Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (256)

Search Parameters:
Keywords = low molecular weight carbon

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 1231 KB  
Article
Biotechnological Potential and Metabolic Diversity of Lignin-Degrading Bacteria from Decaying Tilia cordata Wood
by Elena Y. Shulga, Bakhtiyar R. Islamov, Artemiy Y. Sukhanov, Mikhail Frolov, Alexander V. Laikov, Natalia V. Trachtmann and Shamil Z. Validov
Microorganisms 2026, 14(2), 266; https://doi.org/10.3390/microorganisms14020266 - 23 Jan 2026
Abstract
Lignin is a complex aromatic polymer that constitutes a major fraction of plant biomass and represents a valuable renewable carbon resource. Naturally decaying wood serves as an environmental reservoir of microorganisms capable of degrading lignin. In this study, we isolated and characterized sixteen [...] Read more.
Lignin is a complex aromatic polymer that constitutes a major fraction of plant biomass and represents a valuable renewable carbon resource. Naturally decaying wood serves as an environmental reservoir of microorganisms capable of degrading lignin. In this study, we isolated and characterized sixteen bacterial strains from decaying Tilia cordata wood using an enrichment culture technique with lignin as the sole carbon source. Taxonomic identification via 16S rRNA gene sequencing revealed microbial diversity spanning the genera Bacillus, Pseudomonas, Stenotrophomonas, and several members of the Enterobacteriaceae family, including Raoultella terrigena isolates. Metagenomic sequencing of the wood substrate revealed an exceptionally rich and balanced bacterial community (Shannon index H′ = 5.07), dominated by Streptomyces, Bradyrhizobium, Bacillus, and Pseudomonas, likely reflecting a specialized consortium adapted to lignin rich late-stage decay. Functional phenotyping demonstrated that all isolates possess ligninolytic potential, evidenced by peroxidase/laccase-type activity through methylene blue decolorization. Dynamic Light Scattering (DLS) and HPLC analyses showed that some isolates, such as Raoultella terrigena MGMM806, effectively depolymerized lignosulfonate into low molecular weight fragments (1.23 nm), while others accumulated intermediate metabolites or completely mineralized the substrate. Growth profiling on monolignol substrates revealed a broad spectrum of catabolic specialization in lignin monomer degradation. The results demonstrate a complex system of metabolic partitioning within a natural bacterial consortium. This collection represents a foundational genetic resource for developing engineered biocatalysts and synthetic microbial communities aimed at the efficient conversion of lignin into valuable aromatic compounds. Full article
(This article belongs to the Section Microbial Biotechnology)
Show Figures

Figure 1

18 pages, 10356 KB  
Article
Chlorella vulgaris Powder as an Eco-Friendly and Low-Cost Corrosion Inhibitor Against Carbon Steel Corrosion by HCl
by Zhong Li, Xiaolong Li, Jianfeng Lai, Shaohua Cao, Guoqiang Liu, Xiaowan Wang, Yan Lyu, Junlei Wang and Jike Yang
Metals 2026, 16(1), 109; https://doi.org/10.3390/met16010109 - 18 Jan 2026
Viewed by 167
Abstract
In this study, dried biomass of the alga Chlorella vulgaris was ground into a powder as an eco-friendly, low-cost inhibitor to mitigate the corrosion of carbon steel in acidic solutions. Electrochemical and weight loss measurements, surface morphology observations, adsorption isotherms, activation energy, and [...] Read more.
In this study, dried biomass of the alga Chlorella vulgaris was ground into a powder as an eco-friendly, low-cost inhibitor to mitigate the corrosion of carbon steel in acidic solutions. Electrochemical and weight loss measurements, surface morphology observations, adsorption isotherms, activation energy, and potential of zero charge calculations were applied to evaluate the inhibition performance. Electrochemical results indicate that C. vulgaris powder can simultaneously inhibit both the anodic and cathodic corrosion processes of carbon steel, demonstrating good inhibition performance and classifying it as a mixed-type inhibitor with both anodic and cathodic characteristics. Weight loss data further confirm that at a concentration of 300 mg/L, the corrosion inhibition efficiency reaches 88%. The fitted adsorption isotherm reveals that the adsorption of Chlorella vulgaris powder on the carbon steel surface follows the Langmuir model. Density functional theory (DFT) and molecular dynamics simulations indicate that the excellent inhibition performance is attributed to the combined effects of physisorption and chemisorption of constituents such as amino acids and cellulose present in C. vulgaris. Full article
Show Figures

Figure 1

25 pages, 3863 KB  
Article
Tidal Dynamics Shaped the Dissolved Organic Carbon Fate and Exchange Flux Across Estuary-Coastal Water Continuum in Zhanjiang Bay, China
by Xiao-Ling Chen, Peng Zhang, Ying-Xian He, Lin Zhou and Ji-Biao Zhang
J. Mar. Sci. Eng. 2026, 14(2), 123; https://doi.org/10.3390/jmse14020123 - 7 Jan 2026
Viewed by 204
Abstract
Dissolved organic matter (DOM) is central to biogeochemical cycles in estuarine-coastal zones, with its source-sink dynamics linking regional ecological functions to global carbon budgets. As a typical semi-enclosed bay in southern China, Zhanjiang Bay (ZJB) features intense tidal mixing and significant seasonal runoff [...] Read more.
Dissolved organic matter (DOM) is central to biogeochemical cycles in estuarine-coastal zones, with its source-sink dynamics linking regional ecological functions to global carbon budgets. As a typical semi-enclosed bay in southern China, Zhanjiang Bay (ZJB) features intense tidal mixing and significant seasonal runoff variations, making it a representative system for understanding DOM dynamics in complex land–sea interaction zones. The migration of dissolved organic carbon (DOC) is crucial for bay carbon budgets, yet its estimation is constrained by land–water interface dynamics and in situ observation limitations. To clarify the regulation of DOM’s fate and exchange flux in ZJB, this study integrated in situ observations, ultraviolet spectroscopy, and three-dimensional fluorescence techniques to analyze DOM tidal dynamics and net DOC exchange flux. Results indicated terrestrial runoff dominated rainy-season DOC sources, resulting in slightly higher concentrations (1.86 ± 0.46 mg·L−1) compared to the dry season (1.82 ± 0.20 mg·L−1). Terrestrial inputs endowed rainy-season DOM with high molecular weight and aromaticity, with microbial humic substances (C2) accounting for 36%. Tidal fluctuations affected DOC via water exchange: ebb tides diluted concentrations with low-DOC open-ocean seawater, while flood tides increased them through high-DOC bay water discharge. Dry-season DOM relied on in situ biotransformation, characterized by low molecular weight and aromaticity, with the protein-like fraction (C4) accounting for 24.3%. Fluorescence index (FI = 1.77–1.79) confirmed DOM as a mixture of allochthonous and autochthonous sources, with significant in situ contributions and weak humification. Net DOC exchange flux, regulated by terrestrial runoff, was 3.6–4.6 times higher in the rainy season, decreasing from the estuary to the coast. In conclusion, the joint regulation of terrestrial runoff-driven seasonal dynamics and tidal water exchange governs ZJB’s DOM dynamics, providing valuable insights for biogeochemical research in semi-enclosed bays. Full article
(This article belongs to the Special Issue Selected Feature Papers in Marine Environmental Science)
Show Figures

Figure 1

19 pages, 4155 KB  
Article
Hyaluronan of Different Molecular Weights Exerts Distinct Therapeutic Effects on Bleomycin-Induced Acute Respiratory Distress Syndrome
by Shu-Ting Peng, Chia-Yu Lai, Tsui-Ling Ko, Chun-Hsiang Hsu, I-Yuan Chen, You-Cheng Jiang, Kuo-An Chu and Yu-Show Fu
Int. J. Mol. Sci. 2026, 27(2), 580; https://doi.org/10.3390/ijms27020580 - 6 Jan 2026
Viewed by 141
Abstract
Acute respiratory distress syndrome (ARDS) is a fatal inflammatory lung disorder with few effective treatments. Hyaluronan (HA), a major extracellular matrix component, exhibits diverse biological activities depending on its molecular weight. This study aimed to evaluate the therapeutic potential of HA of various [...] Read more.
Acute respiratory distress syndrome (ARDS) is a fatal inflammatory lung disorder with few effective treatments. Hyaluronan (HA), a major extracellular matrix component, exhibits diverse biological activities depending on its molecular weight. This study aimed to evaluate the therapeutic potential of HA of various molecular weights in a rat model of ARDS. ARDS was induced in rats via the intratracheal instillation of 5 mg of bleomycin. Seven days later, when ARDS symptoms developed, low (LHA), medium (MHA), high (HHA), and mixed (MIX HA) hyaluronan were intratracheally administered seven times from Days 7 to 28. On Day 7, arterial oxygen saturation (SpO2) and the partial pressure of oxygen (PaO2) decreased, carbon dioxide levels increased, the respiratory rate increased, and extensive lung cell infiltration was observed, confirming successful ARDS induction. LHA and MIX HA improved the SpO2 and PaO2, and the latter increased lung and alveolar volume, reduced infiltration, and normalized breathing. All HA types attenuated collagen deposition and M1 macrophage activity, while MIX HA enhanced M2 polarization and upregulated MMP-2, MMP-9, and TLR-4. LHA increased VEGF and EGF expression. These findings demonstrate that different-weight HAs provide partial ARDS protection via distinct mechanisms. MIX HA shows synergistic effects, restoring and improving lung structure and function, respectively, representing a promising ARDS therapy. Full article
Show Figures

Figure 1

30 pages, 1515 KB  
Review
Carbon-Based Catalysts in Ozonation of Aqueous Organic Pollutants
by Petr Leinweber, Jonáš Malý and Tomáš Weidlich
Catalysts 2026, 16(1), 41; https://doi.org/10.3390/catal16010041 - 1 Jan 2026
Viewed by 510
Abstract
This review summarizes recent applications of carbon-based materials as catalysts in the ozonation of wastewater contaminated with persistent organic pollutants. Methods available for production of commonly used inexpensive carbonaceous materials such as biochar and hydrochar are presented. Differences between production methods of active [...] Read more.
This review summarizes recent applications of carbon-based materials as catalysts in the ozonation of wastewater contaminated with persistent organic pollutants. Methods available for production of commonly used inexpensive carbonaceous materials such as biochar and hydrochar are presented. Differences between production methods of active carbon and biochar or hydrochar are discussed. Interestingly, biochar, in a role of rather simple and cheap charcoal, is catalytically active and increases the rate of oxidative degradation of nonbiodegradable aqueous contaminants such as drugs or textile dyestuffs. This review documents that even the addition of biochar to the ozonized wastewater increases the rate of removal of persistent organic pollutants. Cheap bio-based carbonaceous materials such as biochar work as adsorbent of dissolved pollutants and catalysts for ozone-based degradation of organic compounds via the formation of reactive oxygen species (ROS). Low-molecular-weight degradation products produced by ozonation of pharmaceuticals and textile dyes are presented. The combination of air-based ozone generation, together with application of biochar, represents a sustainable AOP-based wastewater treatment method. Full article
(This article belongs to the Collection Catalytic Conversion and Utilization of Carbon-Based Energy)
Show Figures

Scheme 1

42 pages, 12068 KB  
Article
Geochemical and Radiometric Assessment of Romanian Black Sea Shelf Waters and Sediments: Implications for Anthropogenic Influence
by Irina Catianis, Mihaela Mureșan, Tatiana Begun, Adrian Teacă, Andra Bucșe, Florina Rădulescu, Florina Macau, Naliana Lupașcu, Daniela Florea, Florentina Fediuc, Sorin Ujeniuc, Radu Seremet, Silvia Ise, Iulian Andreicovici and Ana Bianca Pavel
J. Mar. Sci. Eng. 2026, 14(1), 84; https://doi.org/10.3390/jmse14010084 - 31 Dec 2025
Viewed by 360
Abstract
The Northwestern Black Sea shelf, strongly influenced by Danube discharge and coastal activities, provides an effective setting for separating lithogenic controls from localized anthropogenic inputs. We applied a multi-proxy geochemical–radiometric approach to Romanian shelf waters and surface sediments. A CTD–Rosette was used to [...] Read more.
The Northwestern Black Sea shelf, strongly influenced by Danube discharge and coastal activities, provides an effective setting for separating lithogenic controls from localized anthropogenic inputs. We applied a multi-proxy geochemical–radiometric approach to Romanian shelf waters and surface sediments. A CTD–Rosette was used to quantify nutrients, chlorophyll-a, TOC, and TN. Dissolved metals and PAHs were measured in seawater, while surface sediments were analyzed for CaCO3, TOC, trace metals, and γ-emitting radionuclides. Multivariate statistics (PCA/FA) were used to resolve the dominant environmental controls. Summer stratification was characterized by the bottom-layer maxima of PO43−, SiO44−, and NH4+ and a pronounced subsurface chlorophyll-a maximum at 12–16 m. Surface-water Σ16PAH ranged from 134 to 347 ng L−1 and was dominated by low-molecular-weight compounds, with episodic nearshore enrichment in high-molecular-weight species. In sediments, CaCO3 ranged from 7.6 to 29.9% and TOC from 0.11 to 0.96%. Trace metals were generally low. Pb and Hg peaked at nearshore station S23, whereas mean Ni (38.88 ppm) slightly exceeded the 35 ppm guideline, consistent with natural Fe/Mn-oxide association. PCA/FA identified a terrigenous axis (Fe-Al-Ti-V-Ni-Cr), a carbonate axis (CaCO3; Sr where available), and an anthropogenic factor (Pb, Hg, HMW-PAHs). γ-spectrometry provided a compatible radiometric baseline that supports the multi-proxy interpretation. Full article
(This article belongs to the Section Marine Environmental Science)
Show Figures

Figure 1

16 pages, 3645 KB  
Article
Foliar-Applied Selenium–Zinc Nanocomposite Drives Synergistic Effects on Se/Zn Accumulation in Brassica chinensis L.
by Mengna Tao, Yusong Yao, Lian Zhang, Jie Zeng, Bingxu Cheng and Chuanxi Wang
Nanomaterials 2026, 16(1), 56; https://doi.org/10.3390/nano16010056 - 31 Dec 2025
Viewed by 277
Abstract
Micronutrient malnutrition persists as a global health burden, while conventional biofortification approaches suffer from low efficiency and environmental trade-offs. This study aimed to develop and evaluate a foliar-applied selenium–zinc nanocomposite (Nano-ZSe, a mixture of zinc ionic fertilizer and nano selenium) for synergistic Se/Zn [...] Read more.
Micronutrient malnutrition persists as a global health burden, while conventional biofortification approaches suffer from low efficiency and environmental trade-offs. This study aimed to develop and evaluate a foliar-applied selenium–zinc nanocomposite (Nano-ZSe, a mixture of zinc ionic fertilizer and nano selenium) for synergistic Se/Zn co-biofortification in Brassica chinensis L., using a controlled pot experiment that integrated physiological, metabolic, molecular, and rhizosphere analyses. Application of Nano-ZSe at 0.18 mg·kg−1 (Based on soil weight) not only increased shoot biomass by 28.4% but also elevated Se and Zn concentrations in edible tissues by 7.00- and 1.66-fold (within the safe limits established for human consumption), respectively, compared to the control. Mechanistically, Nano-ZSe reprogrammed the ascorbate-glutathione redox system and redirected carbon flux through the tricarboxylic acid cycle, suppressing acetyl-CoA biosynthesis and reducing abscisic acid accumulation. This metabolic rewiring promoted stomatal opening, thereby enhancing foliar nutrient uptake. Simultaneously, Nano-ZSe triggered the coordinated upregulation of BcSultr1;1 (a sulfate/selenium transporter) and BcZIP4 (a Zn2+ transporter), enabling synchronized translocation and the tissue-level co-accumulation of Se and Zn. Beyond plant physiology, Nano-ZSe improved soil physicochemical properties, enriched rhizosphere microbial diversity, and increased crop yield and economic returns. Collectively, this work demonstrates that nano-enabled dual-nutrient delivery systems can bridge nutritional and agronomic objectives through integrated physiological, molecular, and rhizosphere-mediated mechanisms, offering a scalable and environmentally sustainable pathway toward functional food production and the mitigation of hidden hunger. Full article
(This article belongs to the Section Nanotechnology in Agriculture)
Show Figures

Graphical abstract

15 pages, 3928 KB  
Article
Glucose-6-Phosphate 1-Epimerase Responds to Phosphate Starvation by Regulating Carbohydrate Homeostasis in Rice and Arabidopsis
by Hongkai Zhang, Shuhao Zhang, Youming Guo, Luyao You, Hongqian Ma, Yubao Cao, Haiying Zhang, Bowen Luo, Xiao Zhang, Dan Liu, Ling Wu, Duojiang Gao, Shiqiang Gao, Baolin Han, Guohua Zhang, Jijin Li, Zihao Feng, Dong Li, Yi Ma, Haibo Lan, Lijuan Gong and Shibin Gaoadd Show full author list remove Hide full author list
Plants 2025, 14(24), 3869; https://doi.org/10.3390/plants14243869 - 18 Dec 2025
Viewed by 484
Abstract
Plants adapt to phosphate starvation by remodeling root architecture and reallocating carbohydrates. Glucose-6-phosphate 1-epimerase (G6PE), a key enzyme in carbon and energy metabolism, is hypothesized to contribute to phosphate starvation responses. Here, we investigated the role of G6PE in rice and Arabidopsis through [...] Read more.
Plants adapt to phosphate starvation by remodeling root architecture and reallocating carbohydrates. Glucose-6-phosphate 1-epimerase (G6PE), a key enzyme in carbon and energy metabolism, is hypothesized to contribute to phosphate starvation responses. Here, we investigated the role of G6PE in rice and Arabidopsis through phenotypic, physiological, and molecular analyses of osg6pe and atg6pe mutants. Under normal-phosphate (NP) conditions, both mutants exhibited significantly reduced biomass and fresh weight compared with the wild-type (WT) plants, indicating growth inhibition caused by the mutations. Under low-phosphate (LP) conditions, the mutants displayed enhanced root growth, suggesting that G6PE functions as a negative regulator of radial root growth under phosphate deficiency. The osg6pe mutant showed elevated phosphate content and increased leaf starch accumulation under LP, whereas it accumulated more phosphate but less starch under NP. Expression analysis revealed that G6PE transcripts were suppressed under NP but remained relatively stable under LP. Notably, among phosphate starvation-induced (PSI) genes, only PHT1;4 showed notable transcriptional changes in both species. These findings indicate that G6PE contributes to phosphate homeostasis by modulating carbohydrate metabolism, restraining radial root growth, and selectively regulating PHT1 expression under phosphate-deficient conditions. Full article
(This article belongs to the Special Issue Abiotic Stress Responses in Plants—Second Edition)
Show Figures

Figure 1

15 pages, 4638 KB  
Article
Electrospun Carbon Fibers from Green Solvent-Fractionated Kraft Lignin
by Marta Goliszek-Chabros and Omid Hosseinaei
Fibers 2025, 13(12), 162; https://doi.org/10.3390/fib13120162 - 4 Dec 2025
Viewed by 461
Abstract
High production costs and sustainability issues are the main factors limiting the widespread application of carbon fibers in various industrial sectors. Lignin, a by-product from the paper and pulping industry, due to its high carbon content of up to 60%, can be considered [...] Read more.
High production costs and sustainability issues are the main factors limiting the widespread application of carbon fibers in various industrial sectors. Lignin, a by-product from the paper and pulping industry, due to its high carbon content of up to 60%, can be considered a potential replacement for polyacrylonitrile in carbon fiber production. The production of lignins with distinct molecular weight distributions as well as group functionalities is essential to enhance high-value applications of lignin. In this study, we present a simple, green solvent-based fractionation method for LignoBoost softwood kraft lignin to obtain a lignin fraction with tailored physicochemical properties for electrospun carbon fiber production without polymeric spinning additives. Sequential solvent extraction was used to produce two fractions with distinct molecular weights: low-molecular-weight softwood kraft lignin (LMW-SKL) and high-molecular-weight softwood kraft lignin (HMW-SKL). The lignin fractions were characterized using size exclusion chromatography (SEC) for the molar mass distribution. The thermal properties of lignins were studied using thermogravimetry (TGA) and differential scanning calorimetry (DSC). Hydroxyl group content was quantified using quantitative 31P NMR spectroscopy. We successfully demonstrated the electrospinning of a high-molecular-weight lignin fraction—obtained in high yield from the fractionation process—without the use of any additives, followed by thermal conversion to produce electrospun carbon fibers. The presented results contribute to the valorization of lignin as well as to the development of green and sustainable technologies. Full article
Show Figures

Figure 1

11 pages, 2456 KB  
Article
Study on the Influence Law of Dispersant on the Resistance Value of MWCNTs/PANI Epoxy Semiconducting Coatings
by Baiwen Du, Dengyun Li, Kai Zhu, Changxi Yue, Jia Xie and Ran Gao
Polymers 2025, 17(23), 3150; https://doi.org/10.3390/polym17233150 - 27 Nov 2025
Viewed by 360
Abstract
Under the action of strong DC electric field, the resistance of the insulating cylinder of high-voltage DC voltage divider shows a nonlinear decrease with the increase in electric field strength, which leads to the decrease in measurement accuracy. It is shown that the [...] Read more.
Under the action of strong DC electric field, the resistance of the insulating cylinder of high-voltage DC voltage divider shows a nonlinear decrease with the increase in electric field strength, which leads to the decrease in measurement accuracy. It is shown that the effect can be suppressed to a certain extent by applying a semi-conductive coating on the surface of the insulating outer barrel. However, due to the inherent properties of the conductive nano-fillers, it is difficult to achieve uniform dispersion in the polymer matrix, which limits the electric field modulation ability of the coating and makes it difficult to fundamentally solve the nonlinear effect of the insulating outer barrel resistance. In this study, based on the multi-walled carbon nanotubes/polyaniline (MWCNTs/PANI) epoxy semiconducting coating system, the effects of dispersant type and dosage on the variation in the coating equivalent resistance with voltage were investigated. The semiconducting coatings with different dispersion states of conductive fillers were prepared by regulating the types and amounts of alkyl ammonium salt dispersants, polymer urethane dispersants, and low molecular weight unsaturated polycarboxylic acid polymer dispersants, and analyzed in combination with the equivalent resistance test, SEM microscopic morphology characterization, and coating adhesion test. The results show that the dispersion of the conductive filler has a significant effect on the suppression of the resistance nonlinear effect, and the polymer polyurethane dispersant can make the filler uniformly dispersed by virtue of the strong spatial site resistance, and the equivalent resistance change rate is lower than 28% under the additive amount of 0.5–1.5%, which has an excellent suppression of the nonlinear effect of the insulation resistance, and the adhesion of the coating is significantly improved to grade 0. The study provides theoretical basis and experimental support for the optimization of the preparation process of high-performance MWCNTs/PANI semiconducting coatings, which can help to improve the measurement accuracy and operational stability of high-voltage DC voltage dividers. Full article
(This article belongs to the Section Polymer Applications)
Show Figures

Figure 1

16 pages, 2043 KB  
Article
Paramagnetic Agents for SE DNP: Synthesis and ESR Characterization of New Lipophilic Derivatives of Finland Trityl
by Victor M. Tormyshev, Danil A. Kuznetsov, Arthur E. Raizvikh, Olga Yu. Rogozhnikova, Tatiana I. Troitskaya and Elena G. Bagryanskaya
Molecules 2025, 30(22), 4463; https://doi.org/10.3390/molecules30224463 - 19 Nov 2025
Viewed by 548
Abstract
Triarylmethyl radicals (TAMs) have recently emerged as highly effective polarizing agents in dynamic nuclear polarization (DNP) under viscous conditions, enabling substantial hyperpolarization via the solid-effect (SE) DNP mechanism even at room temperature. A comparable, though less pronounced, enhancement was observed for BDPA radicals [...] Read more.
Triarylmethyl radicals (TAMs) have recently emerged as highly effective polarizing agents in dynamic nuclear polarization (DNP) under viscous conditions, enabling substantial hyperpolarization via the solid-effect (SE) DNP mechanism even at room temperature. A comparable, though less pronounced, enhancement was observed for BDPA radicals embedded in phosphocholine-based lipid bilayers. Given the increasing interest in elucidating the structure and dynamics of biopolymers and their high-molecular-weight assemblies—such as cell membranes—this study focuses on the design, synthesis, and characterization of paramagnetic agents tailored for DNP-based structural biology. To this end, we synthesized a series of TAM derivatives functionalized with lipophilic substituents and characterized their magnetic resonance properties, including isotropic hyperfine interaction (HFI) constants on carbon nuclei and electron spin relaxation times (T1 and Tm) at low temperatures (80 K). Echo-detected EPR spectra and electron spin echo envelope modulations (ESEEM) were recorded for novel TAM incorporated into liposomes composed of 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC). These low-temperature measurements revealed that the radicals are localized either at the liposome surface or within the lipid bilayer, ensuring optimal accessibility to water molecules. Crucially, the presence of a single cholesterol moiety provides strong noncovalent anchoring within the hydrophobic core of the bilayer. Guided by these findings, we identify an amphiphilic TAM bearing a single cholesterol group and polar carboxyl functionalities as a highly promising candidate for DNP applications in membrane biology, combining efficient polarization transfer, bilayer integration, and aqueous accessibility. Full article
(This article belongs to the Section Physical Chemistry)
Show Figures

Graphical abstract

27 pages, 4687 KB  
Article
Reactive Crystallization of Lithium Carbonate from LiCl and Na2CO3: Effect of Polyacrylic Acid Monitored by Focused Reflectance Measurement
by Eder Piceros, Ricardo I. Jeldres, Pedro Robles and Teófilo A. Graber
Inorganics 2025, 13(11), 377; https://doi.org/10.3390/inorganics13110377 - 19 Nov 2025
Viewed by 732
Abstract
The reactive crystallization of lithium carbonate (Li2CO3) from LiCl and Na2CO3 solutions was studied by Focused Beam Reflectance Measurement (FBRM) to evaluate the effect of polyacrylic acid (PAA) of different molecular weights (1800, 230,000, and 450,000 [...] Read more.
The reactive crystallization of lithium carbonate (Li2CO3) from LiCl and Na2CO3 solutions was studied by Focused Beam Reflectance Measurement (FBRM) to evaluate the effect of polyacrylic acid (PAA) of different molecular weights (1800, 230,000, and 450,000 g/mol). In situ monitoring determined nucleation and growth rates, as well as the evolution of fine (<10 µm) and coarse (50–150 µm) particles. It was observed that maximum velocities occur in the first few seconds after mixing, decreasing subsequently due to the consumption of supersaturation. Increasing the initial LiCl concentration intensified nucleation and growth; however, at 4 M, massive nucleation and attrition predominated, resulting in an abundance of fines. Li2CO3 spherulites formed under all conditions, becoming more compact at higher LiCl concentrations. The addition of PAA significantly altered their size and morphology: the low-molecular-weight polymer inhibited spherulite formation, while the high-molecular-weight polymers reduced growth and promoted denser and more compact spherulites. SEM micrographs confirmed these trends, highlighting the role of PAA molecular weight as a key parameter modulating the kinetics and morphology of Li2CO3 in reactive crystallization processes. Full article
Show Figures

Figure 1

26 pages, 1164 KB  
Review
Lignin Valorization from Lignocellulosic Biomass: Extraction, Depolymerization, and Applications in the Circular Bioeconomy
by Tomas Makaveckas, Aušra Šimonėlienė and Vilma Šipailaitė-Ramoškienė
Sustainability 2025, 17(21), 9913; https://doi.org/10.3390/su17219913 - 6 Nov 2025
Cited by 1 | Viewed by 2092
Abstract
Lignocellulosic biomass—the non-edible fraction of plants composed of cellulose, hemicellulose, and lignin—is the most abundant renewable carbon resource and a key lever for shifting from fossil to bio-based production. Agro-industrial residues (straws, cobs, shells, bagasse, brewery spent grains, etc.) offer low-cost, widely available [...] Read more.
Lignocellulosic biomass—the non-edible fraction of plants composed of cellulose, hemicellulose, and lignin—is the most abundant renewable carbon resource and a key lever for shifting from fossil to bio-based production. Agro-industrial residues (straws, cobs, shells, bagasse, brewery spent grains, etc.) offer low-cost, widely available feedstocks but are difficult to process because their polymers form a tightly integrated, three-dimensional matrix. Within this matrix, lignin provides rigidity, hydrophobicity, and defense, yet its heterogeneity and recalcitrance impede saccharification and upgrading. Today, most technical lignin from pulping and emerging biorefineries is burned for energy, despite growing opportunities to valorize it directly as a macromolecule (e.g., adhesives, foams, carbon precursors, UV/antioxidant additives) or via depolymerization to low-molecular-weight aromatics for fuels and chemicals. Extraction route and severity strongly condition lignin structure linkages (coumaryl-, coniferyl-, and sinapyl-alcohol ratios), determining reactivity, solubility, and product selectivity. Advances in selective fractionation, reductive/oxidative catalysis, and hybrid chemo-biological routes are improving yields while limiting condensation. Remaining barriers include feedstock variability, solvent and catalyst recovery, hydrogen and energy intensity, and market adoption (e.g., low-emission adhesives). Elevating lignin from fuel to product within integrated biorefineries can unlock significant environmental and economic benefits. Full article
(This article belongs to the Section Sustainable Materials)
Show Figures

Figure 1

19 pages, 1936 KB  
Article
Domestication Cultivation and Nutritional Analysis of Hericium coralloides
by Yun Li, Jiarong Cai, Xiaomin Li, Xin Hu, Junli Zhang, Xiaoping Wu and Junsheng Fu
J. Fungi 2025, 11(11), 785; https://doi.org/10.3390/jof11110785 - 31 Oct 2025
Viewed by 1132
Abstract
Hericium coralloides is a valuable medicinal and edible mushroom renowned for its unique bioactive compounds. This study focuses on the isolation of a wild strain (SH001) exhibiting promising cultivation potential and health promoting properties. A wild fungal strain from the Tibetan Plateau was [...] Read more.
Hericium coralloides is a valuable medicinal and edible mushroom renowned for its unique bioactive compounds. This study focuses on the isolation of a wild strain (SH001) exhibiting promising cultivation potential and health promoting properties. A wild fungal strain from the Tibetan Plateau was isolated and identified as a novel H. coralloides based on its morphological and molecular characteristics. The optimal growth conditions were found to be 30 °C, pH 7.0, fructose as the preferred carbon source, and yeast extract as the optimal nitrogen source. Nutritional analysis revealed that the fruiting bodies were rich in protein (15.4 g/100 g dry weight), dietary fiber (34.7 g/100 g dry weight), and minerals, while being low in fat (3.5 g/100 g dry weight). The most abundant amino acids were glutamic acid, followed by aspartic acid. The polysaccharides exhibited significant antioxidant activity, with ABTS+ scavenging comparable to that of Vitamin C (Vc), achieving a clearance rate of 96.95% at concentrations between 0.25–5.00 mg/mL. At a concentration of 5 mg/mL, the DPPH and OH radical scavenging activities reached their peak (83.77% and 67.31%, respectively), along with the highest iron ion reducing capacity (FRAP value: 4.43 mmol/L. Polysaccharides also exhibited notable anticancer activity, inhibiting HepG2 liver cancer cells and MDA-MB-468 breast cancer cells, with IC50 values of 3.896 mg/mL and 2.561 mg/mL, respectively. This study demonstrates that wild H. coralloides can be successfully cultivated in vitro. In conclusion, the fruiting bodies possess substantial nutritional value, and the polysaccharides extracted from them show promising antioxidant and anticancer activities, particularly against HepG2 liver cancer cells and MDA-MB-468 breast cancer cells. Full article
(This article belongs to the Special Issue Research Progress on Edible Fungi)
Show Figures

Figure 1

18 pages, 4680 KB  
Article
Multi-Objective Optimization Design of Hybrid Fiber-Reinforced ECC Based on Box–Behnken and NSGA-II
by Xiao Wang, Haowen Jing, Hongkui Chen, Sen Zheng, Fei Yang and Jinggan Shao
Materials 2025, 18(21), 4914; https://doi.org/10.3390/ma18214914 - 27 Oct 2025
Viewed by 591
Abstract
To enhance the effectiveness and precision of design and to produce more low-carbon and high-performance Engineered Cementitious Composites (ECCs), novel hybrid fiber-reinforced high-ductility cementitious composites developed by incorporating a combination of ultra-high-molecular-weight polyethylene fibers (UHMWPE) and basalt fibers (BFs) into the cementitious matrix. [...] Read more.
To enhance the effectiveness and precision of design and to produce more low-carbon and high-performance Engineered Cementitious Composites (ECCs), novel hybrid fiber-reinforced high-ductility cementitious composites developed by incorporating a combination of ultra-high-molecular-weight polyethylene fibers (UHMWPE) and basalt fibers (BFs) into the cementitious matrix. Building upon the Box–Behnken design model from Response Surface Methodology (RSM), this study investigates the effects of different water-to-binder ratios and fiber contents on the mechanical properties of hybrid fiber-reinforced ECC. Analysis of variance (ANOVA) was used to validate the regression models. Furthermore, multi-objective optimization of the ECC mix proportion was achieved by employing the NSGA-II algorithm in conjunction with the TOPSIS comprehensive evaluation method. The results indicate that UHMWPE and BFs exhibited a significant positive hybrid effect. The order of factor significance was as follows: The content of ultra-high-molecular-weight polyethylene is greater than that of basalt fiber, and the content of basalt fiber is greater than that of the water–binder ratio. The results of variance analysis show that the regression model has high fitting accuracy. Furthermore, the algorithmic optimization yielded an optimal mix proportion: a water-to-binder ratio of 0.21, UHMWPE fiber content of 1.51%, and BF content of 0.85%. This study provides a valuable reference for the multi-objective optimization design of ECC mix proportions targeting diverse strength and toughness requirements. Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Figure 1

Back to TopTop