Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (489)

Search Parameters:
Keywords = low-density lipoproteins (LDL) oxidation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 1329 KiB  
Review
Research Progress and Prospects of Flavonoids in the Treatment of Hyperlipidemia: A Narrative Review
by Xingtong Chen, Jinbiao Yang, Yunyue Zhou, Qiao Wang, Shuang Xue, Yukun Zhang and Wenying Niu
Molecules 2025, 30(15), 3103; https://doi.org/10.3390/molecules30153103 - 24 Jul 2025
Viewed by 540
Abstract
Hyperlipidemia (HLP) is a disorder of human lipid metabolism or transport, primarily characterized by abnormally elevated levels of total cholesterol (TC), triglycerides (TGs), and low-density lipoprotein cholesterol (LDL-C) in the blood. It is a key factor contributing to the development of non-alcoholic fatty [...] Read more.
Hyperlipidemia (HLP) is a disorder of human lipid metabolism or transport, primarily characterized by abnormally elevated levels of total cholesterol (TC), triglycerides (TGs), and low-density lipoprotein cholesterol (LDL-C) in the blood. It is a key factor contributing to the development of non-alcoholic fatty liver disease, obesity, diabetes, atherosclerosis, and cardiovascular and cerebrovascular diseases. Statistics show that the prevalence of dyslipidemia among Chinese adults is as high as 35.6%, and it has shown a trend of younger onset in recent years, posing a serious threat to public health. Therefore, the prevention and treatment of dyslipidemia carry significant social significance. The pathogenesis of hyperlipidemia is complex and diverse, and currently used medications are often accompanied by side effects during treatment, making the research and development of new therapeutic approaches a current focus. Numerous studies have shown that flavonoids, which are abundant in most medicinal plants, fruits, and vegetables, exert effects on regulating lipid homeostasis and treating hyperlipidemia through a multi-target mechanism. These compounds have demonstrated significant effects in inhibiting lipid synthesis, blocking lipid absorption, promoting cholesterol uptake, enhancing reverse cholesterol transport, and suppressing oxidative stress, inflammation, and intestinal microbiota disorders. This article reviews the latest progress in the mechanisms of flavonoids in the treatment of hyperlipidemia, providing a theoretical basis for future research on drugs for hyperlipidemia. Full article
(This article belongs to the Section Natural Products Chemistry)
Show Figures

Figure 1

27 pages, 2385 KiB  
Review
Butyrate Produced by Gut Microbiota Regulates Atherosclerosis: A Narrative Review of the Latest Findings
by Leon M. T. Dicks
Int. J. Mol. Sci. 2025, 26(14), 6744; https://doi.org/10.3390/ijms26146744 - 14 Jul 2025
Viewed by 641
Abstract
Atherosclerosis (AS), a progressive inflammatory disease of coronary arteries, the aorta, and the internal carotid artery, is considered one of the main contributors to cardiovascular disorders. Blood flow is restricted by accumulating lipid-rich macrophages (foam cells), calcium, fibrin, and cellular debris into plaques [...] Read more.
Atherosclerosis (AS), a progressive inflammatory disease of coronary arteries, the aorta, and the internal carotid artery, is considered one of the main contributors to cardiovascular disorders. Blood flow is restricted by accumulating lipid-rich macrophages (foam cells), calcium, fibrin, and cellular debris into plaques on the intima of arterial walls. Butyrate maintains gut barrier integrity and modulates immune responses. Butyrate regulates G-protein-coupled receptor (GPCR) signaling and activates nuclear factor kappa-B (NF-κB), activator protein-1 (AP-1), and interferon regulatory factors (IFRs) involved in the production of proinflammatory cytokines. Depending on the inflammatory stimuli, butyrate may also inactivate NF-κB, resulting in the suppression of proinflammatory cytokines and the stimulation of anti-inflammatory cytokines. Butyrate modulates mitogen-activated protein kinase (MAPK) to promote or suppress macrophage inflammation, muscle cell growth, apoptosis, and the uptake of oxidized low-density lipoprotein (ox-LDL) in macrophages. Activation of the peroxisome proliferator-activated receptor γ (PPARγ) pathway plays a role in lipid metabolism, inflammation, and cell differentiation. Butyrate inhibits interferon γ (IFN-γ) signaling and suppresses NOD-, LRR-, and pyrin domain-containing protein 3 (NLRP3) involved in inflammation and scar tissue formation. The dual role of butyrate in AS is discussed by addressing the interactions between butyrate, intestinal epithelial cells (IECs), endothelial cells (ECs) of the main arteries, and immune cells. Signals generated from these interactions may be applied in the diagnosis and intervention of AS. Reporters to detect early AS is suggested. This narrative review covers the most recent findings published in PubMed and Crossref databases. Full article
Show Figures

Figure 1

21 pages, 749 KiB  
Review
HDL Function Versus Small Dense LDL: Cardiovascular Benefits and Implications
by Claudiu Stoicescu, Cristina Vacarescu and Dragos Cozma
J. Clin. Med. 2025, 14(14), 4945; https://doi.org/10.3390/jcm14144945 - 12 Jul 2025
Viewed by 651
Abstract
High-density lipoprotein (HDL) and small dense low-density lipoprotein (sdLDL) represent two critical yet contrasting components in lipid metabolism and cardiovascular risk modulation. While HDL has traditionally been viewed as cardioprotective due to its role in reverse cholesterol transport and anti-inflammatory effects, emerging evidence [...] Read more.
High-density lipoprotein (HDL) and small dense low-density lipoprotein (sdLDL) represent two critical yet contrasting components in lipid metabolism and cardiovascular risk modulation. While HDL has traditionally been viewed as cardioprotective due to its role in reverse cholesterol transport and anti-inflammatory effects, emerging evidence emphasizes that HDL functionality—rather than concentration alone—is pivotal in atheroprotection. Conversely, sdLDL particles are increasingly recognized as highly atherogenic due to their enhanced arterial penetration, oxidative susceptibility, and prolonged plasma residence time. This review critically examined the physiological roles, pathological implications, and therapeutic interventions targeting HDL function and sdLDL burden. Lifestyle modifications, pharmacologic agents including statins, fibrates, PCSK9 inhibitors, and novel therapies such as icosapent ethyl were discussed in the context of their effects on HDL quality and sdLDL reduction. Additionally, current clinical guidelines were analyzed, highlighting a paradigm shift away from targeting HDL-C levels toward apoB-driven risk reduction. Although HDL-targeted therapies remain under investigation, the consensus supports focusing on lowering apoB-containing lipoproteins while leveraging lifestyle strategies to improve HDL functionality. In the setting of heart failure, particularly with preserved ejection fraction (HFpEF), alterations in HDL composition and elevated sdLDL levels have been linked to endothelial dysfunction and systemic inflammation, further underscoring their relevance beyond atherosclerosis. A comprehensive understanding of HDL and sdLDL dynamics is essential for optimizing cardiovascular prevention strategies. Full article
(This article belongs to the Special Issue Clinical Management of Patients with Heart Failure—2nd Edition)
Show Figures

Figure 1

23 pages, 858 KiB  
Article
An Adapted Cardioprotective Diet with or Without Phytosterol and/or Krill Oil Supplementation in Familial Hypercholesterolemia: Results of a Pilot Randomized Clinical Trial
by Erlon Oliveira de Abreu-Silva, Rachel Helena Vieira Machado, Bianca Rodrigues dos Santos, Flávia Cristina Soares Kojima, Renato Hideo Nakagawa Santos, Karina do Lago Negrelli, Letícia Barbante Rodrigues, Pedro Gabriel Melo de Barros e Silva, Andressa Gusmão de Lima, João Gabriel Sanchez, Fernanda Jafet El Khouri, Ângela Cristine Bersch-Ferreira, Adriana Bastos Carvalho, Thaís Martins de Oliveira, Maria Cristina Izar, Geni Rodrigues Sampaio, Nágila Raquel Teixeira Damasceno, Marcelo Macedo Rogero, Elizabeth Aparecida Ferraz da Silva Torres, Flávia De Conti Cartolano, Julia Pinheiro Krey, Patrícia Vieira de Luca, Cristiane Kovacs Amaral, Elisa Maia dos Santos, Rodrigo Morel Vieira de Melo, Eduardo Gomes Lima, André de Luca dos Santos, Thiago Gomes Heck, Ana Paula Perillo Ferreira Carvalho, Silvia Bueno Garofallo, Alexandre Biasi Cavalcanti and Aline Marcadentiadd Show full author list remove Hide full author list
Nutrients 2025, 17(12), 2008; https://doi.org/10.3390/nu17122008 - 15 Jun 2025
Viewed by 1198
Abstract
Background/Objectives: Familial hypercholesterolemia (FH) is an increasingly common inherited disorder that increases cardiovascular risk. Despite the importance of lifestyle interventions, adherence to a healthy diet among individuals with FH remains suboptimal. This pilot, multicenter, double-blind, placebo-controlled randomized trial aimed to evaluate the feasibility [...] Read more.
Background/Objectives: Familial hypercholesterolemia (FH) is an increasingly common inherited disorder that increases cardiovascular risk. Despite the importance of lifestyle interventions, adherence to a healthy diet among individuals with FH remains suboptimal. This pilot, multicenter, double-blind, placebo-controlled randomized trial aimed to evaluate the feasibility and preliminary effects of a culturally adapted cardioprotective diet (DICA-FH), alone or in combination with phytosterol and/or krill oil supplementation, on lipid parameters in Brazilian adults with probable or definitive FH. Methods: Between May and August 2023, 58 participants were enrolled across nine Brazilian centers and randomized (1:1:1:1) into four groups: DICA-FH + phytosterol placebo + krill oil placebo; DICA-FH + phytosterol 2 g/day + krill oil placebo; DICA-FH + phytosterol placebo + krill oil 2 g/day; and DICA-FH + phytosterol 2 g/day + krill oil 2 g/day. Interventions lasted 120 days. The primary outcomes were mean low-density lipoprotein cholesterol (LDL-c) and lipoprotein(a) (Lp[a]) levels, as well as adherence to treatment at follow-up. Secondary outcomes included mean levels of other lipids, frequency of adverse events, and assessment of protocol implementation components. All data were presented separately for the allocation groups: phytosterol vs. placebo and krill oil vs. placebo. Results: Mean age was 54.5 ± 13.7 years, and 58.6% were women. Both adherence to protocol (91.8% attendance; 79.1% investigational product intake) and retention (86.2%) were high. No significant differences between groups were found for LDL-c or Lp(a). However, regardless of allocation to active supplementation or placebo, a significant reduction in Lp(a) concentrations was observed following the DICA-FH intervention (median difference: −3.8 mg/dL [interquartile range: −7.5 to −1.2]; p < 0.01). Significant reductions in oxidized LDL (LDL-ox) and LDL-ox/LDL-c ratio were also observed in the overall sample (p < 0.01). Although not statistically significant, all groups showed improvements in diet quality after 120 days. No serious adverse events related to the interventions were reported. Additionally, most protocol implementation components were successfully achieved. Conclusions: The DICA-FH strategy, with or without supplementation, was safe and well-tolerated. Although not powered to detect clinical efficacy (which is acceptable in exploratory pilot trials), the study supports the feasibility of a larger trial and highlights the potential of dietary interventions in the management of HF. Full article
(This article belongs to the Special Issue Lipids and Lipoproteins in Cardiovascular Diseases)
Show Figures

Figure 1

33 pages, 2687 KiB  
Review
Oxidized Low-Density Lipoprotein as a Potential Target for Enhancing Immune Checkpoint Inhibitor Therapy in Microsatellite-Stable Colorectal Cancer
by Xiaochun Zhang, Xiaorui Ye and Heiying Jin
Antioxidants 2025, 14(6), 726; https://doi.org/10.3390/antiox14060726 - 13 Jun 2025
Viewed by 1673
Abstract
Oxidized low-density lipoprotein (oxLDL) exhibits differential expression in microsatellite-stable (MSS) and microsatellite instability-high (MSI) colorectal cancer (CRC), highlighting its potential therapeutic role in immune checkpoint inhibitor (ICI) resistance in MSS CRC. Elevated oxLDL levels in MSS CRC contribute to tumor progression and diminish [...] Read more.
Oxidized low-density lipoprotein (oxLDL) exhibits differential expression in microsatellite-stable (MSS) and microsatellite instability-high (MSI) colorectal cancer (CRC), highlighting its potential therapeutic role in immune checkpoint inhibitor (ICI) resistance in MSS CRC. Elevated oxLDL levels in MSS CRC contribute to tumor progression and diminish ICI efficacy by modulating metabolic reprogramming and immunosuppressive mechanisms within the tumor microenvironment (TME) by activating receptors such as LOX-1 and CD36. oxLDL triggers signaling pathways, including NF-κB, PI3K/Akt, and MAPK, leading to the expansion of immunosuppressive cells like regulatory T cells (Tregs), myeloid-derived suppressor cells (MDSCs), and M2 macrophages, while concurrently suppressing effector T cell functions. Additionally, oxLDL enhances oxidative stress and promotes fatty acid oxidation (FAO) and glycolytic metabolism, resulting in nutrient competition within the TME and establishing an immunosuppressive milieu, ultimately culminating in ICI resistance. This review systematically examines the disparities in oxLDL expression between MSS and MSI CRC and elucidates the molecular mechanisms through which oxLDL mediates ICI resistance. Furthermore, it explores potential therapeutic strategies targeting oxLDL, offering novel avenues to overcome immunotherapy resistance in MSS CRC. Full article
(This article belongs to the Special Issue Exploring Biomarkers of Oxidative Stress in Health and Disease)
Show Figures

Figure 1

15 pages, 3432 KiB  
Article
A 3D Composite Model Using Electrospinning Technology to Study Endothelial Damage
by Carmen Ciavarella, Luana Di Lisa, Gianandrea Pasquinelli, Maria Letizia Focarete and Sabrina Valente
Biomolecules 2025, 15(6), 865; https://doi.org/10.3390/biom15060865 - 13 Jun 2025
Viewed by 425
Abstract
Background: Endothelial dysfunction triggers atherosclerosis pathogenesis. This study aimed at developing a 3D scaffold model able to reproduce in vitro the human vascular intima and study the endothelial damage induced by oxidative low-density lipoproteins (ox-LDLs) and shear stress. (2) Methods: Three-dimensional sandwich-like scaffolds [...] Read more.
Background: Endothelial dysfunction triggers atherosclerosis pathogenesis. This study aimed at developing a 3D scaffold model able to reproduce in vitro the human vascular intima and study the endothelial damage induced by oxidative low-density lipoproteins (ox-LDLs) and shear stress. (2) Methods: Three-dimensional sandwich-like scaffolds were fabricated using electrospinning technology, functionalized with type I collagen and laminin, and subsequently coated with methacrylated gelatin hydrogel (GelMa) to achieve the final composite structure. Human umbilical vein endothelial cells (HUVECs) were used as the cell model for testing the suitability of 3D supports for cell culture exposed to ox-LDL both under static and shear stress conditions. Cell viability, ultrastructural morphology, and nitric oxide (NO) levels were analyzed. (3) Results: Electrospun mats and their functionalization were optimized to reproduce the chemical and physical properties of the vascular intima tunica. The 3D supports were suitable for the cell culture. Ox-LDL did not affect the HUVEC behavior in the 3D models under a static environment. Conversely, high shear stress (500 µL/min, HSS) significantly decreased the cell viability, also under the ox-LDL treatment. (4) Conclusions: Endothelial cell cultures on electrospun supports exposed to HSS provide a candidate in vitro model for investigating the endothelial dysfunction in atherosclerosis research. Technical improvements to the experimental setting are necessary for validating and standardizing the suggested 3D model. Full article
(This article belongs to the Special Issue Biomolecules and Biomaterials for Tissue Engineering, 2nd Edition)
Show Figures

Figure 1

13 pages, 5517 KiB  
Article
Subchronic Exposure to Microcystin-LR Induces Hepatic Inflammation, Oxidative Stress, and Lipid Metabolic Disorders in Darkbarbel Catfish (Tachysurus vachelli)
by Huaxing Zhou, Tong Li, Huan Wang, Ye Zhang, Yuting Hu, Amei Liu and Guoqing Duan
Toxins 2025, 17(6), 300; https://doi.org/10.3390/toxins17060300 - 12 Jun 2025
Viewed by 458
Abstract
Microcystin-leucine arginine (MC-LR) is a prominent water pollutant known for its potent hepatic toxicity. However, the effects of subchronic exposure to environmentally relevant concentrations of MC-LR on the fish liver remain poorly understood. This study aimed to systematically evaluate the impact of subchronic [...] Read more.
Microcystin-leucine arginine (MC-LR) is a prominent water pollutant known for its potent hepatic toxicity. However, the effects of subchronic exposure to environmentally relevant concentrations of MC-LR on the fish liver remain poorly understood. This study aimed to systematically evaluate the impact of subchronic MC-LR exposure on the liver of darkbarbel catfish (Tachysurus vachelli). A total of 270 one-year-old fish were exposed to MC-LR (0, 2, and 5 μg/L) for 28 days and sampled on days 14 (D14) and 28 (D28). Histopathological analysis revealed marked hepatic inflammation in the MC-LR treatment groups, manifested as cellular degeneration, hyperemia, and inflammation. MC-LR exposure induced oxidative stress, evidenced by elevated malondialdehyde (MDA) levels and compensatory upregulation of superoxide dismutase (SOD) activity on D28. While hepatic lipid profiles were not altered by low-dose MC-LR, significant elevation of low-density lipoprotein cholesterol (LDL-C) specifically on D28 indicated incipient lipid metabolic disorder. Metabolomic analysis demonstrated a higher sensitivity, highlighting the stress response of the liver to low-dose MC-LR exposure. The results suggest MC-LR exposure disrupted hepatic phosphatidylcholine (PC) biosynthesis and inhibited lipoprotein formation, thereby impairing lipid transport and contributing to lipid metabolic disorders. In summary, subchronic exposure to environmentally relevant concentrations of MC-LR-induced hepatic tissue inflammation, oxidative stress, and lipid metabolic disorders in darkbarbel catfish. Full article
Show Figures

Graphical abstract

16 pages, 3704 KiB  
Article
Function of Yogurt Fermented with the Lactococcus lactis 11/19-B1 Strain in Improving the Lipid Profile and Intestinal Microbiome in Hemodialysis Patients
by Yoshiki Suzuki, Ken Ishioka, Taichi Nakamura, Nozomu Miyazaki, Shigeru Marubashi and Tatsuo Suzutani
Nutrients 2025, 17(11), 1931; https://doi.org/10.3390/nu17111931 - 4 Jun 2025
Viewed by 673
Abstract
Background/Objectives: The number of chronic kidney disease (CKD) patients is increasing in Japan, and this population is at high risk of death from cardiovascular and cerebrovascular diseases. Therefore, prevention of arteriosclerosis as a common underlying cause of these diseases is required. In this [...] Read more.
Background/Objectives: The number of chronic kidney disease (CKD) patients is increasing in Japan, and this population is at high risk of death from cardiovascular and cerebrovascular diseases. Therefore, prevention of arteriosclerosis as a common underlying cause of these diseases is required. In this study, we examined whether 11/19-B1 yogurt, which has been proven to reduce serum low-density lipoprotein (LDL) levels, can decrease the serum levels of indoxylsulfate and trimethylamine-N-oxide (TMAO), which are produced by intestinal microbiota and known to cause arteriosclerosis, through improving dysbiosis in hemodialysis patients. Methods: Nineteen dialysis patients consumed 50 g of 11/19-B1 yogurt daily for 8 weeks, and changes in serum lipid profile and uremic toxin levels, intestinal microbiome, as well as the frequency of bowel movement and stool characteristics were observed. Results: The results demonstrated that an intake of yogurt decreased serum LDL 99.3 to 88.5 (p = 0.049) and indoxylsulfate in seven of nine subjects with previously high concentrations, and improved stool characteristics as estimated by the Bristle stool score, although decreased HDL and no beneficial effect on serum TMAO was observed. Conclusions: These results may suggest that the ingestion of 11/19-B1 yogurt provides a preventative effect against the progression of atherosclerosis and renal dysfunction. Full article
(This article belongs to the Section Prebiotics and Probiotics)
Show Figures

Figure 1

17 pages, 2636 KiB  
Article
Withania somnifera and Chrysanthemum zawadskii Herbich var. latilobum (Maxim.) Kitamura Complex Attenuates Obesity in High-Fat-Diet-Induced Obese Mice
by Seong-Hoo Park, Jeongjin Park, Eunhee Yoo, Jaeeun Jung, Mi-Ryeong Park, Soyoung Kim, Jong-Lae Kim, Jong Wook Lee, Ok-kyung Kim and Minhee Lee
Int. J. Mol. Sci. 2025, 26(11), 5230; https://doi.org/10.3390/ijms26115230 - 29 May 2025
Viewed by 527
Abstract
This study aims to evaluate the anti-obesity effects of Ashwagandha (Withania somnifera, AS), Chrysanthemum zawadskii Herbich var. latilobum (Maxim.) Kitamura (C), and their combination (AS:C = 3:1, ASC) in high-fat-diet (HFD)-induced obese animal models. Key metabolic parameters, including body weight, lipid [...] Read more.
This study aims to evaluate the anti-obesity effects of Ashwagandha (Withania somnifera, AS), Chrysanthemum zawadskii Herbich var. latilobum (Maxim.) Kitamura (C), and their combination (AS:C = 3:1, ASC) in high-fat-diet (HFD)-induced obese animal models. Key metabolic parameters, including body weight, lipid metabolism, adipogenesis, energy expenditure, and glucose homeostasis, were assessed. HFD-fed mice were supplemented with AS25, C25, or ASC at different concentrations (ASC25, ASC50, and ASC100). Body weight, food efficiency ratio (FER), organ and adipose tissue weights were measured. Serum biochemical markers, including lipid profiles, glucose, insulin, and liver enzymes, were analyzed. Western blot analysis was conducted to assess the expression of key proteins involved in adipogenesis, lipogenesis, lipolysis, and energy metabolism. ASC complex supplementation, particularly at higher doses (ASC100), significantly reduced body weight gain, liver weight, and total white adipose tissue (WAT) accumulation. ASC complex groups exhibited improved lipid profiles, with reductions in triglycerides, total cholesterol, and low-density lipoprotein (LDL). Serum glucose, insulin, and HbA1c levels were significantly reduced, suggesting improved insulin sensitivity. Western blot analysis revealed that ASC complex supplementation downregulated key adipogenic markers, including PPARγ, C/EBPα, and SREBP1c, while enhancing adiponectin levels. ASC complex also promoted energy metabolism by increasing the phosphorylation of AMPK and UCP1 expression, indicative of enhanced thermogenesis and lipid oxidation. ASC complex supplementation demonstrates a potent anti-obesity effect by modulating adipogenesis, lipid metabolism, and energy expenditure. The findings suggest that ASC complex could serve as a promising natural therapeutic strategy for obesity and metabolic disorders. Further research, including clinical trials, is warranted to validate its efficacy and safety in human populations. Full article
Show Figures

Figure 1

25 pages, 6477 KiB  
Article
Endarachne binghamiae Ameliorates Hepatic Steatosis, Obesity, and Blood Glucose via Modulation of Metabolic Pathways and Oxidative Stress
by Sang-Seop Lee, Sang-Hoon Lee, So-Yeon Kim, Ga-Young Lee, Seung-Yun Han, Bong-Ho Lee and Yung-Choon Yoo
Int. J. Mol. Sci. 2025, 26(11), 5103; https://doi.org/10.3390/ijms26115103 - 26 May 2025
Viewed by 780
Abstract
Obesity and metabolic dysfunction-associated steatotic liver disease (MASLD) are major contributors to the rise in metabolic disorders, particularly in developed countries. Despite the need for effective therapies, natural product-based interventions remain underexplored. This study investigated the therapeutic effects of Endarachne binghamiae, a [...] Read more.
Obesity and metabolic dysfunction-associated steatotic liver disease (MASLD) are major contributors to the rise in metabolic disorders, particularly in developed countries. Despite the need for effective therapies, natural product-based interventions remain underexplored. This study investigated the therapeutic effects of Endarachne binghamiae, a type of brown algae, hot water extract (EB-WE) in ameliorating obesity and MASLD using high-fat diet (HFD)-induced ICR mice for an acute obesity model (4-week HFD feeding) and C57BL/6 mice for a long-term MASLD model (12-week HFD feeding). EB-WE administration significantly reduced body and organ weights and improved serum lipid markers, such as triglycerides (TG), total cholesterol (T-CHO), HDL (high-density lipoprotein), LDL (low-density lipoprotein), adiponectin, and apolipoprotein A1 (ApoA1). mRNA expression analysis of liver and skeletal muscle tissues revealed that EB-WE upregulated Ampkα and Cpt1 while downregulating Cebpα and Srebp1, suppressing lipogenic signaling. Additionally, EB-WE activated brown adipose tissue through Pgc1α and Ucp1, contributing to fatty liver alleviation. Western blot analysis of liver tissues demonstrated that EB-WE enhanced AMPK phosphorylation and modulated lipid metabolism by upregulating PGC-1α and UCP-1 and downregulating PPAR-γ, C/EBP-α, and FABP4 proteins. It also reduced oxidation markers, such as OxLDL (oxidized low-density lipoprotein) and ApoB (apolipoprotein B), while increasing ApoA1 levels. EB-WE suppressed lipid peroxidation by modulating oxidative stress markers, such as SOD (superoxide dismutase), CAT (catalase), GSH (glutathione), and MDA (malondialdehyde), in liver tissues. Furthermore, EB-WE regulated the glucose regulatory pathway in the liver and muscle by inhibiting the expression of Sirt1, Sirt4, Glut2, and Glut4 while increasing the expression of Nrf2 and Ho1. Tentative liquid chromatography–tandem mass spectrometry (LC-MS/MS) analysis for EB-WE identified bioactive compounds, such as pyropheophorbide A and digiprolactone, which are known to have antioxidant or metabolic regulatory activities. These findings suggest that EB-WE improves obesity and MASLD through regulation of metabolic pathways, glucose homeostasis, and antioxidant activity, making it a promising candidate for natural product-based functional foods and pharmaceuticals targeting metabolic diseases. Full article
(This article belongs to the Special Issue Advances and Emerging Trends in Marine Natural Products)
Show Figures

Figure 1

20 pages, 1310 KiB  
Review
Mitochondrial Dysfunction in the Development and Progression of Cardiometabolic Diseases: A Narrative Review
by Loukia Pliouta, Stamatios Lampsas, Aikaterini Kountouri, Emmanouil Korakas, John Thymis, Eva Kassi, Evangelos Oikonomou, Ignatios Ikonomidis and Vaia Lambadiari
J. Clin. Med. 2025, 14(11), 3706; https://doi.org/10.3390/jcm14113706 - 25 May 2025
Cited by 1 | Viewed by 1188
Abstract
Mitochondria play a central role in energy metabolism and continuously adapt through dynamic processes such as fusion and fission. When the balance between these processes is disrupted, it can lead to mitochondrial dysfunction and increased oxidative stress, contributing to the development and progression [...] Read more.
Mitochondria play a central role in energy metabolism and continuously adapt through dynamic processes such as fusion and fission. When the balance between these processes is disrupted, it can lead to mitochondrial dysfunction and increased oxidative stress, contributing to the development and progression of various cardiometabolic diseases (CMDs). Their role is crucial in diabetes mellitus (DM), since their dysfunction drives β-cell apoptosis, immune activation, and chronic inflammation through excessive ROS production, worsening endogenous insulin secretion. Moreover, sympathetic nervous system activation and altered dynamics, contribute to hypertension through oxidative stress, impaired mitophagy, endothelial dysfunction, and cardiomyocyte hypertrophy. Furthermore, the role of mitochondria is catalytic in endothelial dysfunction through excessive reactive oxygen species (ROS) production, disrupting the vascular tone, permeability, and apoptosis, while impairing antioxidant defense and promoting inflammatory processes. Mitochondrial oxidative stress, resulting from an imbalance between ROS/Reactive nitrogen species (RNS) imbalance, promotes atherosclerotic alterations and oxidative modification of oxidizing low-density lipoprotein (LDL). Mitochondrial DNA (mtDNA), situated in close proximity to the inner mitochondrial membrane where ROS are generated, is particularly susceptible to oxidative damage. ROS activate redox-sensitive inflammatory signaling pathways, notably the nuclear factor kappa B (NF-κB) pathway, leading to the transcriptional upregulation of proinflammatory cytokines, chemokines, and adhesion molecules. This proinflammatory milieu promotes endothelial activation and monocyte recruitment, thereby perpetuating local inflammation and enhancing atherogenesis. Additionally, mitochondrial disruptions in heart failure promote further ischemic injury and excessive oxidative stress release and impair ATP production and Ca2⁺ dysregulation, contributing to cell death, fibrosis, and decreased cardiac performance. This narrative review aims to investigate the intricate relationship between mitochondrial dysfunction and CMDs. Full article
(This article belongs to the Section Cardiovascular Medicine)
Show Figures

Figure 1

13 pages, 1023 KiB  
Article
Hydroxytyrosyl Eicosapentaenoate as a Potential Antioxidant for Omega-3 Fatty Acids: Improved Synthesis and Comparative Evaluation with Other Natural Antioxidants
by Natalia García-Acosta, Rosa Cert, Marta Jordán, Luis Goya, Raquel Mateos and Jose Luis Espartero
Biomolecules 2025, 15(5), 714; https://doi.org/10.3390/biom15050714 - 13 May 2025
Viewed by 656
Abstract
Hydroxytyrosol (HT), the primary phenolic compound in virgin olive oil, has notable cardiovascular benefits, particularly in preventing low-density lipoprotein (LDL) oxidation. However, its hydrophilicity limits its solubility and integration into lipid-based formulations. This study aimed to enhance its lipophilicity by synthesizing hydroxytyrosyl eicosapentaenoate [...] Read more.
Hydroxytyrosol (HT), the primary phenolic compound in virgin olive oil, has notable cardiovascular benefits, particularly in preventing low-density lipoprotein (LDL) oxidation. However, its hydrophilicity limits its solubility and integration into lipid-based formulations. This study aimed to enhance its lipophilicity by synthesizing hydroxytyrosyl eicosapentaenoate (HT-EPA), a derivative of HT and eicosapentaenoic acid (EPA), using a one-step enzymatic catalysis with lipase B from Candida antarctica (CALB). The reaction, performed as a suspension of HT in ethyl eicosapentaenoate (Et-EPA) (1:9 molar ratio) under vacuum, achieved higher yields and shorter reaction times than previously reported, with a purity exceeding 98%, confirmed by 1H-NMR. For the first time, the antioxidant capacity of HT-EPA in comparison with other natural antioxidants was assessed using the FRAP assay, while its oxidative stability in an omega-3-rich oil matrix was evaluated via the Rancimat method. HT-EPA and hydroxytyrosyl acetate (HT-Ac) displayed antioxidant activity comparable to HT but significantly higher than α-tocopherol, a common food antioxidant. Given the scarcity of effective lipid-soluble antioxidants, HT-EPA represents a promising candidate for omega-3 nutraceuticals, offering enhanced stability and potential health benefits. This study provides a simple, efficient, and scalable strategy for developing functional lipid-based formulations with cardioprotective potential by improving HT solubility while preserving its antioxidant properties. Full article
(This article belongs to the Section Lipids)
Show Figures

Figure 1

9 pages, 660 KiB  
Article
Dietary Supplementation of Astragalus Polysaccharides Modulates Growth Physiology, Metabolic Homeostasis, and Innate Immune Responses in Rice Field Eels (Monopterus albus)
by Chengcheng Wu, Hang Yang, Yutong Yang, Quan Yuan, Weiwei Lv, Gelana Urgesa Ayana, Mingyou Li, Di Su, Wenzong Zhou and Qinghua Zhang
Fishes 2025, 10(5), 213; https://doi.org/10.3390/fishes10050213 - 6 May 2025
Viewed by 1055
Abstract
To investigate the dietary effects of Astragalus polysaccharides (APSs) on the growth performance, lipid metabolism, antioxidant activity, and non-specific immunity of Asian swamp eel (Monopterus albus) during the domestication stage, fish were randomly allocated into quadruplicate groups receiving Tenebrio molitor-based [...] Read more.
To investigate the dietary effects of Astragalus polysaccharides (APSs) on the growth performance, lipid metabolism, antioxidant activity, and non-specific immunity of Asian swamp eel (Monopterus albus) during the domestication stage, fish were randomly allocated into quadruplicate groups receiving Tenebrio molitor-based diets supplemented with Astragalus polysaccharides (APSs) at graded concentrations of 0 (CON), 700 (APS1), 1400 (APS2), and 2100 (APS3) mg/kg body weight for 28 days. The results showed that dietary APSs at 700–1400 mg/kg·bw significantly enhanced the weight gain rate (WG) and decreased the feed conversion ratio (FCR) of M. albus (p < 0.05). Concurrently, hematological analysis revealed that hemoglobin levels increased by 19.9% and 23.0% in the 700 and 1400 mg/kg APS groups, respectively (p < 0.05). In terms of lipid metabolism, supplementation with APSs significantly increased the serum high-density lipoprotein (HDL) content in all treatment groups (p < 0.05). Lower serum triglyceride (TG) levels were found in the APS2 group (p < 0.05), and decreased triglyceride (TG), cholesterol (CHO), and low-density lipoprotein (LDL) levels were displayed in the APS3 group (p < 0.05). Among the antioxidant parameters, the supplementation with 700 mg/kg·bw APSs significantly increased the glutathione peroxidase (GSH-Px) and catalase (CAT) activity levels of M. albus (p < 0.05). The APS2 group had a significantly increased total antioxidant capacity (T-AOC) and CAT activity levels (p < 0.05), and the APS3 group had significantly increased CAT activity levels (p < 0.05). In addition, the APS1 and APS3 groups had significantly reduced malondialdehyde (MDA) levels (p < 0.05). In terms of non-specific immunity, the APS1 and APS2 groups showed significantly increased superoxide dismutase (SOD) and lysozyme (LZM) activity levels of M. albus (p < 0.05), and the addition of 700 mg/kg·bw APSs significantly increased the levels of alkaline phosphatase (AKP) activity (p < 0.05). Furthermore, the levels of acid phosphatase (ACP) activity were significantly increased in all experimental groups (p < 0.05). In conclusion, the optimal APS addition for T. molitor as biocarrier bait is 700 mg/kg, corresponding to 352 mg/kg, which elicits improvements in the growth parameters, lipid homeostasis regulation, oxidative stress mitigation, and innate immune potentiation of M. albus during the domestication stage. Full article
(This article belongs to the Special Issue Advances in Aquaculture Feed Additives)
Show Figures

Figure 1

18 pages, 11713 KiB  
Article
Compound 3d Attenuates Metabolic Dysfunction-Associated Steatohepatitis via Peroxisome Proliferator-Activated Receptor Pathway Activation and Inhibition of Inflammatory and Apoptotic Signaling
by Shouqing Zhang, Jiajia Yu, Sule Bai, Shuhan Li, Quanyuan Qiu, Xiangshun Kong, Cen Xiang, Zhen Liu, Peng Yu and Yuou Teng
Metabolites 2025, 15(5), 296; https://doi.org/10.3390/metabo15050296 - 29 Apr 2025
Viewed by 792
Abstract
Objectives: Metabolic dysfunction-associated steatohepatitis (MASH) lacks effective therapies. This study aimed to evaluate the therapeutic potential of compound 3d, a novel elafibranor derivative, focusing on its dual mechanisms of PPAR pathway activation and p38 MAPK signaling inhibition. Methods: Integrated in vitro and [...] Read more.
Objectives: Metabolic dysfunction-associated steatohepatitis (MASH) lacks effective therapies. This study aimed to evaluate the therapeutic potential of compound 3d, a novel elafibranor derivative, focusing on its dual mechanisms of PPAR pathway activation and p38 MAPK signaling inhibition. Methods: Integrated in vitro and in vivo approaches were employed. In vitro, free fatty acid (FFA)-induced lipid accumulation in L02 hepatocytes and lipopolysaccharides (LPSs)-stimulated inflammatory responses in RAW264.7 macrophages were used to evaluate lipid metabolism and anti-inflammatory effects. In vivo, a high-fat diet (HFD)-induced MASH model in C57BL/6 mice assessed serum biochemical parameters (triglycerides (TGs), total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C), alanine aminotransferase (ALT), aspartate transaminase (AST), tumor necrosis factor-α (TNF-α), nitric oxide (NO), and interleukin-6 (IL-6)), liver histopathology (H&E, Oil Red O, Masson staining), and proteomic profiling. Gut microbiota composition was analyzed via 16S rRNA sequencing. Western blotting quantified PPAR isoforms (γ/δ), downstream targets (Acox1, EHHADH, Acaa1), and p38 MAPK pathway proteins (p-p38, caspase-8, Bcl-2). Results: In vitro, 3d significantly reduced lipid accumulation (reduction in TG, p < 0.01) and inflammation (decrease in ALT activity, p < 0.05) in hepatocytes, while suppressing LPSs-induced TNF-α (63% reduction), NO (51% decrease), and IL-6 (48% reduction) in macrophages (p < 0.01). In vivo, 3d (30 mg/kg) lowered serum TG (39% decrease), TC (32% reduction), LDL-C (45% decline), and TNF-α (57% reduction) in HFD-fed mice (p < 0.05 vs. model), normalized AST/ALT levels, and ameliorated hepatic steatosis, ballooning, and fibrosis. Proteomics demonstrated PPARγ/δ activation (2.3–3.1-fold upregulation of Acox1, EHHADH, Acaa1; p < 0.001) and p38 MAPK pathway inhibition (54% reduction in p-p38, 61% decrease in caspase-8; 1.8-fold increase in Bcl-2; p < 0.01). Gut microbiota analysis revealed enrichment of beneficial taxa (Lactobacillus: 2.7-fold increase; Bifidobacterium: 1.9-fold rise) and reduced pathogenic Proteobacteria (68% decrease, p < 0.05). Conclusions: Compound 3d alleviates MASH via PPAR-mediated lipid metabolism enhancement and p38 MAPK-driven inflammation/apoptosis suppression, with additional gut microbiota modulation. These findings highlight 3d as a multi-target therapeutic candidate for MASH. Full article
Show Figures

Graphical abstract

15 pages, 3937 KiB  
Article
Probiotic Supplementation Improves Lipid Metabolism Disorders and Immune Suppression Induced by High-Fat Diets in Coilia nasus Liver
by Jun Gao, Qi Mang, Yi Sun and Gangchun Xu
Biology 2025, 14(4), 381; https://doi.org/10.3390/biology14040381 - 7 Apr 2025
Viewed by 666
Abstract
High-fat diets (HFDs) usually trigger disruptions in lipid metabolic processes and immune suppression in fish. As an eco-friendly and potent additive, the inclusion of probiotics in fish diets ameliorates dysregulations in lipid metabolism, mitigates oxidative stress, and reduces inflammatory reactions triggered by HFDs. [...] Read more.
High-fat diets (HFDs) usually trigger disruptions in lipid metabolic processes and immune suppression in fish. As an eco-friendly and potent additive, the inclusion of probiotics in fish diets ameliorates dysregulations in lipid metabolism, mitigates oxidative stress, and reduces inflammatory reactions triggered by HFDs. However, little current research has focused on the improvement of the hazards of HFDs in fish by probiotics. Therefore, we employed 4-dimensional data-independent (4D-DIA) proteomic analysis to investigate the mechanism of the protective impact of probiotics against HFD-induced hepatic injury in Coilia nasus between the HFD group and the probiotic supplementation in HFD (PHFD) group. Additionally, lipid accumulation and antioxidant indicators in the liver were also measured via Oil Red O staining and activity detection. Administration of probiotics markedly attenuated the hepatic concentrations of triglycerides (TG), cholesterol (CHO), and low-density lipoprotein cholesterol (LDL-C) in C. nasus subjected to HFDs. Furthermore, it significantly upregulated the expression of the differentially expressed proteins (DEPs) implicated in cholesterol metabolism and fatty acid oxidation, while concurrently downregulating the DEPs associated with fatty acid synthesis. Additionally, probiotic supplementation significantly reduced the aspartate aminotransferase (AST), alanine aminotransferase (ALT), and malondialdehyde (MDA) levels induced by HFDs. It also upregulated the activities of catalase (CAT) and superoxide dismutase (SOD). Probiotic supplementation significantly upregulated the DEPs related to antioxidants, while significantly downregulating the DEPs associated with inflammatory responses and autophagy. These findings suggested that probiotics ameliorated HFD-induced hepatic lipid accumulation in C. nasus by enhancing cholesterol metabolism and fatty acid oxidation, concomitantly with the suppression of fatty acid synthesis pathways. Additionally, probiotics protected against HFD-induced hepatic injury by enhancing antioxidant defenses and suppressing inflammation in C. nasus. Full article
Show Figures

Figure 1

Back to TopTop