Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (76)

Search Parameters:
Keywords = low-energy solar house

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
34 pages, 7297 KiB  
Article
Passive Design for Residential Buildings in Arid Desert Climates: Insights from the Solar Decathlon Middle East
by Esra Trepci and Edwin Rodriguez-Ubinas
Buildings 2025, 15(15), 2731; https://doi.org/10.3390/buildings15152731 - 2 Aug 2025
Viewed by 279
Abstract
This study investigates the effectiveness of passive design in low-rise residential buildings located in arid desert climates, using the Dubai Solar Decathlon Middle East (SDME) competition as a case study. This full-scale experiment offers a unique opportunity to evaluate design solutions under controlled, [...] Read more.
This study investigates the effectiveness of passive design in low-rise residential buildings located in arid desert climates, using the Dubai Solar Decathlon Middle East (SDME) competition as a case study. This full-scale experiment offers a unique opportunity to evaluate design solutions under controlled, realistic conditions; prescriptive, modeled performance; and monitored performance assessments. The prescriptive assessment reviews geometry, orientation, envelope thermal properties, and shading. Most houses adopt compact forms, with envelope-to-volume and envelope-to-floor area ratios averaging 1 and 3.7, respectively, and window-to-wall ratios of approximately 17%, favoring north-facing openings to optimize daylight while reducing heat gain. Shading is strategically applied, horizontal on south façades and vertical on east and west. The thermal properties significantly exceed the local code requirements, with wall performance up to 80% better than that mandated. The modeled assessment uses Building Energy Models (BEMs) to simulate the impact of prescriptive measures on energy performance. Three variations are applied: assigning minimum local code requirements to all the houses to isolate the geometry (baseline); removing shading; and applying actual envelope properties. Geometry alone accounts for up to 60% of the variation in cooling intensity; shading reduces loads by 6.5%, and enhanced envelopes lower demand by 14%. The monitored assessment uses contest-period data. Indoor temperatures remain stable (22–25 °C) despite outdoor fluctuations. Energy use confirms that houses with good designs and airtightness have lower cooling loads. Airtightness varies widely (avg. 14.5 m3/h/m2), with some well-designed houses underperforming due to construction flaws. These findings highlight the critical role of passive design as the first layer for improving the energy performance of the built environment and advancing toward net-zero targets, specifically in arid desert climates. Full article
(This article belongs to the Special Issue Climate-Responsive Architectural and Urban Design)
Show Figures

Figure 1

15 pages, 2949 KiB  
Article
Evaluation of Temperature Regulation Efficiency of a Bilayer Coating on Glass with Evaporative and Radiative Cooling for Energy Management
by Huanying Zhang, Yonghang Yu, Dedong Ji, Chen Zhou and Shengyang Yang
Molecules 2025, 30(9), 2042; https://doi.org/10.3390/molecules30092042 - 3 May 2025
Viewed by 523
Abstract
With the increasing demand for energy-efficient and sustainable building materials, innovative cooling technologies have become a key focus in the construction industry. This study developed a double-layer cooling coating integrating evaporation and radiation mechanisms. The first layer consists of a TiO2/PUA [...] Read more.
With the increasing demand for energy-efficient and sustainable building materials, innovative cooling technologies have become a key focus in the construction industry. This study developed a double-layer cooling coating integrating evaporation and radiation mechanisms. The first layer consists of a TiO2/PUA radiation layer, where rutile TiO2 is incorporated into polyurethane acrylate (PUA) resin to enhance solar reflectivity. The second layer is a P(NVP-co-NMA) hydrogel, which evaporates water at high temperatures and absorbs moisture from the air at low temperatures, eliminating the need for additional water supply systems. The TiO2/PUA@P(NVP-co-NMA) coating demonstrates high solar reflectivity and infrared emissivity, effectively reducing indoor temperatures by dissipating heat through water evaporation and radiative cooling. Testing showed a temperature reduction of approximately 7.6 °C in a small house with this coating under simulated conditions. This material demonstrates favorable properties that may make it suitable for applications on building roofs and exterior walls, potentially addressing some limitations of conventional evaporative or radiative cooling systems. Its observed multi-effect cooling performance indicates promise for contributing to energy savings in sustainable building designs. Full article
(This article belongs to the Section Materials Chemistry)
Show Figures

Figure 1

29 pages, 6510 KiB  
Article
Energy-Efficient Design of Immigrant Resettlement Housing in Qinghai: Solar Energy Utilization, Sunspace Temperature Control, and Envelope Optimization
by Bo Liu, Yu Liu, Qianlong Xin, Xiaomei Kou and Jie Song
Buildings 2025, 15(9), 1434; https://doi.org/10.3390/buildings15091434 - 24 Apr 2025
Cited by 1 | Viewed by 459
Abstract
Qinghai Province urgently requires the development of adaptive energy-efficient rural housing construction to address resettlement needs arising from hydropower projects, given the region’s characteristic combination of high solar irradiance resources and severe cold climate conditions. This research establishes localized retrofit strategies through systematic [...] Read more.
Qinghai Province urgently requires the development of adaptive energy-efficient rural housing construction to address resettlement needs arising from hydropower projects, given the region’s characteristic combination of high solar irradiance resources and severe cold climate conditions. This research establishes localized retrofit strategies through systematic field investigations and Rhinoceros modeling simulations of five representative rural residences across four villages. The key findings reveal that comprehensive building envelope retrofits achieve an 80% reduction in energy consumption. South-facing sunspaces demonstrate effective thermal buffering capacity, though their spatial depth exhibits negligible correlation with heating energy requirements. An optimized hybrid shading system combining roof overhangs and vertical louvers demonstrates critical efficacy in summer overheating mitigation, with vertical louvers demonstrating superior thermal and luminous regulation precision. Architectural orientation analysis identifies an optimal alignment within ±10° of true south, emphasizing the functional zoning principle of positioning primary living spaces in south-oriented ground floor areas while locating auxiliary functions in northeastern/northwestern zones. The integrated design framework synergizes three core components: passive solar optimization, climate-responsive shading mechanisms, and performance-enhanced envelope systems, achieving simultaneous improvements in energy efficiency and thermal comfort within resettlement housing constraints. This methodology establishes a replicable paradigm for climate-resilient rural architecture in high-altitude, solar-intensive cold regions, effectively reconciling community reconstruction needs with low-carbon development imperatives through context-specific technical solutions. Full article
Show Figures

Figure 1

40 pages, 4759 KiB  
Article
Grid-Coupled Geothermal and Decentralised Heat Supply Systems in a Holistic Open-Source Simulation Model for 5GDHC Networks
by Constantin Völzel and Stefan Lechner
Sustainability 2024, 16(23), 10503; https://doi.org/10.3390/su162310503 - 29 Nov 2024
Cited by 1 | Viewed by 1301
Abstract
In order to reach climate protection goals at national or international levels, new forms of combined heating and cooling networks with ultra-low network temperatures (5GDHC) are viable alternatives to conventional heating networks. This paper presents a simulation library for 5GDHC networks as sustainable [...] Read more.
In order to reach climate protection goals at national or international levels, new forms of combined heating and cooling networks with ultra-low network temperatures (5GDHC) are viable alternatives to conventional heating networks. This paper presents a simulation library for 5GDHC networks as sustainable shared energy systems, developed in the object-oriented simulation framework OpenModelica. It comprises sub-models for residential buildings acting as prosumers in the network, with additional roof-mounted thermal systems, dynamic thermo-hydraulic representations of distribution pipes and storage, time-series-based sources for heating and cooling, and weather conditions adjustable to user-specified locations. A detailed insight into an in-house development of a sub-model for horizontal ground heat collectors is given. This sub-model is directly coupled with thermo-hydraulic network simulations. The simulation results of energy balances and energetic efficiencies for an example district are described. Findings from this study show that decentralised roof-mounted solar thermal systems coupled to the network can contribute 21% to the total source heat provided in the network while annual thermal gains from the distribution pipes add up to more than 18% within the described settings. The presented simulation library can support conceptual and advanced planning phases for renewable heating and cooling supply structures based on environmental sources. Full article
(This article belongs to the Section Energy Sustainability)
Show Figures

Figure 1

23 pages, 7669 KiB  
Article
Thermal Performance of Novel Eco-Friendly Prefabricated Walls for Thermal Comfort in Temperate Climates
by Rafael Alavez-Ramirez, Fernando Chiñas-Castillo, Jacobo Martínez-Reyes, Jose Luis Caballero-Montes, Magdaleno Caballero-Caballero, Valentin Juventino Morales-Dominguez, Margarito Ortiz-Guzman, Luis Humberto Robledo-Taboada, Erick Adrian Juarez-Arellano and Laura Elvira Serrano-De la Rosa
Sustainability 2024, 16(21), 9349; https://doi.org/10.3390/su16219349 - 28 Oct 2024
Viewed by 1933
Abstract
The global threat of climate change has become increasingly severe, with the efficiency of buildings and the environment being significantly impacted. It is necessary to develop bioclimatic architectural systems that can effectively reduce energy consumption while bringing thermal comfort, reducing the impact of [...] Read more.
The global threat of climate change has become increasingly severe, with the efficiency of buildings and the environment being significantly impacted. It is necessary to develop bioclimatic architectural systems that can effectively reduce energy consumption while bringing thermal comfort, reducing the impact of external temperatures. This study presents the results of a real-scale experimental house prototype, MHTITCA, using a unique design composed of novel eco-friendly prefabricated channel walls filled with a blend of soil, sawdust, and cement for walls and roofs. The experimental analysis performed in this study was based on dynamic climatology. A solar orientation chart of the place was constructed to identify the solar radiation intensity acting on the house. Measurements of roof surface temperatures were conducted to determine temperature damping and temperature wave lag. Monthly average temperature and direct solar radiation data of the site were considered. Compared to other alternative house prototypes, the system maximizes thermal comfort in high-oscillation temperate climates. Temperature measurements were taken inside and outside to evaluate the thermal performance. A thermal insulating layer was added outside the wall and the envelope to improve the prototype’s thermal comfort and reduce the decrement factor even more. This MHTITCA house prototype had 85% thermal comfort, 0% overheating, and 15% low heating. This eco-friendly prototype design had the best thermal performance, achieving a thermal lag of twelve hours, a reduced decrement factor of 0.109, and preventing overheating in areas with high thermal fluctuations. Comparatively, the other prototypes examined provided inferior thermal comfort. The suggested MHTITCA system can be an energy-saving and passive cooling option for thermal comfort in low-cost houses in temperate climates with high thermal oscillations in urban or rural settings. Full article
Show Figures

Figure 1

21 pages, 2235 KiB  
Article
Enhancing Building Sustainability: Integrating User Behaviour and Solar Orientation in the Thermal Performance of Houses
by Kácia Henderson Barbosa, Taylana Piccinini Scolaro and Enedir Ghisi
Sustainability 2024, 16(19), 8349; https://doi.org/10.3390/su16198349 - 25 Sep 2024
Viewed by 1402
Abstract
The literature highlights the importance of building orientation for energy efficiency. However, assessing its impact without considering user behaviour is insufficient. This study aims to evaluate the influence of user behaviour on the impact of solar orientation on the thermal performance of a [...] Read more.
The literature highlights the importance of building orientation for energy efficiency. However, assessing its impact without considering user behaviour is insufficient. This study aims to evaluate the influence of user behaviour on the impact of solar orientation on the thermal performance of a single-family house. The research methodology involved five steps: monitoring a house in Goiânia (Brazil), calibrating the model, determining use patterns to identify user behaviour, conducting computer simulation, and performing data analysis. Questionnaires were applied in 66 houses to understand how occupants use rooms, operate doors and windows, and use electrical appliances, lighting, and air-conditioning. The use patterns were applied in simulations across eight main orientations. The thermal performance was measured by hours of thermal discomfort. Findings reveal that solar orientation individually does not define thermal performance. A house with low internal thermal loads, oriented east or west, can outperform a house oriented north or south with high internal thermal loads. Among the use patterns assessed, window operation, occupancy, and the electrical equipment in operation were the ones that most influenced the thermal performance of the monitored house. The study concludes that modifying user behaviour can significantly modify the thermal effects of solar orientation, influencing building sustainability. Full article
(This article belongs to the Special Issue Energy Efficiency and Life Quality in Indoor Environment)
Show Figures

Figure 1

19 pages, 5307 KiB  
Article
Energy Monitoring and Analysis of a Residential House in China
by Yanzhi Wang, Shaotong Han, Qiuqi Zhang, Jing Sun, Zhibao Cheng and An Chen
Buildings 2024, 14(9), 2930; https://doi.org/10.3390/buildings14092930 - 16 Sep 2024
Viewed by 1026
Abstract
The energy consumption of residential buildings plays a crucial role in overall energy consumption and environmental sustainability. This paper aims to conduct an energy analysis of a residential house located in China, with a focus on comparing the accuracy of the model, identifying [...] Read more.
The energy consumption of residential buildings plays a crucial role in overall energy consumption and environmental sustainability. This paper aims to conduct an energy analysis of a residential house located in China, with a focus on comparing the accuracy of the model, identifying areas for improvement, and proposing energy-efficient solutions. Four sets of temperature sensors were placed to monitor the ambient temperature at which the building is located and the indoor temperature of the residential building during a heating season. The energy consumption of keeping the building running at a low temperature was recorded and compared with the simulation results to verify the accuracy of the model. The monitoring results give the weekly average temperature of each zone on each floor, and the door and window positions, room layouts, and orientations are discussed to analyze the thermal response of the building. In addition, the effect of the heat transfer coefficient of the exterior walls, the heat transfer coefficient of the roof, and the solar heat gain coefficient (SHGC) of the exterior windows on the heating energy consumption of the building are further analyzed through simulations. The results show that, after adding a certain thickness of insulation to the exterior walls and roofs of a building, increasing the thickness of the insulation layer produces little extra energy saving. The use of building windows with high SHGC can effectively reduce building heating energy consumption. Full article
(This article belongs to the Special Issue Building Energy-Saving Technology—2nd Edition)
Show Figures

Figure 1

20 pages, 4871 KiB  
Article
The Impact of Building Level of Detail Modelling Strategies: Insights into Building and Urban Energy Modelling
by Daniel Bishop, Mahdi Mohkam, Baxter L. M. Williams, Wentao Wu and Larry Bellamy
Eng 2024, 5(3), 2280-2299; https://doi.org/10.3390/eng5030118 - 11 Sep 2024
Cited by 5 | Viewed by 1509
Abstract
Level of detail (LoD) is an important factor in urban building energy modelling (UBEM), affecting functionality and accuracy. This work assesses the impacts of the LoD of the roof, window, and zoning on a comprehensive range of outcomes (annual heating load, peak heating [...] Read more.
Level of detail (LoD) is an important factor in urban building energy modelling (UBEM), affecting functionality and accuracy. This work assesses the impacts of the LoD of the roof, window, and zoning on a comprehensive range of outcomes (annual heating load, peak heating demand, overheating, and time-series heating error) in a representative New Zealand house. Lower-LoD roof scenarios produce mean absolute error results ranging from 1.5% for peak heating power to 99% for overheating. Windows and shading both affect solar gains, so lower-LoD windows and/or shading elements can considerably reduce model accuracy. The LoD of internal zoning has the greatest effect on time-series accuracy, producing mean absolute heating error of up to 66 W. These results indicate that low-LoD “shoebox” models, common in UBEM, can produce significant errors which aggregate at scale. Accurate internal zoning models and accurate window size and placement have the greatest potential for error reduction, but their implementation is limited at scale due to data availability and automation barriers. Conversely, modest error reductions can be obtained via simple model improvements, such as the inclusion of eaves and window border shading. Overall, modellers should select LoD elements according to specific accuracy requirements. Full article
(This article belongs to the Section Chemical, Civil and Environmental Engineering)
Show Figures

Figure 1

13 pages, 7935 KiB  
Article
Future Parabolic Trough Collector Absorber Coating Development and Service Lifetime Estimation
by Ana Drinčić, Luka Noč, Franci Merzel and Ivan Jerman
Coatings 2024, 14(9), 1111; https://doi.org/10.3390/coatings14091111 - 2 Sep 2024
Cited by 2 | Viewed by 1429
Abstract
This work presents a study on the optical and mechanical degradation of parabolic trough collector absorber coatings produced through the spray coating application technique of in-house developed paint. The main aim of this investigation is to prepare, cure, load, and analyze the absorber [...] Read more.
This work presents a study on the optical and mechanical degradation of parabolic trough collector absorber coatings produced through the spray coating application technique of in-house developed paint. The main aim of this investigation is to prepare, cure, load, and analyze the absorber coating on the substrate under conditions that mimic the on-field thermal properties. This research incorporates predicted isothermal and cyclic loads for parabolic trough systems as stresses. Biweekly inspections of loaded, identical samples monitored the degradation process. We further used the cascade of data from optical, oxide-thickening, crack length, and pull-off force measurements in mathematical modelling to predict the service life of the parabolic trough collector. The results collected and used in modelling suggested that cyclic load in combination with iso-thermal load is responsible for coating fatigue, influencing the solar absorber optical values and resulting in lower energy transformation efficiency. Finally, easy-to-apply coatings made out of spinel-structured black pigment and durable binder could serve as a low-cost absorber coating replacement for a new generation of parabolic trough collectors, making it possible to harvest solar energy to provide medium-temperature heat to decarbonize future food, tobacco, and paint production industrial processes. Full article
(This article belongs to the Special Issue Coatings for Advanced Devices)
Show Figures

Figure 1

33 pages, 11569 KiB  
Article
Towards Climate, Bioclimatism, and Building Performance—A Characterization of the Brazilian Territory from 2008 to 2022
by Mario A. da Silva, Giovanni Pernigotto, Andrea Gasparella and Joyce C. Carlo
Buildings 2024, 14(8), 2568; https://doi.org/10.3390/buildings14082568 - 20 Aug 2024
Viewed by 1833
Abstract
Representative weather data are fundamental to characterizing a place and determining ideal design approaches. This is particularly important for large countries like Brazil, whose extension and geographical position contribute to defining diverse climatic conditions along the territory. In this context, this study intends [...] Read more.
Representative weather data are fundamental to characterizing a place and determining ideal design approaches. This is particularly important for large countries like Brazil, whose extension and geographical position contribute to defining diverse climatic conditions along the territory. In this context, this study intends to characterize the Brazilian territory based on a 15-year weather record (2008–2022), providing a climatic assessment based on a climatic and bioclimatic profile for the whole country. The climate analysis was focused on temperature, humidity, precipitation, and solar radiation, followed by a bioclimatic analysis guided by the Givoni chart and the natural ventilation potential assessment. In both situations, the results were analyzed using three resolutions: country-level, administrative division, and bioclimatic zones. This study also identified representative locations for the Brazilian bioclimatic zones for a building-centered analysis based on the thermal and energy performance of a single-family house with different envelope configurations. The results proved that most Brazilian territories increased above 0.4 °C in the dry bulb temperature and reduced relative humidity. The precipitation had the highest reduction, reaching more than 50% for some locations. The warmer and drier conditions impacted also the Köppen–Geiger classification, with an increase in the number of Semi-Arid and Arid locations. The bioclimatic study showed that ventilation is the primary strategy for the Brazilian territory, as confirmed by the natural ventilation potential results, followed by passive heating strategies during the year’s coldest months. Finally, building performance simulation underlined that, in colder climates, indoor thermal comfort conditions and air-conditioning demands are less affected by solar absorptance for constructions with low U-values, while in warmer climates, low solar absorptance with intermediary U-values is recommended. Full article
(This article belongs to the Special Issue Indoor Environmental Quality and Human Wellbeing)
Show Figures

Figure 1

22 pages, 7775 KiB  
Article
Numerical and Experimental Determination of Selected Performance Indicators of the Liquid Flat-Plate Solar Collector under Outdoor Conditions
by Wiesław Zima, Łukasz Mika and Karol Sztekler
Energies 2024, 17(14), 3454; https://doi.org/10.3390/en17143454 - 13 Jul 2024
Cited by 2 | Viewed by 1344
Abstract
The paper proposes applying an in-house mathematical model of a liquid flat-plate solar collector to calculate the collector time constant. The described model, proposed for the first time in an earlier study, is a one-dimensional distributed parameter model enabling simulations of the collector [...] Read more.
The paper proposes applying an in-house mathematical model of a liquid flat-plate solar collector to calculate the collector time constant. The described model, proposed for the first time in an earlier study, is a one-dimensional distributed parameter model enabling simulations of the collector operation under arbitrarily variable boundary conditions. The model is based on the solution of energy balance equations for all collector components. The formulated differential equations are solved iteratively using an implicit difference scheme. To obtain a stable numerical solution, it is necessary to use appropriate steps of time and spatial division. These were found by comparing the results obtained from the model with the results of the analytical solution available in the literature for the transient state, which constitutes the novelty of the present study. The accuracy of the results obtained from the model was verified experimentally by comparing the measured and calculated history of the fluid temperature at the outlet of the collector. The calculation of the collector time constant is proposed in the paper as an example of the model’s practical application. The results of the time constant calculation were compared with the values obtained experimentally on the test stand. This is another novelty of the presented research. The analysed collector instantaneous efficiency was then calculated for selected outdoor conditions. The presented mathematical model can also be used to verify the correctness of the collector operation. By comparing, on an ongoing basis, the measured and calculated values of the fluid temperature at the collector outlet, conclusions can be drawn about the process of solar glass fouling or glycol gelling. The simplicity of the model and the low computational demands enable such comparisons in an online mode. Full article
(This article belongs to the Special Issue Solar Energy and Resource Utilization)
Show Figures

Figure 1

20 pages, 13211 KiB  
Article
Thermal, Electrical, and Economic Performance of a Hybrid Solar-Wind-Geothermal System: Case Study of a Detached House in Hamburg and Sylt, Germany
by Linwei Hu, Niklas Tischler, Zarghaam Haider Rizvi, Johannes Nordbeck and Frank Wuttke
Energies 2024, 17(12), 2856; https://doi.org/10.3390/en17122856 - 11 Jun 2024
Cited by 1 | Viewed by 2126
Abstract
Germany is undergoing an energy transition. By 2045, fossil fuels will be gradually replaced by clean energy. An alternative option is to use geothermal, solar and wind energy to generate heat or electricity. Currently, an economic model that considers these three energy sources [...] Read more.
Germany is undergoing an energy transition. By 2045, fossil fuels will be gradually replaced by clean energy. An alternative option is to use geothermal, solar and wind energy to generate heat or electricity. Currently, an economic model that considers these three energy sources and incorporates the design and installation of the energy system as well as operational costing focusing on the local market is lacking. In this study, we present a concept for a hybrid energy system combining solar, wind and geothermal energy for small, detached houses. We also develop a simplified economic model for the German market and local energy subsidy policies. The model was applied to two different cities in northern Germany, calculating the installation and long-term operating costs of different energy systems and combinations over a period of 100 years, including the consideration of the lifespan of variable equipment. The calculations show that for this small hybrid energy system the initial installation costs can vary from EUR 20,344 to EUR 70,186 depending on different portfolios. Long-term operating costs come mainly from electricity purchased from the grid to compensate for periods of low solar or wind production. In addition, the study included a calculation of the payback period for retrofitting a natural gas heating system. Results show that combining a photovoltaic system with a ground source heat pump, especially in the form of a near-surface heat exchanger, yields a shorter payback period (5 to 10 years). However, the incorporation of on-roof wind turbines into the hybrid energy system may significantly prolong the payback period and is therefore not recommended for use in low wind speed areas. Full article
(This article belongs to the Section A: Sustainable Energy)
Show Figures

Figure 1

25 pages, 3665 KiB  
Article
Multi-Objective Optimization for Winter Heating Retrofit in Rural Houses of Cold Regions: A Case Study in the Wusu Area
by Hui Xi, Hui Gao, Wanjun Hou, Baoquan Yin, Jingyi Zuo and Hongxun Zhao
Appl. Sci. 2024, 14(9), 3760; https://doi.org/10.3390/app14093760 - 28 Apr 2024
Cited by 6 | Viewed by 1852
Abstract
In regions of China experiencing severe cold, the duration of the winter heating season significantly contributes to elevated heating energy consumption in rural dwellings. This study focuses on typical brick-and-concrete rural homes in the Wusu area. Utilizing the Rhino–Grasshopper parametric modeling platform, it [...] Read more.
In regions of China experiencing severe cold, the duration of the winter heating season significantly contributes to elevated heating energy consumption in rural dwellings. This study focuses on typical brick-and-concrete rural homes in the Wusu area. Utilizing the Rhino–Grasshopper parametric modeling platform, it aims to minimize heating-related carbon emissions and the overall costs associated with retrofitting. The approach involves improving the insulation properties of the building envelope to reduce energy requirements. Additionally, the study incorporates solar photovoltaic systems atop rural homes, building upon low-carbon, passive, energy-efficient design principles. By examining the influence of various factors on rural housing energy consumption, the research employs the entropy weight method to identify the most effective design solutions. The goal is to explore strategies for the energy-efficient retrofitting of rural dwellings in areas faced with harsh winter conditions, aligning with the objectives and preferences of Applied Sciences. The simulation results reveal the following: (1). In comparison with the baseline scenario, 42.2% of the optimized solutions within the Pareto frontier satisfy the current standards for 75% energy savings in energy-efficient residential design. (2). The lowest recorded thermal consumption index for the buildings can reach 12.427 W/m2, at which point the rate of energy savings is elevated to 79.5%. (3). Within the solutions identified by the Pareto frontier, 80% exhibit initial investments that are lower than the cost savings over the lifecycle due to reduced energy consumption (dCg < 0), demonstrating the economic feasibility of the proposed retrofitting strategies. Full article
(This article belongs to the Section Applied Thermal Engineering)
Show Figures

Figure 1

22 pages, 4519 KiB  
Article
Retrofit Measures for Achieving NZE Single-Family Houses in a Tropical Climate via Multi-Objective Optimization
by Cristina Carpino, Miguel Chen Austin, Dafni Mora and Natale Arcuri
Buildings 2024, 14(3), 566; https://doi.org/10.3390/buildings14030566 - 20 Feb 2024
Cited by 4 | Viewed by 2062
Abstract
To achieve sustainable cities and communities, it is necessary to decarbonize existing buildings. Actions need to be taken to reduce the buildings’ energy demand and ensure that the low remaining demand is met by energy produced from renewable sources. This leads to Net [...] Read more.
To achieve sustainable cities and communities, it is necessary to decarbonize existing buildings. Actions need to be taken to reduce the buildings’ energy demand and ensure that the low remaining demand is met by energy produced from renewable sources. This leads to Net Zero Energy Buildings (NZEBs), whose impact on energy consumption is zero or positive, meaning that they are able to produce more energy than they require. The “zero” objective may be difficult to reach in hot and humid climates, where the cooling demand is prevalent. In this case, a combination of active and passive measures, together with appropriate interaction with users, is a viable way to obtain NZEBs. The present study aims to explore technological solutions for renovating existing buildings to NZEBs in a tropical climate. The analysis is developed through a parametric analysis, a sensitivity analysis, and an optimization directed at minimizing the site’s net energy and hours of discomfort. Evaluations are conducted for a case study consisting of a single-family house located in Panama City. The results showed that photovoltaic size, cooling operation schedule, and cooling set-point temperature are the most influential variables for the attainment of NZEBs in a hot climate. Regarding the building envelope, the outcomes suggest the low insulation of dispersing structures and local solar shading of windows as recommended measures. Full article
(This article belongs to the Special Issue Advanced Studies in Nearly Zero-Energy Buildings and Optimal Design)
Show Figures

Figure 1

34 pages, 8376 KiB  
Article
Investigation and Optimization of Integrated Electricity Generation from Wind, Wave, and Solar Energy Sources
by Huseyin Balta and Zehra Yumurtaci
Energies 2024, 17(3), 603; https://doi.org/10.3390/en17030603 - 26 Jan 2024
Cited by 5 | Viewed by 2317
Abstract
This study investigates the potential for renewable energy-based electricity generation using existing wave, wind, and solar energies in Türkiye. A significant part of Türkiye’s energy needs is still met using fossil fuels. Considering the country’s resources, renewable energy sources appear as an alternative [...] Read more.
This study investigates the potential for renewable energy-based electricity generation using existing wave, wind, and solar energies in Türkiye. A significant part of Türkiye’s energy needs is still met using fossil fuels. Considering the country’s resources, renewable energy sources appear as an alternative source to meet these needs. The objective of this study is to find an effective, efficient, economical, environmentally friendly, and sustainable way to produce electricity to reach net-zero targets and transition towards low-carbon and carbon-free energy systems. To be able to make a deep investigation about the relevant issue, six provinces from different regions of Türkiye (Antalya, Çanakkale, İstanbul, İzmir, Kırklareli, and Muğla) are assessed in terms of wave, wind, and solar energy potential, including wave data, wind speeds, sunshine duration, and global radiation values. Wind, wave, and solar energy data of the selected regions were taken from the ERA5 database, which is the weather forecast model of the European Center for Medium-Term Weather Forecasts (ECMWF), and the Ministry of Energy and Natural Resources of the Republic of Türkiye and the General Directorate of Meteorology. Calculations were made using monthly data for the last 5 years. Considering the coastal lengths in the determined regions, the annual total electrical power produced from wave, solar, and wind energies was calculated. In these calculations, the coastal length parameter was assumed to be uniform across all cities, and the electrical power potential from these energy sources was analyzed. Within the framework of these analyses, the number of houses in the selected regions whose electricity needs can be met was calculated. As a result, the potential electrical power and the amount of affordable housing units in the selected regions were compared. As an important result of the studies, it was determined that the characteristic features of the selected regions, such as wavelength, wave height, and wind speed, were directly related to the applicable coast length. The power obtained from wave energy was higher than that from other renewable energy sources, considering the determined coast lengths. Wave energy was followed by parabolic solar collector, wind, and photovoltaic solar energy systems. According to the model, the power obtained from renewable energy systems was at the highest level in the Kırklareli/Demirköy province compared to other locations. Kırklareli was followed by İstanbul, Antalya, İzmir, Muğla, and Çanakkale. It was also found that the electricity needs of 763,578 houses were met in the Kırklareli/Demirköy region, and the electricity needs of 470,590 houses were met in the Çanakkale/Ayvacık region. The statistically optimized factors using the Response Surface Methodology (RSM) for wind, photovoltaic, parabolic solar collector, and wave power were reported as 995.278, 4529.743, 2264.546, and 276,495.09, respectively. The optimal factors aim to achieve a total electricity generation rate of 2.491 × 109 (kWh/year), a total number of houses of 682,590.55 (number/year), and a total cost of USD 813,940,876. In line with the results obtained, the Kırklareli/Demirköy region becomes favorable when considering wave and wave-integrated wind and solar energies. The proposed system has the potential to meet the entire electricity demand of the Kırklareli province based on data from the Republic of Türkiye Energy Market Regulatory Authority (EMRA). Full article
(This article belongs to the Special Issue Advanced Energy Generation Systems for Sustainable Development)
Show Figures

Figure 1

Back to TopTop