three commercial tomato cultivars (Forester-F1, Feisty-Red, and Ghandowra-F1,) and five tomato hybrid rootstocks (Beaufort, Maxifort, Dynafort, Unifort, and Vivifort) were investigated using nutrient solutions at three salinity levels, namely, 2.5 dS m−1 (S1, low salinity level), 6.0 dS m−1 (S2, medium salinity level), and 9.5 dS m−1 (S3, high salinity level). The results showed that Ghandowra-F1 had the best growth performance under hydroponics compared to the other two varieties. The increase in the salinity of the nutrient solution negatively affected the vegetation growth of tomato plants. Low and medium salinity did not show any significant effect on the three tomato varieties, unlike high salinity, which showed a significant negative effect on the vegetative growth of the plant. Thus, it is possible to successfully grow tomatoes in hydroponics using nutrient solutions with a salt concentration of up to 6.0 dS m−1. Although there was a slight improvement in the vegetative growth of grafted tomato plants, all the studied rootstocks showed no significant differences compared to non-grafted tomato plants. This study could greatly contribute to strategies targeting the improvement of tomato production in hydroponics. Full article
(This article belongs to the Special Issue Responses to Abiotic Stresses in Horticultural Crops—2nd Edition)
Show Figures

Figure 1

16 pages, 31477 KiB  
Article
Impact of Saline Water Irrigation on Soil Salinity, Growth, and Productivity of Triticale in Sandy Soil
by Hassan M. Abd El Baki, Haruyuki Fujimaki, Kristina Toderich, Jean Bosco Nana and Asad S. Qureshi
Soil Syst. 2025, 9(2), 28; https://doi.org/10.3390/soilsystems9020028 - 24 Mar 2025
Cited by 2 | Viewed by 1628
Abstract
Salinity and water scarcity are among the major environmental challenges requiring the use of non-conventional water sources and the adoption of salt-tolerant crops. We assessed the impact of irrigation with different concentrations of NaCl: 50 mM and 150 mM on the growth parameters [...] Read more.
Salinity and water scarcity are among the major environmental challenges requiring the use of non-conventional water sources and the adoption of salt-tolerant crops. We assessed the impact of irrigation with different concentrations of NaCl: 50 mM and 150 mM on the growth parameters and yield of triticale, soil salinity, distribution of active root density, and concentrations of Na+ and NO3 ions at harvest compared to freshwater under zero leaching conditions. Irrigation was applied on a daily basis based on weight measurements of micro-lysimeter pots. Growth parameters, including plant height, LAI, number of leaves, number of tillers, and soil salinity, were observed across the growing season. Spatial distributions of soil salinity, normalized root length density (NRLD), concentrations of Na+ and NO3 in soil profile were measured in two dimensions. The results indicate that irrigating with 150 mM of NaCl H2O significantly affected the crop growth, causing salts, particularly Na+, to reside in the topsoil, reducing NRLD with soil depth, crop water demand, and NO3 uptake. The application of 150 mM and 50 mM of NaCl H2O reduced crop water use by 4 and 2.6 times as well as grain yield by 97% and 42%, respectively, compared to freshwater. This shows that irrigation with concentration equal to or higher than 150 mM NaCl will result in very low production. To achieve higher yield and crop water productivity, irrigation with NaCl concentration of 50 mM or less is recommended to grow triticale in marginal regions with limited freshwater resources. Full article
(This article belongs to the Topic Soil Health and Nutrient Management for Crop Productivity)
Show Figures

Figure 1

23 pages, 36573 KiB  
Article
An Automated Framework for Interaction Analysis of Driving Factors on Soil Salinization in Central Asia and Western China
by Lingyue Wang, Ping Hu, Hongwei Zheng, Jie Bai, Ying Liu, Olaf Hellwich, Tie Liu, Xi Chen and Anming Bao
Remote Sens. 2025, 17(6), 987; https://doi.org/10.3390/rs17060987 - 11 Mar 2025
Cited by 2 | Viewed by 944
Abstract
Soil salinization is a global ecological and environmental problem, which is particularly serious in arid areas. The formation process of soil salinity is complex, and the interactive effects of natural causes and anthropogenic activities on soil salinization are elusive. Therefore, we propose an [...] Read more.
Soil salinization is a global ecological and environmental problem, which is particularly serious in arid areas. The formation process of soil salinity is complex, and the interactive effects of natural causes and anthropogenic activities on soil salinization are elusive. Therefore, we propose an automated machine learning framework for predicting soil salt content (SSC), which can search for the optimal model without human intervention. At the same time, post hoc interpretation methods and graph theory knowledge are introduced to visualize the nonlinear interactions of variables related to SSC. The proposed method shows robust and adaptive performance in two typical arid regions (Central Asia and Xinjiang Province in western China) under different environmental conditions. The optimal algorithms for the Central Asia and Xinjiang regions are Extremely Randomized Trees (ET) and eXtreme Gradient Boosting (XGBoost), respectively. Moreover, precipitation and minimum air temperature are important feature variables for salt-affected soils in Central Asia and Xinjiang, and their strongest interaction effects are latitude and normalized difference water index. In both study areas, meteorological factors exhibit the greatest effect on SSC, and demonstrate strong spatiotemporal interactions. Soil salinization intensifies with long-term climate warming. Regions with severe SSC variation are mainly distributed around the irrigation water source and in low-terrain basins. From 1950 to 2100, the regional mean SSC (g/kg) varies by +20.94% and +64.76% under extreme scenarios in Central Asia and Xinjiang, respectively. In conclusion, our study provides a novel automated approach for interaction analysis of driving factors on soil salinization in drylands. Full article
Show Figures

Figure 1

Back to TopTop