Multi-Objective Optimization Design of Hybrid Fiber-Reinforced ECC Based on Box–Behnken and NSGA-II
Abstract
1. Introduction
2. Materials and Methods
2.1. Testing Material
2.2. Mix Proportion Design
2.3. Preparation and Test Methods of Samples
3. Experiment Results and Analysis
3.1. Compressive Strength
3.2. Flexural Strength
3.3. Equivalent Bending Toughness
3.4. Model Feasibility Test
4. Multi-Objective Optimization and Verification of Mix Proportion
4.1. NSGA-II Algorithm and TOPSIS Evaluation Principle
4.2. Objective Function and Optimization Process
4.3. Multi-Objective Optimization and Verification
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jia, W.; Peng, H.; Zhang, D.; Ma, W. Analysis of Common Construction Quality Defects in Cast-in-place Concrete Structure Engineering. Qual. Manag. 2023, 41, 50–54. [Google Scholar]
- Li, V.C. On Engineered Cementitious Composites (ECC) A Review of the Material and Its Applications. J. Adv. Concr. Technol. 2003, 1, 215–230. [Google Scholar] [CrossRef]
- Maalej, M.; Quek, S.T.; Ahmed, S.F.U.; Zhang, J.; Lin, V.W.J.; Leong, K.S. Review of potential structural applications of hybrid fiber Engineered Cementitious Composites. Constr. Build. Mater. 2012, 36, 216–227. [Google Scholar] [CrossRef]
- Zhang, H.; Gao, S. Investigation of the Early Key Properties, Drying Shrinkage Prediction Model, and Microstructural Characteristics of PVA Fiber-Directionally Reinforced ECC. Mater. Chem. Phys. 2026, 347, 131434. [Google Scholar] [CrossRef]
- Kouhiazar Tulun, M.; Sobhani, J.; Mirhosseini, S.M.; Zeighami, E.; Basiri, M.R. Experimental Study of Mechanical and Durability Properties in Hybrid Binary and Ternary Fiber-Reinforced ECC. Front. Built Environ. 2025, 11, 1603359. [Google Scholar] [CrossRef]
- Wang, Z.; Zhang, J. Research advance in mechanical behavior of hybrid fiber reinforced cementitious composites. Concrete 2018, 65–69. [Google Scholar] [CrossRef]
- Banthia, N.; Gupta, R. Hybrid fiber reinforced concrete (HyFRC): Fiber synergy in high strength matrices. Mater. Struct. 2004, 37, 707–716. [Google Scholar] [CrossRef]
- Kanda, T.; Li, V.C. Practical Design Criteria for Saturated Pseudo Strain Hardening Behavior in ECC. J. Adv. Concr. Technol. 2006, 4, 59–72. [Google Scholar] [CrossRef]
- Sun, J.; Li, L.; Zhang, S. The Development Characteristic and Application of Basalt Fiber. China Fiber Insp. 2010, 21, 76–79. [Google Scholar] [CrossRef]
- Guo, Z.; Wan, C.; Xu, M.; Chen, J. Review of Basalt Fiber-Reinforced Concrete in China: Alkali Resistance of Fibers and Static Mechanical Properties of Composites. Adv. Mater. Sci. Eng. 2018, 2018, 9198656. [Google Scholar] [CrossRef]
- Fan, W.; Zhang, C.; Li, Z.; Han, F. An adaptive response surface method with cross terms. Eng. Mech. 2013, 30, 68–72. [Google Scholar]
- Pei, L.; Chen, J.-K.; Wu, Z.-Y.; Li, Y.-L.; Zhang, H. Response surface genetic algorithm of back analysis of concrete thermal parameters. Mater. Res. Innov. 2015, 19, S8-840–S8-845. [Google Scholar] [CrossRef]
- Li, L.; Zhang, Z.; Zhang, S.; Pan, S. Research on optimization of MAP process for landfill leachate treatment based on response surface methodology. Chin. J. Environ. Eng. 2010, 4, 1289–1295. [Google Scholar]
- He, L.; Wu, Q.; Zhang, Y.; Xie, L. Study on optimization of mix proportion parameters of recycled aggregate concrete by response surface method. New Build. Mater. 2022, 49, 103–107. [Google Scholar] [CrossRef]
- Zhong, Q.; Tang, H.; Yu, Y.; Zhang, Y.; Yao, J.; Pan, M. Multi-objective optimization of aircraft taxiing path based on improved NSGA-II algorithm. Sci. Technol. Eng. 2025, 25, 8737–8744. [Google Scholar] [CrossRef]
- Zhao, H.; Zhong, M.; Li, L.; Yu, H. A Comprehensive Evaluation Method for the Planning of Self-Sufficient Energy System for Ports Based on Improved Composite Weighting. J. Transp. Inf. Saf. 2024, 42, 148–162. [Google Scholar] [CrossRef]
- Quan, X.; Wang, S.; Liu, K.; Zhao, N.; Xu, J.; Xu, F.; Zhou, J. The Corrosion Resistance of Engineered Cementitious Composite (ECC) Containing High-Volume Fly Ash and Low-Volume Bentonite against the Combined Action of Sulfate Attack and Dry-Wet Cycles. Constr. Build. Mater. 2021, 303, 124599. [Google Scholar] [CrossRef]
- Zhu, Y.; Zhang, Z.; Yang, Y.; Yao, Y. Measurement and Correlation of Ductility and Compressive Strength for Engineered Cementitious Composites (ECC) Produced by Binary and Ternary Systems of Binder Materials: Fly Ash, Slag, Silica Fume and Cement. Constr. Build. Mater. 2014, 68, 192–198. [Google Scholar] [CrossRef]
- Yan, L.; Zheng, S.; Yang, Z.; Wang, X. Optimization of Mix Proportions for Hybrid Fiber Engineered Cementitious Composites Based on Box-Behnken Design Response Surface Model. Constr. Build. Mater. 2024, 421, 135697. [Google Scholar] [CrossRef]
- Li, J.; Yang, Y.; Jia, B.; Huang, H.; Zhao, J.; Li, W.; Wang, T.; Wu, Y. Experimental study on dispersion of polyvinyl alcohol fiber in fiber reinforced concrete. Build. Struct. 2023, 53, 91–97. [Google Scholar] [CrossRef]
- GB/T 17671-2021; Test Method of Cement Mortar Strength (ISO Method). China Standards Press: Beijing, China, 2021.
- DBJ 41/T 236-2020; Technical Standard for Reinforcement of Rural Houses with High Ductility Concrete. Department of Housing and Urban-Rural Development of Henan Province: Zhengzhou, China, 2020.
- Zhang, J.; Gong, C.; Guo, Z. Engineered cementitious composite with characteristic of low drying shrinkage. Cem. Concr. Res. 2009, 39, 303–312. [Google Scholar] [CrossRef]
- Yu, R.; Zhou, F.; Yin, T.; Wang, Z.; Ding, M.; Liu, Z.; Leng, Y.; Gao, X.; Shui, Z. Uncovering the Approach to Develop Ultra-High Performance Concrete (UHPC) with Dense Meso-Structure Based on Rheological Point of View: Experiments and Modeling. Constr. Build. Mater. 2021, 271, 121500. [Google Scholar] [CrossRef]
- Wang, X.; Jing, H.; Deng, R.; Meng, B.; Huo, X. Study on the Correlation between Mobility and Dispersion of Different Types of Fibers in Engineered Cementitious Composites (ECC). Case Stud. Constr. Mater. 2025, 22, e04272. [Google Scholar] [CrossRef]
- Liu, E.; Qian, X. Research progress on fiber reinforced engineered cementitious composites. Jiangsu Build. Mater. 2025, 17–19. [Google Scholar]
- Wang, J.; Wang, G.; Wei, M.; Jiang, R.; Jin, Z.; Wang, L. Optimization Design and Performance Analysis of a Rotary Vane Magnetorheological Damper for Vehicle Suspension Based on NSGA-II. Mech. Based Des. Struct. Mach. 2025, 53, 4761–4785. [Google Scholar] [CrossRef]
- Krityakierne, T.; Sinpayak, P.; Khiripet, N. GIS Spatial Optimization for Agricultural Crop Allocation Using NSGA-II. Inf. Process. Agric. 2025, 12, 139–150. [Google Scholar] [CrossRef]
- Zhang, Q.; Wang, W.; Zhang, T.; Zuo, Z. Multi-Objective Optimization of Thermoelectric Conversion Systems by RSM and NSGA-II. J. Phys. Conf. Ser. 2025, 2932, 012054. [Google Scholar] [CrossRef]
- Wu, C.; Pan, H.; Luo, Z.; Liu, C.; Huang, H. Multi-Objective Optimization of Residential Building Energy Consumption, Daylighting, and Thermal Comfort Based on BO-XGBoost-NSGA-II. Build. Environ. 2024, 254, 111386. [Google Scholar] [CrossRef]
















| Chemical Oxide | OPC (%) | Fly Ash (%) | Silica Ash (%) |
|---|---|---|---|
| SiO2 | 16.450 | 65.7 | 93.7 |
| Al2O3 | 4.788 | 26.1 | 1.3 |
| Fe2O3 | 3.528 | - | 0.9 |
| CaO | 64.745 | 2.9 | 0.4 |
| MgO | 2.863 | - | 0.8 |
| Na2O | 0.20 | 0.4 | 1.3 |
| SO3 | 3.695 | - | - |
| K2O | - | 1.3 | - |
| MgO | - | 1.2 | - |
| Loss on ignition | 1.40 | 2.4 | 1.6 |
| Type | Length of Fiber (mm) | Diameter of Fiber (μm) | Density (g/cm3) | Modulus of Elasticity (GPa) | Tensile Strength (GPa) |
|---|---|---|---|---|---|
| UHMWPE fiber | 12 | 25 | 0.93 | 122 | ≥3.1 |
| BF | 12 | 19 | 2.65 | 85 | >2.2 |
| Factor | Number | Level | ||
|---|---|---|---|---|
| −1 | 0 | 1 | ||
| Water-to-binder Ratio | A | 0.2 | 0.25 | 0.3 |
| UHMWPE Content (%) | B | 0.8 | 0.12 | 1.6 |
| BF Content (%) | C | 0.8 | 0.12 | 1.6 |
| Mixture ID | M1 | M2 | M3 | M4 | M5 | M6 | M7 | M8 | M9 | M10 | M11 | M12 | M13 | M14 | M15 | M16 | M17 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| A: Water-to-Binder Ratios | 0.25 | 0.25 | 0.25 | 0.25 | 0.2 | 0.3 | 0.2 | 0.25 | 0.25 | 0.3 | 0.25 | 0.25 | 0.3 | 0.25 | 0.2 | 0.2 | 0.3 |
| B: UHMWPE Content (%) | 0.8 | 1.2 | 1.2 | 1.2 | 1.2 | 0.8 | 1.6 | 1.2 | 0.8 | 1.2 | 1.2 | 1.6 | 1.2 | 1.6 | 0.8 | 1.2 | 1.6 |
| C: BF Content (%) | 0.8 | 1.2 | 1.2 | 1.2 | 0.8 | 1.2 | 1.2 | 1.2 | 1.6 | 0.8 | 1.2 | 1.6 | 1.6 | 0.8 | 1.2 | 1.6 | 1.2 |
| Source | Model | A | B | C | AB | AC | BC | Lack of Fit |
|---|---|---|---|---|---|---|---|---|
| F | 36.27 | 14.72 | 7.00 | 10.04 | 0.061 | 0.15 | 27.89 | 3.23 |
| p-value | <0.1‰ | 0.0064 | 0.0331 | 0.0157 | 0.8116 | 0.7100 | 0.0011 | 0.1436 |
| Source | Model | A | B | C | AB | AC | BC | Lack of Fit |
|---|---|---|---|---|---|---|---|---|
| F | 21.62 | 4.92 | 41.55 | 78.67 | 0.048 | 0.085 | 34.04 | 0.99 |
| p-value | <0.3‰ | 0.0621 | 0.4% | <0.1‰ | 0.8331 | 0.779 | 0.0006 | 0.4822 |
| Source | Model | A | B | C | AB | AC | BC | Lack of Fit |
|---|---|---|---|---|---|---|---|---|
| F | 46.30 | 5.16 | 71.48 | 118.55 | 0.52 | 0.27 | 112.79 | 1.51 |
| p-value | <0.1‰ | 0.0574 | <0.1‰ | <0.1‰ | 0.4955 | 0.6170 | <0.1‰ | 0.3411 |
| Regression Model | R2 | Adjusted R2 | Predicted R2 | Adeq Precision | C.V./% |
|---|---|---|---|---|---|
| Y1 | 0.9790 | 0.9520 | 0.7527 | 22.125 | 2.54 |
| Y2 | 0.9653 | 0.9206 | 0.7320 | 15.784 | 3.67 |
| Y3 | 0.9835 | 0.9622 | 0.8476 | 23.886 | 2.16 |
| Indicator | Compressive Strength (MPa) | Equivalent Bending Toughness (MPa) | ||||
|---|---|---|---|---|---|---|
| Type | Predicted | Actual | D (%) | Predicted | Actual | D (%) |
| Value | 110.54 | 107.11 | 3.1 | 101.92 | 104.88 | 2.9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, X.; Jing, H.; Chen, H.; Zheng, S.; Yang, F.; Shao, J. Multi-Objective Optimization Design of Hybrid Fiber-Reinforced ECC Based on Box–Behnken and NSGA-II. Materials 2025, 18, 4914. https://doi.org/10.3390/ma18214914
Wang X, Jing H, Chen H, Zheng S, Yang F, Shao J. Multi-Objective Optimization Design of Hybrid Fiber-Reinforced ECC Based on Box–Behnken and NSGA-II. Materials. 2025; 18(21):4914. https://doi.org/10.3390/ma18214914
Chicago/Turabian StyleWang, Xiao, Haowen Jing, Hongkui Chen, Sen Zheng, Fei Yang, and Jinggan Shao. 2025. "Multi-Objective Optimization Design of Hybrid Fiber-Reinforced ECC Based on Box–Behnken and NSGA-II" Materials 18, no. 21: 4914. https://doi.org/10.3390/ma18214914
APA StyleWang, X., Jing, H., Chen, H., Zheng, S., Yang, F., & Shao, J. (2025). Multi-Objective Optimization Design of Hybrid Fiber-Reinforced ECC Based on Box–Behnken and NSGA-II. Materials, 18(21), 4914. https://doi.org/10.3390/ma18214914

