Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (622)

Search Parameters:
Keywords = low voltage regulation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 6108 KiB  
Article
Grid-Forming Buck-Type Current-Source Inverter Using Hybrid Model-Predictive Control
by Gianni Avilan-Losee and Hang Gao
Energies 2025, 18(15), 4124; https://doi.org/10.3390/en18154124 - 4 Aug 2025
Viewed by 22
Abstract
Grid-forming (GFM) inverters have recently seen wider adoption in microgrids and inverter-based-resource (IBR)-penetrated grids, and are primarily used to establish grid voltage under a wide array of conditions. In the existing literature, GFM control is almost exclusively applied using voltage-source inverters (VSIs). However, [...] Read more.
Grid-forming (GFM) inverters have recently seen wider adoption in microgrids and inverter-based-resource (IBR)-penetrated grids, and are primarily used to establish grid voltage under a wide array of conditions. In the existing literature, GFM control is almost exclusively applied using voltage-source inverters (VSIs). However, due to the inherent limitations of available semiconductor devices’ current ratings, inverter-side current must be limited in VSIs, particularly during grid-fault conditions. These limitations complicate the real-world application of GFM functionality in VSIs, and complex control methodologies and tuning parameters are required as a result. In the following study, GFM control is instead applied to a buck-type current-source inverter (CSI) using a combination of linear droop-control and finite-control-set (FCS) mode-predictive control (MPC) that will be referred to herein as hybrid model-predictive control (HMPC). The resulting inverter features a simple topology, inherent current limiting capabilities, and a relatively simple and intuitive control structure. Verification was performed on a 1MVA/630V system via MATLAB/Simulink, and the simulation results demonstrate strong performance in voltage establishment, power regulation, and low-voltage ride through under-grid-fault conditions, highlighting its potential as a competent alternative to VSIs in GFM applications, and lacking the inherent limitations and/or complexity of existing GFM control methodologies. Full article
(This article belongs to the Section F3: Power Electronics)
Show Figures

Figure 1

24 pages, 2203 KiB  
Article
Variable Submodule Voltage Control for Enhanced Efficiency in DAB-Integrated Modular Multilevel Converters
by Marzio Barresi, Davide De Simone, Edoardo Ferri and Luigi Piegari
Energies 2025, 18(15), 4096; https://doi.org/10.3390/en18154096 - 1 Aug 2025
Viewed by 150
Abstract
Modular multilevel converters (MMCs) are widely used in power-conversion applications, including distributed energy storage integration, because of their scalability, high efficiency, and reduced harmonic distortion. Integrating battery storage systems into MMC submodules using dual active bridge (DAB) converters provides electrical isolation and reduces [...] Read more.
Modular multilevel converters (MMCs) are widely used in power-conversion applications, including distributed energy storage integration, because of their scalability, high efficiency, and reduced harmonic distortion. Integrating battery storage systems into MMC submodules using dual active bridge (DAB) converters provides electrical isolation and reduces voltage stress, harmonics, and common-mode issues. However, voltage fluctuations due to the battery state of charge can compromise the zero-voltage switching (ZVS) operation of a DAB and increase the reactive power circulation, leading to higher losses and reduced system performance. To address these challenges, this study investigated an active control strategy for submodule voltage regulation in an MMC with DAB-based battery integration. Assuming single-phase-shift modulation, two control strategies were evaluated. The first strategy regulated the DAB voltage on one side to match the battery voltage on the other, scaled by the high-frequency transformer turns ratio, which facilitated the ZVS operation and reduced the reactive power. The second strategy optimized this voltage to minimize the total power-conversion losses. The proposed control strategies improved the efficiency, particularly at low power levels, achieving several percentage points of improvement compared to maintaining a constant voltage. Full article
Show Figures

Figure 1

22 pages, 2738 KiB  
Article
Mitigation of Solar PV Impact in Four-Wire LV Radial Distribution Feeders Through Reactive Power Management Using STATCOMs
by Obaidur Rahman, Duane Robinson and Sean Elphick
Electronics 2025, 14(15), 3063; https://doi.org/10.3390/electronics14153063 - 31 Jul 2025
Viewed by 184
Abstract
Australia has the highest per capita penetration of rooftop solar PV systems in the world. Integration of these systems has led to reverse power flow and associated voltage rise problems in residential low-voltage (LV) distribution networks. Furthermore, random, uncontrolled connection of single-phase solar [...] Read more.
Australia has the highest per capita penetration of rooftop solar PV systems in the world. Integration of these systems has led to reverse power flow and associated voltage rise problems in residential low-voltage (LV) distribution networks. Furthermore, random, uncontrolled connection of single-phase solar systems can exacerbate voltage unbalance in these networks. This paper investigates the application of a Static Synchronous Compensator (STATCOM) for the improvement of voltage regulation in four-wire LV distribution feeders through reactive power management as a means of mitigating voltage regulation and unbalance challenges. To demonstrate the performance of the STATCOM with varying loads and PV output, a Q-V droop curve is applied to specify the level of reactive power injection/absorption required to maintain appropriate voltage regulation. A practical four-wire feeder from New South Wales, Australia, has been used as a case study network to analyse improvements in system performance through the use of the STATCOM. The outcomes indicate that the STATCOM has a high degree of efficacy in mitigating voltage regulation and unbalance excursions. In addition, compared to other solutions identified in the existing literature, the STATCOM-based solution requires no sophisticated communication infrastructure. Full article
(This article belongs to the Special Issue Power Electronics and Renewable Energy System)
Show Figures

Figure 1

18 pages, 7509 KiB  
Article
A New Kv1.3 Channel Blocker from the Venom of the Ant Tetramorium bicarinatum
by Guillaume Boy, Laurence Jouvensal, Nathan Téné, Jean-Luc Carayon, Elsa Bonnafé, Françoise Paquet, Michel Treilhou, Karine Loth and Arnaud Billet
Toxins 2025, 17(8), 379; https://doi.org/10.3390/toxins17080379 - 30 Jul 2025
Viewed by 283
Abstract
Ant venoms are rich sources of bioactive molecules, including peptide toxins with potent and selective activity on ion channels, which makes them valuable for pharmacological research and therapeutic development. Voltage-dependent potassium (Kv) channels, critical for regulating cellular excitability or cell cycle progression control, [...] Read more.
Ant venoms are rich sources of bioactive molecules, including peptide toxins with potent and selective activity on ion channels, which makes them valuable for pharmacological research and therapeutic development. Voltage-dependent potassium (Kv) channels, critical for regulating cellular excitability or cell cycle progression control, are targeted by a diverse array of venom-derived peptides. This study focuses on MYRTXA4-Tb11a, a peptide from Tetramorium bicarinatum venom, which was previously shown to have a strong paralytic effect on dipteran species without cytotoxicity on insect cells. In the present study, we show that Tb11a exhibited no or low cytotoxicity toward mammalian cells either, even at high concentrations, while electrophysiological studies revealed a blockade of hKv1.3 activity. Additionally, Ta11a, an analog of Tb11a from the ant Tetramorium africanum, demonstrated similar Kv1.3 inhibitory properties. Structural analysis supports that the peptide acts on Kv1.3 channels through the functional dyad Y21-K25 and that the disulfide bridge is essential for biological activity, as reduction seems to disrupt the peptide conformation and impair the dyad. These findings highlight the importance of three-dimensional structure in channel modulation and establish Tb11a and Ta11a as promising Kv1.3 inhibitors. Future research should investigate their selectivity across additional ion channels and employ structure-function studies to further enhance their pharmacological potential. Full article
(This article belongs to the Special Issue Unlocking the Deep Secrets of Toxins)
Show Figures

Figure 1

27 pages, 3280 KiB  
Article
Design and Implementation of a Robust Hierarchical Control for Sustainable Operation of Hybrid Shipboard Microgrid
by Arsalan Rehmat, Farooq Alam, Mohammad Taufiqul Arif and Syed Sajjad Haider Zaidi
Sustainability 2025, 17(15), 6724; https://doi.org/10.3390/su17156724 - 24 Jul 2025
Viewed by 418
Abstract
The growing demand for low-emission maritime transport and efficient onboard energy management has intensified research into advanced control strategies for hybrid shipboard microgrids. These systems integrate both AC and DC power domains, incorporating renewable energy sources and battery storage to enhance fuel efficiency, [...] Read more.
The growing demand for low-emission maritime transport and efficient onboard energy management has intensified research into advanced control strategies for hybrid shipboard microgrids. These systems integrate both AC and DC power domains, incorporating renewable energy sources and battery storage to enhance fuel efficiency, reduce greenhouse gas emissions, and support operational flexibility. However, integrating renewable energy into shipboard microgrids introduces challenges, such as power fluctuations, varying line impedances, and disturbances caused by AC/DC load transitions, harmonics, and mismatches in demand and supply. These issues impact system stability and the seamless coordination of multiple distributed generators. To address these challenges, we proposed a hierarchical control strategy that supports sustainable operation by improving the voltage and frequency regulation under dynamic conditions, as demonstrated through both MATLAB/Simulink simulations and real-time hardware validation. Simulation results show that the proposed controller reduces the frequency deviation by up to 25.5% and power variation improved by 20.1% compared with conventional PI-based secondary control during load transition scenarios. Hardware implementation on the NVIDIA Jetson Nano confirms real-time feasibility, maintaining power and frequency tracking errors below 5% under dynamic loading. A comparative analysis of the classical PI and sliding mode control-based designs is conducted under various grid conditions, such as cold ironing mode of the shipboard microgrid, and load variations, considering both the AC and DC loads. The system stability and control law formulation are verified through simulations in MATLAB/SIMULINK and practical implementation. The experimental results demonstrate that the proposed secondary control architecture enhances the system robustness and ensures sustainable operation, making it a viable solution for modern shipboard microgrids transitioning towards green energy. Full article
(This article belongs to the Special Issue Smart Grid Technologies and Energy Sustainability)
Show Figures

Figure 1

32 pages, 10857 KiB  
Article
Improved Fault Resilience of GFM-GFL Converters in Ultra-Weak Grids Using Active Disturbance Rejection Control and Virtual Inertia Control
by Monigaa Nagaboopathy, Kumudini Devi Raguru Pandu, Ashmitha Selvaraj and Anbuselvi Shanmugam Velu
Sustainability 2025, 17(14), 6619; https://doi.org/10.3390/su17146619 - 20 Jul 2025
Viewed by 357
Abstract
Enhancing the resilience of renewable energy systems in ultra-weak grids is crucial for promoting sustainable energy adoption and ensuring a reliable power supply during disturbances. Ultra-weak grids characterized by a very low Short-Circuit Ratio, less than 2, and high grid impedance significantly impair [...] Read more.
Enhancing the resilience of renewable energy systems in ultra-weak grids is crucial for promoting sustainable energy adoption and ensuring a reliable power supply during disturbances. Ultra-weak grids characterized by a very low Short-Circuit Ratio, less than 2, and high grid impedance significantly impair voltage and frequency stability, imposing challenging conditions for Inverter-Based Resources. To address these challenges, this paper considers a 110 KVA, three-phase, two-level Voltage Source Converter, interfacing a 700 V DC link to a 415 V AC ultra-weak grid. X/R = 1 is controlled using Sinusoidal Pulse Width Modulation, where the Grid-Connected Converter operates in Grid-Forming Mode to maintain voltage and frequency stability under a steady state. During symmetrical and asymmetrical faults, the converter transitions to Grid-Following mode with current control to safely limit fault currents and protect the system integrity. After fault clearance, the system seamlessly reverts to Grid-Forming Mode to resume voltage regulation. This paper proposes an improved control strategy that integrates voltage feedforward reactive power support and virtual capacitor-based virtual inertia using Active Disturbance Rejection Control, a robust, model-independent controller, which rapidly rejects disturbances by regulating d and q-axes currents. To test the practicality of the proposed system, real-time implementation is carried out using the OPAL-RT OP4610 platform, and the results are experimentally validated. The results demonstrate improved fault current limitation and enhanced DC link voltage stability compared to a conventional PI controller, validating the system’s robust Fault Ride-Through performance under ultra-weak grid conditions. Full article
Show Figures

Figure 1

18 pages, 3316 KiB  
Article
Impact of Farm Biogas Plant Auxiliary Equipment on Electrical Power Quality
by Zbigniew Skibko, Andrzej Borusiewicz, Jacek Filipkowski, Łukasz Pisarek and Maciej Kuboń
Energies 2025, 18(14), 3849; https://doi.org/10.3390/en18143849 - 19 Jul 2025
Viewed by 224
Abstract
Devices that meet the needs of agricultural biogas plants represent a significant share of the energy balance of the source. The digester mixer is a crucial component installed in the fermentation chamber. Energy consumption during mixing depends on the regime and intensity, as [...] Read more.
Devices that meet the needs of agricultural biogas plants represent a significant share of the energy balance of the source. The digester mixer is a crucial component installed in the fermentation chamber. Energy consumption during mixing depends on the regime and intensity, as well as the rheological properties of the carrier liquid, the dry matter content, and the dimensions of the fibers. Bioreactor operators often oversize mixers and extend mixing duration to avoid disruptions in biogas production. This paper analyzed the influence of digester mixer operations on selected electrical power quality parameters. For this purpose, two agricultural biogas plants with a capacity of 40 kW, connected to the low-voltage grid, were studied (one located approximately 120 m from the transformer station and the second 430 m away). As shown by the correlations presented in the article, the connection point of the biogas plant significantly impacted the magnitude of the influence of mixer operations on the analyzed voltage parameters. In the second biogas plant, switching on the mixers (in the absence of generation) caused the grid voltage to drop to the lower value permitted by regulations. (Switching on the mixers caused a change in voltage by about 30 V.) The most disturbances were introduced into the grid when the power generated by the biogas plant was equal to the power consumed by its internal equipment. (THDI then reached as high as 63.2%, while in other cases, it did not exceed 17%.) Furthermore, the operation of the mixers alone resulted in a reduction of approximately 1 MWh of energy exported to the power grid per month. Full article
Show Figures

Figure 1

19 pages, 2954 KiB  
Article
Maximum Power Extraction of Photovoltaic Systems Using Dynamic Sliding Mode Control and Sliding Observer
by Ali Karami-Mollaee and Oscar Barambones
Mathematics 2025, 13(14), 2305; https://doi.org/10.3390/math13142305 - 18 Jul 2025
Viewed by 197
Abstract
In this paper, a robust optimized controller is implemented in the photovoltaic generator system (PVGS). The PVGS is composed of individual photovoltaic (PV) cells, which convert solar energy to electrical energy. To optimize the efficiency of the PVGS under variable solar irradiance and [...] Read more.
In this paper, a robust optimized controller is implemented in the photovoltaic generator system (PVGS). The PVGS is composed of individual photovoltaic (PV) cells, which convert solar energy to electrical energy. To optimize the efficiency of the PVGS under variable solar irradiance and temperatures, a maximum power point tracking (MPPT) controller is necessary. Additionally, the PVGS output voltage is typically low for many applications. To achieve the MPPT and to gain the output voltage, an increasing boost converter (IBC) is employed. Then, two issues should be considered in MPPT. At first, a smooth control signal for adjusting the duty cycle of the IBC is important. Another critical issue is the PVGS and IBC unknown sections, i.e., the total system uncertainty. Therefore, to address the system uncertainties and to regulate the smooth duty cycle of the converter, a robust dynamic sliding mode control (DSMC) is proposed. In DSMC, a low-pass integrator is placed before the system to suppress chattering and to produce a smooth actuator signal. However, this integrator increases the system states, and hence, a sliding mode observer (SMO) is proposed to estimate this additional state. The stability of the proposed control scheme is demonstrated using the Lyapunov theory. Finally, to demonstrate the effectiveness of the proposed method and provide a reliable comparison, conventional sliding mode control (CSMC) with the same proposed SMO is also implemented. Full article
(This article belongs to the Special Issue Applied Mathematics and Intelligent Control in Electrical Engineering)
Show Figures

Figure 1

19 pages, 3865 KiB  
Article
The Voltage Regulation of Boost Converters via a Hybrid DQN-PI Control Strategy Under Large-Signal Disturbances
by Pengqiang Nie, Yanxia Wu, Zhenlin Wang, Song Xu, Seiji Hashimoto and Takahiro Kawaguchi
Processes 2025, 13(7), 2229; https://doi.org/10.3390/pr13072229 - 12 Jul 2025
Viewed by 352
Abstract
The DC-DC boost converter plays a crucial role in interfacing low-voltage sources with high-voltage DC buses in DC microgrid systems. To enhance the dynamic response and robustness of the system under large-signal disturbances and time-varying system parameters, this paper proposes a hybrid control [...] Read more.
The DC-DC boost converter plays a crucial role in interfacing low-voltage sources with high-voltage DC buses in DC microgrid systems. To enhance the dynamic response and robustness of the system under large-signal disturbances and time-varying system parameters, this paper proposes a hybrid control strategy that integrates proportional–integral (PI) control with a deep Q-network (DQN). The proposed framework leverages the advantages of PI control in terms of steady-state regulation and a fast transient response, while also exploiting the capabilities of the DQN agent to learn optimal control policies in dynamic and uncertain environments. To validate the effectiveness and robustness of the proposed hybrid control framework, a detailed boost converter model was developed in the MATLAB 2024/Simulink environment. The simulation results demonstrate that the proposed framework exhibits a significantly faster transient response and enhanced robustness against nonlinear disturbances compared to the conventional PI and fuzzy controllers. Moreover, by incorporating PI-based fine-tuning in the steady-state phase, the framework effectively compensates for the control precision limitations caused by the discrete action space of the DQN algorithm, thereby achieving high-accuracy voltage regulation without relying on an explicit system model. Full article
(This article belongs to the Special Issue Challenges and Advances of Process Control Systems)
Show Figures

Figure 1

23 pages, 2540 KiB  
Article
Decentralised Consensus Control of Hybrid Synchronous Condenser and Grid-Forming Inverter Systems in Renewable-Dominated Low-Inertia Grids
by Hamid Soleimani, Asma Aziz, S M Muslem Uddin, Mehrdad Ghahramani and Daryoush Habibi
Energies 2025, 18(14), 3593; https://doi.org/10.3390/en18143593 - 8 Jul 2025
Cited by 1 | Viewed by 348
Abstract
The increasing penetration of renewable energy sources (RESs) has significantly altered the operational characteristics of modern power systems, resulting in reduced system inertia and fault current capacity. These developments introduce new challenges for maintaining frequency and voltage stability, particularly in low-inertia grids that [...] Read more.
The increasing penetration of renewable energy sources (RESs) has significantly altered the operational characteristics of modern power systems, resulting in reduced system inertia and fault current capacity. These developments introduce new challenges for maintaining frequency and voltage stability, particularly in low-inertia grids that are dominated by inverter-based resources (IBRs). This paper presents a hierarchical control framework that integrates synchronous condensers (SCs) and grid-forming (GFM) inverters through a leader–follower consensus control architecture to address these issues. In this approach, selected GFMs act as leaders to restore nominal voltage and frequency, while follower GFMs and SCs collaboratively share active and reactive power. The primary control employs droop-based regulation, and a distributed secondary layer enables proportional power sharing via peer-to-peer communication. A modified IEEE 14-bus test system is implemented in PSCAD to validate the proposed strategy under scenarios including load disturbances, reactive demand variations, and plug-and-play operations. Compared to conventional droop-based control, the proposed framework reduces frequency nadir by up to 0.3 Hz and voltage deviation by 1.1%, achieving optimised sharing indices. Results demonstrate that consensus-based coordination enhances dynamic stability and power-sharing fairness and supports the flexible integration of heterogeneous assets without requiring centralised control. Full article
(This article belongs to the Special Issue Advances in Sustainable Power and Energy Systems: 2nd Edition)
Show Figures

Figure 1

24 pages, 4035 KiB  
Article
Coordinated Optimization Scheduling Method for Frequency and Voltage in Islanded Microgrids Considering Active Support of Energy Storage
by Xubin Liu, Jianling Tang, Qingpeng Zhou, Jiayao Peng and Nanxing Huang
Processes 2025, 13(7), 2146; https://doi.org/10.3390/pr13072146 - 5 Jul 2025
Cited by 1 | Viewed by 344
Abstract
In islanded microgrids with high-proportion renewable energy, the disconnection from the main grid leads to the characteristics of low inertia, weak damping, and high impedance ratio, which exacerbate the safety risks of frequency and voltage. To balance the requirements of system operation economy [...] Read more.
In islanded microgrids with high-proportion renewable energy, the disconnection from the main grid leads to the characteristics of low inertia, weak damping, and high impedance ratio, which exacerbate the safety risks of frequency and voltage. To balance the requirements of system operation economy and frequency–voltage safety, a coordinated optimization scheduling method for frequency and voltage in islanded microgrids considering the active support of battery energy storage (BES) is proposed. First, to prevent the state of charge (SOC) of BES from exceeding the frequency regulation range due to rapid frequency adjustment, a BES frequency regulation strategy with an adaptive virtual droop control coefficient is adopted. The frequency regulation capability of BES is evaluated based on the capacity constraints of grid-connected converters, and a joint frequency and voltage regulation strategy for BES is proposed. Second, an average system frequency model and an alternating current power flow model for islanded microgrids are established. The influence of steady-state voltage fluctuations on active power frequency regulation is analyzed, and dynamic frequency safety constraints and node voltage safety constraints are constructed and incorporated into the optimization scheduling model. An optimization scheduling method for islanded microgrids that balances system operation costs and frequency–voltage safety is proposed. Finally, the IEEE 33-node system in islanded mode is used as a simulation case. Through comparative analysis of different optimization strategies, the effectiveness of the proposed method is verified. Full article
Show Figures

Figure 1

31 pages, 3684 KiB  
Article
A Distributed Cooperative Anti-Windup Algorithm Improving Voltage Profile in Distribution Systems with DERs’ Reactive Power Saturation
by Giovanni Mercurio Casolino, Giuseppe Fusco and Mario Russo
Energies 2025, 18(13), 3540; https://doi.org/10.3390/en18133540 - 4 Jul 2025
Viewed by 266
Abstract
This paper proposes a Distributed Cooperative Algorithm (DCA) that solves the windup problem caused by the saturation of the Distributed Energy Resource (DER) PI-based control unit. If the reference reactive current output by the PI exceeds the maximum reactive power capacity of the [...] Read more.
This paper proposes a Distributed Cooperative Algorithm (DCA) that solves the windup problem caused by the saturation of the Distributed Energy Resource (DER) PI-based control unit. If the reference reactive current output by the PI exceeds the maximum reactive power capacity of the DER, the control unit saturates, preventing the optimal voltage regulation at the connection node of the Active Distribution Network (ADN). Instead of relying on a centralized solution, we proposed a cooperative approach in which each DER’s control unit takes part in the DCA. If a control unit saturates, the voltage regulation error is not null, and the algorithm is activated to assign a share of this error to all DERs’ control units according to a weighted average principle. Subsequently, the algorithm determines the control unit’s new value of the voltage setpoint, desaturating the DER and enhancing the voltage profile. The proposed DCA is independent of the design of the control unit, does not require parameter tuning, exchanges only the regulation error at a low sampling rate, handles multiple saturations, and has limited communication requirements. The effectiveness of the proposed DCA is validated through numerical simulations of an ADN composed of two IEEE 13-bus Test Feeders. Full article
Show Figures

Figure 1

15 pages, 2182 KiB  
Article
Investigating the Thermal Runaway Characteristics of the Prismatic Lithium Iron Phosphate Battery Under a Coupled Charge Rate and Ambient Temperature
by Jikai Tian, Zhenxiong Wang, Lingrui Kong, Fengyang Xu, Xin Dong and Jun Shen
Batteries 2025, 11(7), 253; https://doi.org/10.3390/batteries11070253 - 4 Jul 2025
Viewed by 628
Abstract
Optimizing the charging rate is crucial for enhancing lithium iron phosphate (LFP) battery performance. The substantial heat generation during high C-rate charging poses a significant risk of thermal runaway, necessitating advanced thermal management strategies. This study systematically investigates the coupling mechanism between charging [...] Read more.
Optimizing the charging rate is crucial for enhancing lithium iron phosphate (LFP) battery performance. The substantial heat generation during high C-rate charging poses a significant risk of thermal runaway, necessitating advanced thermal management strategies. This study systematically investigates the coupling mechanism between charging rates and ambient temperatures in overcharge-induced thermal runaway, filling the knowledge gaps associated with multi-indicator thermal management approaches. Through experiments on prismatic LFP cells across five operational conditions (1C/35 °C, 1.5C/5 °C, 1.5C/15 °C, 1.5C/25 °C, and 1.5C/35 °C), synchronized infrared thermography and electrochemical monitoring quantitatively characterize the thermal–electric coupling dynamics throughout overcharge-to-runaway transitions. The experimental findings reveal three key observations: (1) Charge rate and temperature have synergistic amplification effects on triggering thermal runaway. (2) Contrary to intuition, while low-current/high-temperature charging enhances safety versus high-current/high-temperature conditions, low-temperature/high-current charging triggers thermal runaway faster than high-temperature/high-current scenarios. (3) Staged multi-indicator lithium battery thermal runaway warning signals would be more accurate (first peaks > 0.5 °C/s temperature rise rate + >10 V/s voltage drop rate). These findings collectively demonstrate the imperative for next-generation battery management systems integrating real-time ambient temperature compensation with adaptive C-rate control, fundamentally advancing beyond conventional single-variable thermal regulation strategies. Intelligent adaptation is critical for mitigating thermal runaway risks in LFP battery operations. Full article
(This article belongs to the Special Issue Thermal Management System for Lithium-Ion Batteries: 2nd Edition)
Show Figures

Figure 1

25 pages, 7712 KiB  
Article
Empirical EV Load Model for Distribution Network Analysis
by Quang Bach Phan, Obaidur Rahman and Sean Elphick
Energies 2025, 18(13), 3494; https://doi.org/10.3390/en18133494 - 2 Jul 2025
Viewed by 304
Abstract
Electric vehicles (EVs) have introduced new operational challenges for distribution network service providers (DNSPs), particularly for voltage regulation due to unpredictable charging behaviour and the intermittent nature of distributed energy resources (DERs). This study focuses on formulating an empirical EV load model that [...] Read more.
Electric vehicles (EVs) have introduced new operational challenges for distribution network service providers (DNSPs), particularly for voltage regulation due to unpredictable charging behaviour and the intermittent nature of distributed energy resources (DERs). This study focuses on formulating an empirical EV load model that characterises charging behaviour over a broad spectrum of supply voltage magnitudes to enable more accurate representation of EV demand under varying grid conditions. The empirical model is informed by laboratory evaluation of one Level 1 and two Level 2 chargers, along with five EV models. The testing revealed that all the chargers operated in a constant current (CC) mode across the applied voltage range, except for certain Level 2 chargers, which transitioned to constant power (CP) operation at voltages above 230 V. A model of a typical low voltage network has been developed using the OpenDSS software package (version 10.2.0.1) to evaluate the performance of the proposed empirical load model against traditional CP load modelling. In addition, a 24 h case study is presented to provide insights into the practical implications of increasing EV charging load. The results demonstrate that the CP model consistently overestimated network demand and voltage drops and failed to capture the voltage-dependent behaviour of EV charging in response to source voltage change. In contrast, the empirical model provided a more realistic reflection of network response, offering DNSPs improved accuracy for system planning. Full article
Show Figures

Graphical abstract

27 pages, 14158 KiB  
Article
Application of Repetitive Control to Grid-Forming Converters in Centralized AC Microgrids
by Hélio Marcos André Antunes, Ramon Ravani Del Piero and Sidelmo Magalhães Silva
Energies 2025, 18(13), 3427; https://doi.org/10.3390/en18133427 - 30 Jun 2025
Viewed by 247
Abstract
The electrical grid is undergoing increasing integration of decentralized power sources connected to the low-voltage network. In this context, the concept of a microgrid has emerged as a system comprising small-scale energy sources, loads, and storage devices, coordinated to operate as a single [...] Read more.
The electrical grid is undergoing increasing integration of decentralized power sources connected to the low-voltage network. In this context, the concept of a microgrid has emerged as a system comprising small-scale energy sources, loads, and storage devices, coordinated to operate as a single controllable entity capable of functioning in either grid-connected or islanded mode. The microgrid may be organized in a centralized configuration, such as a master-slave scheme, wherein the centralized converter, i.e., the grid-forming converter (GFC), plays a pivotal role in ensuring system stability and control. This paper introduces a plug-in repetitive controller (RC) strategy tuned to even harmonic orders for application in a three-phase GFC, diverging from the conventional approach that focuses on odd harmonics. The proposed control is designed within a synchronous reference frame and is targeted at centralized AC microgrids, particularly during islanded operation. Simulation results are presented to assess the microgrid’s power flow and power quality, thereby evaluating the performance of the GFC. Additionally, the proposed control was implemented on a Texas Instruments TMS320F28335 digital signal processor and validated through hardware-in-the-loop (HIL) simulation using the Typhoon HIL 600 platform, considering multiple scenarios with both linear and nonlinear loads. The main results highlight that the RC improves voltage regulation, mitigates harmonic distortion, and increases power delivery capability, thus validating its effectiveness for GFC operation. Full article
(This article belongs to the Special Issue Energy, Electrical and Power Engineering: 4th Edition)
Show Figures

Figure 1

Back to TopTop