Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (424)

Search Parameters:
Keywords = low frequency strain

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
27 pages, 1766 KiB  
Article
A Novel Optimized Hybrid Deep Learning Framework for Mental Stress Detection Using Electroencephalography
by Maithili Shailesh Andhare, T. Vijayan, B. Karthik and Shabana Urooj
Brain Sci. 2025, 15(8), 835; https://doi.org/10.3390/brainsci15080835 (registering DOI) - 4 Aug 2025
Abstract
Mental stress is a psychological or emotional strain that typically occurs because of threatening, challenging, and overwhelming conditions and affects human behavior. Various factors, such as professional, environmental, and personal pressures, often trigger it. In recent years, various deep learning (DL)-based schemes using [...] Read more.
Mental stress is a psychological or emotional strain that typically occurs because of threatening, challenging, and overwhelming conditions and affects human behavior. Various factors, such as professional, environmental, and personal pressures, often trigger it. In recent years, various deep learning (DL)-based schemes using electroencephalograms (EEGs) have been proposed. However, the effectiveness of DL-based schemes is challenging because of the intricate DL structure, class imbalance problems, poor feature representation, low-frequency resolution problems, and complexity of multi-channel signal processing. This paper presents a novel hybrid DL framework, BDDNet, which combines a deep convolutional neural network (DCNN), bidirectional long short-term memory (BiLSTM), and deep belief network (DBN). BDDNet provides superior spectral–temporal feature depiction and better long-term dependency on the local and global features of EEGs. BDDNet accepts multiple EEG features (MEFs) that provide the spectral and time-domain features of EEGs. A novel improved crow search algorithm (ICSA) was presented for channel selection to minimize the computational complexity of multichannel stress detection. Further, the novel employee optimization algorithm (EOA) is utilized for the hyper-parameter optimization of hybrid BDDNet to enhance the training performance. The outcomes of the novel BDDNet were assessed using a public DEAP dataset. The BDDNet-ICSA offers improved recall of 97.6%, precision of 97.6%, F1-score of 97.6%, selectivity of 96.9%, negative predictive value NPV of 96.9%, and accuracy of 97.3% to traditional techniques. Full article
Show Figures

Figure 1

24 pages, 8612 KiB  
Article
Experimental Investigation of the Seismic Behavior of a Multi-Story Steel Modular Building Using Shaking Table Tests
by Xinxin Zhang, Yucong Nie, Kehao Qian, Xinyu Xie, Mengyang Zhao, Zhan Zhao and Xiang Yuan Zheng
Buildings 2025, 15(15), 2661; https://doi.org/10.3390/buildings15152661 - 28 Jul 2025
Viewed by 267
Abstract
A steel modular building is a highly prefabricated form of steel construction. It offers rapid assembly, a high degree of industrialization, and an environmentally friendly construction site. To promote the application of multi-story steel modular buildings in earthquake fortification zones, it is imperative [...] Read more.
A steel modular building is a highly prefabricated form of steel construction. It offers rapid assembly, a high degree of industrialization, and an environmentally friendly construction site. To promote the application of multi-story steel modular buildings in earthquake fortification zones, it is imperative to conduct in-depth research on their seismic behavior. In this study, a seven-story modular steel building is investigated using shaking table tests. Three seismic waves (artificial ground motion, Tohoku wave, and Tianjin wave) are selected and scaled to four intensity levels (PGA = 0.035 g, 0.1 g, 0.22 g, 0.31 g). It is found that no residual deformation of the structure is observed after tests, and its stiffness degradation ratio is 7.65%. The largest strains observed during the tests are 540 × 10−6 in beams, 1538 × 10−6 in columns, and 669 × 10−6 in joint regions, all remaining below a threshold value of 1690 × 10−6. Amplitudes and frequency characteristics of the acceleration responses are significantly affected by the characteristics of the seismic waves. However, the acceleration responses at higher floors are predominantly governed by the structure’s low-order modes (first-mode and second-mode), with the corresponding spectra containing only a single peak. When the predominant frequency of the input ground motion is close to the fundamental natural frequency of the modular steel structure, the acceleration responses will be significantly amplified. Overall, the structure demonstrates favorable seismic resistance. Full article
Show Figures

Figure 1

20 pages, 3015 KiB  
Article
Integrated Whole-Genome Sequencing and In Silico Characterization of Salmonella Cerro and Schwarzengrund from Brazil
by Nathaly Barros Nunes, Vinicius Silva Castro, Adelino da Cunha-Neto, Fernanda Tavares Carvalho, Ricardo César Tavares Carvalho and Eduardo Eustáquio de Souza Figueiredo
Genes 2025, 16(8), 880; https://doi.org/10.3390/genes16080880 - 26 Jul 2025
Viewed by 490
Abstract
Background: Salmonella is a bacterium that causes foodborne infections. This study characterized two strains isolated from cheese and beef in Brazil using whole-genome sequencing (WGS). Objectives: We evaluated their antimicrobial resistance profiles, virulence factors, plasmid content, serotypes and phylogenetic relationships. Methods: DNA was [...] Read more.
Background: Salmonella is a bacterium that causes foodborne infections. This study characterized two strains isolated from cheese and beef in Brazil using whole-genome sequencing (WGS). Objectives: We evaluated their antimicrobial resistance profiles, virulence factors, plasmid content, serotypes and phylogenetic relationships. Methods: DNA was extracted and sequenced on the NovaSeq 6000 platform; the pangenome was assembled using the Roary tool; and the phylogenetic tree was constructed via IQ-TREE. Results and Discussion: For contextualization and comparison, 3493 Salmonella genomes of Brazilian origin from NCBI were analyzed. In our isolates, both strains carried the aac(6′)-Iaa_1 gene, while only Schwarzengrund harbored the qnrB19_1 gene and the Col440I_1 plasmid. Cerro presented the islands SPI-1, SPI-2, SPI-3, SPI-4, SPI-5 and SPI-9, while Schwarzengrund also possessed SPI-13 and SPI-14. Upon comparison with other Brazilian genomes, we observed that Cerro and Schwarzengrund represented only 0.40% and 2.03% of the national database, respectively. Furthermore, they revealed that Schwarzengrund presented higher levels of antimicrobial resistance, a finding supported by the higher frequency of plasmids in this serovar. Furthermore, national data corroborated our findings that SPI-13 and SPI-14 were absent in Cerro. A virulence analysis revealed distinct profiles: the cdtB and pltABC genes were present in the Schwarzengrund isolates, while the sseK and tldE1 family genes were exclusive to Cerro. The results indicated that the sequenced strains have pathogenic potential but exhibit low levels of antimicrobial resistance compared to national data. The greater diversity of SPIs in Schwarzengrund explains their prevalence and higher virulence potential. Conclusions: Finally, the serovars exhibit distinct virulence profiles, which results in different clinical outcomes. Full article
Show Figures

Figure 1

22 pages, 5129 KiB  
Article
A Dynamic Analysis of a Cantilever Piezoelectric Vibration Energy Harvester with Maximized Electric Polarization Due to the Optimal Shape of the Thickness for First Eigen Frequency
by Paulius Skėrys and Rimvydas Gaidys
Appl. Sci. 2025, 15(13), 7525; https://doi.org/10.3390/app15137525 - 4 Jul 2025
Viewed by 290
Abstract
This study presents an analytical and experimental approach to enhance cantilever-based piezoelectric energy harvesters by optimizing thickness distribution. Using a gradient projection algorithm within a state-space framework, the unimorph beam’s geometry is tailored while constraining the first natural frequency. The objective is to [...] Read more.
This study presents an analytical and experimental approach to enhance cantilever-based piezoelectric energy harvesters by optimizing thickness distribution. Using a gradient projection algorithm within a state-space framework, the unimorph beam’s geometry is tailored while constraining the first natural frequency. The objective is to amplify axial strain within the piezoelectric layers, thereby increasing electric polarization and maximizing the conversion efficiency of mechanical vibrations into electrical energy. The steady-state response under harmonic base excitation at resonance was modeled to evaluate the harvester’s dynamic behavior against uniform-thickness counterparts. Results show that the optimized beam achieves significantly higher output voltage and energy harvesting efficiency. Simulations reveal effective strain concentration in regions of high piezoelectric sensitivity, enhancing power generation under resonant conditions. Two independent experimental setups were employed for empirical validation: a non-contact laser vibrometry system (Polytec 3D) and a first resonant base excitation setup. Eigenfrequencies matched within 5% using a Polytec multipath interferometry system, and constant excitation tests showed approximately 30% higher in optimal shapes electrical potential value generation. The outcome of this study highlights the efficacy of geometric tailoring—specifically, non-linear thickness shaping—as a key strategy in achieving enhanced energy output from piezoelectric harvesters operating at their fundamental frequency. This work establishes a practical route for optimizing unimorph structures in real-world applications requiring efficient energy capture from low-frequency ambient vibrations. Full article
Show Figures

Figure 1

14 pages, 4026 KiB  
Article
Grain Refinement Caused by Dynamic Recrystallization Under Pulsed-Wave Laser Multi-Layer Cyclic Thermal Load
by Manping Cheng, Xi Zou, Yuan Zhu, Tengfei Chang, Qi Cao, Houlai Ju, Jiawei Ning, Yang Ding and Lijun Qiang
Coatings 2025, 15(7), 788; https://doi.org/10.3390/coatings15070788 - 3 Jul 2025
Viewed by 332
Abstract
In the Direct Energy Deposition (DED) process, the deposited material experiences intricate thermo-mechanical processes. Subsequent thermal cycling can trigger Dynamic Recrystallization (DRX) under suitable conditions, with specific strain and temperature parameters facilitating grain refinement and homogenization. While prior research has examined the impact [...] Read more.
In the Direct Energy Deposition (DED) process, the deposited material experiences intricate thermo-mechanical processes. Subsequent thermal cycling can trigger Dynamic Recrystallization (DRX) under suitable conditions, with specific strain and temperature parameters facilitating grain refinement and homogenization. While prior research has examined the impact of thermal cycling in continuous wave (CW) lasers on DRX in 316 L stainless steel deposits, this study delves into the effects of pulsed wave (PW) laser thermal cycling on DRX. Here, the thermo-mechanical response to PW cyclic thermal loading is empirically assessed, and the evolution of microstructure, grain morphology, geometric dislocation density (GND), and misorientation map during PW DED of 316 L stainless steel is scrutinized. Findings reveal that DRX is activated between the 8th and 44th thermal cycles, with temperatures fluctuating in the range of 680 K–750 K–640 K and grains evolving within a 5.6%–6.2%–5.2% strain range. After 90 thermal cycles, the grain microstructure undergoes significant alteration. Throughout the thermal cycling, dynamic recovery (DRV) occurs, marked by sub-grain formation and low-angle grain boundaries (LAGBs). Continuous dynamic recrystallization (CDRX) accompanies discontinuous dynamic recrystallization (DDRX), with LAGBs progressively converting into high-angle grain boundaries (HAGBs). Elevated temperatures and accumulated strain drive dislocation movement and entanglement, augmenting GND. The study also probes the influence of frequency and duty cycle on grain microstructure, finding that low pulse frequency spurs CDRX, high pulse frequency favors DRV, and the duty cycle has minimal impact on grain microstructure under PW cyclic thermal load. Full article
Show Figures

Figure 1

22 pages, 5516 KiB  
Article
Technology and Method Optimization for Foot–Ground Contact Force Detection in Wheel-Legged Robots
by Chao Huang, Meng Hong, Yaodong Wang, Hui Chai, Zhuo Hu, Zheng Xiao, Sijia Guan and Min Guo
Sensors 2025, 25(13), 4026; https://doi.org/10.3390/s25134026 - 27 Jun 2025
Viewed by 391
Abstract
Wheel-legged robots combine the advantages of both wheeled robots and traditional quadruped robots, enhancing terrain adaptability but posing higher demands on the perception of foot–ground contact forces. However, existing approaches still suffer from limited accuracy in estimating contact positions and three-dimensional contact forces [...] Read more.
Wheel-legged robots combine the advantages of both wheeled robots and traditional quadruped robots, enhancing terrain adaptability but posing higher demands on the perception of foot–ground contact forces. However, existing approaches still suffer from limited accuracy in estimating contact positions and three-dimensional contact forces when dealing with flexible tire–ground interactions. To address this challenge, this study proposes a foot–ground contact state detection technique and optimization method based on multi-sensor fusion and intelligent modeling for wheel-legged robots. First, finite element analysis (FEA) is used to simulate strain distribution under various contact conditions. Combined with global sensitivity analysis (GSA), the optimal placement of PVDF sensors is determined and experimentally validated. Subsequently, under dynamic gait conditions, data collected from the PVDF sensor array are used to predict three-dimensional contact forces through Gaussian process regression (GPR) and artificial neural network (ANN) models. A custom experimental platform is developed to replicate variable gait frequencies and collect dynamic contact data for validation. The results demonstrate that both GPR and ANN models achieve high accuracy in predicting dynamic 3D contact forces, with normalized root mean square error (NRMSE) as low as 8.04%. The models exhibit reliable repeatability and generalization to novel inputs, providing robust technical support for stable contact perception and motion decision-making in complex environments. Full article
(This article belongs to the Section Sensors and Robotics)
Show Figures

Figure 1

11 pages, 2910 KiB  
Communication
Theoretical Study on Low-Chirp Directly Modulated DFB Lasers with (110)-Oriented Quantum Well
by Jianwei Li, Mengzhu Hu, Xinyang Su, Yanting Liu and Ke Zhan
Photonics 2025, 12(7), 647; https://doi.org/10.3390/photonics12070647 - 25 Jun 2025
Viewed by 317
Abstract
The low-chirp operation of distributed feedback lasers is highly desirable in high-speed and high-bit rate optical transmission. In this article, we address this issue by theoretically investigating the possibility of further a reduction in the linewidth enhancement factor (LEF) of a quantum well [...] Read more.
The low-chirp operation of distributed feedback lasers is highly desirable in high-speed and high-bit rate optical transmission. In this article, we address this issue by theoretically investigating the possibility of further a reduction in the linewidth enhancement factor (LEF) of a quantum well (QW). The energy band structure of AlGaInAs quantum-well DFB lasers grown with a (110) crystal orientation in the active region of the L-band has been theoretically analyzed using multi-band k.p perturbation theory, by reducing the asymmetry of conduction bands and valence bands and thus the linewidth enhancement factor parameter, which is related to the frequency chirp. Simulation results show that the LEF of the directly modulated DFB laser is reduced from 2.434 to 1.408 by designing the (110)-oriented compression-strained Al0.06Ga0.24InAs multiple-quantum-well structure, and the eye diagram of the (110)-oriented quantum-well DFB laser with a digital signal transmission of 20 km is significantly better than the (001) crystal-oriented quantum-well DFB laser for the 10Gbps optical fiber communication system, thus achieving a longer distance and higher-quality optical signal transmission. Full article
(This article belongs to the Section Optoelectronics and Optical Materials)
Show Figures

Figure 1

16 pages, 277 KiB  
Article
Personality Type D and Psychophysiological Stress Reactivity During Mental Stress in Young Healthy Individuals
by Alexey N. Sumin, Natalia N. Zagorskaya, Anna V. Shcheglova, Anatoly A. Shipilov, Daniil Z. Kostylbaev, Elena A. Shikanova and Ingrid Y. Prokashko
Behav. Sci. 2025, 15(7), 852; https://doi.org/10.3390/bs15070852 - 24 Jun 2025
Viewed by 343
Abstract
Persons with personality type D are characterized by an “unhealthy lifestyle”, which is manifested by low physical activity, less healthy eating behavior, and failure to comply with doctors’ recommendations. Persons with personality type D have an inadequate response of hemodynamic parameters to psychoemotional [...] Read more.
Persons with personality type D are characterized by an “unhealthy lifestyle”, which is manifested by low physical activity, less healthy eating behavior, and failure to comply with doctors’ recommendations. Persons with personality type D have an inadequate response of hemodynamic parameters to psychoemotional stress; the response of other parameters has not been sufficiently studied. The aim of this study was to investigate the association of personality type D with various psychophysiological parameters of the body during mental stress in healthy individuals. Material and Methods: The study involved 79 students of Kemerovo State Medical University aged 18 to 32 years (mean age 20.7 ± 2.4 years). Psychophysiological diagnostics was carried out using the BOSLAB complex; electromyogram, electrocardiogram, body temperature, respiration, galvanic skin response, and photoplethysmogram data were recorded. The stress testing protocol included cognitive tasks and recovery phases. Additionally, the presence of personality type D in students was assessed using the DS-14 questionnaire. The results of stress tests were compared in groups with the presence/absence of type D. Results: The frequency of detection of type D was high (54.4%). When examining the response of psychophysiological parameters, the most pronounced response to stress tests with mental load was noted for heart rate variability and respiratory system parameters. Individuals with type D personality showed more pronounced sympathetic activation in response to mental stress and a slower recovery at rest. Among the studied parameters, association with personality type D was noted for the following indicators during the mental arithmetic test: heart rate (p = 0.022), the Baevsky strain index (p = 0.004), respiratory rate (p = 0.020), and an indicator of regulatory process adequacy (p < 0.001). Conclusion: In the present study, we found differences in the reaction of psychophysiological parameters to mental stress in healthy individuals depending on the presence or absence of personality type D. These data can be useful for developing stress resistance programs and biofeedback training. The possibility of using the above psychophysiological parameters in biofeedback training programs for individuals with personality type D requires further research. Full article
(This article belongs to the Special Issue The Impact of Psychosocial Factors on Health Behaviors)
17 pages, 5238 KiB  
Article
Multiphysics-Coupled Load-Bearing Capacity of Piezoelectric Stacks in Low-Temperature Environments
by Yang Li, Yongping Zheng, Leipeng Song, Zhefan Yao, Hui Zhang, Yonglin Wang, Zhengshun Fei, Xiaozhou Xu and Xinjian Xiang
Sensors 2025, 25(12), 3642; https://doi.org/10.3390/s25123642 - 10 Jun 2025
Viewed by 420
Abstract
Under low-temperature conditions, the load-bearing capacity of piezoelectric stacks arises from coupled thermo-electro-mechanical interactions, with temperature fluctuations, compressive prestress, and excitation voltage critically modulating performance. This study introduces an integrated measurement platform to systematically quantify these interdependencies, employing a cantilever-based sensing mechanism where [...] Read more.
Under low-temperature conditions, the load-bearing capacity of piezoelectric stacks arises from coupled thermo-electro-mechanical interactions, with temperature fluctuations, compressive prestress, and excitation voltage critically modulating performance. This study introduces an integrated measurement platform to systematically quantify these interdependencies, employing a cantilever-based sensing mechanism where bending strain serves as a direct metric of load-bearing capacity. A particle swarm-optimized theoretical framework guides the spatial configuration of actuators and sensors, maximizing strain signal fidelity while suppressing noise interference. Experimental characterization reveals three key findings: 1. Voltage-dependent linear enhancement of load-bearing capacity across all operational regimes, unaffected by thermal or mechanical variations; 2. Prestress-induced amplification (79–90% increase from 0 to 6 MPa) and thermally driven attenuation (15–30% reduction from 20 to −70 °C) of static performance; 3. Frequency-dependent degradation (1–6 Hz) in dynamic load-bearing capacity. The methodology establishes a robust foundation for designing multiphysics-compatible instrumentation systems, enabling precise evaluation of smart material behavior under extreme coupled-field conditions. Full article
(This article belongs to the Section Industrial Sensors)
Show Figures

Figure 1

15 pages, 2568 KiB  
Article
Patient-Reported Outcomes and Psychosocial Impact of Vascular Malformations in Asian Patients
by Hechen Jia, Hongyuan Liu, Xi Yang, Zi’an Xu, Lan Luo, Yuyan Zhang, Chen Hua and Xiaoxi Lin
J. Clin. Med. 2025, 14(11), 3799; https://doi.org/10.3390/jcm14113799 - 29 May 2025
Viewed by 395
Abstract
Background: Vascular malformations (VAMs) impose multifaceted burdens extending beyond physical impairments to psychosocial dysfunction. While prior studies predominantly utilized generic quality-of-life instruments, disease-specific tools are critical for addressing heterogeneous symptom profiles and sociocultural variability, particularly in understudied Asian populations. This study investigated [...] Read more.
Background: Vascular malformations (VAMs) impose multifaceted burdens extending beyond physical impairments to psychosocial dysfunction. While prior studies predominantly utilized generic quality-of-life instruments, disease-specific tools are critical for addressing heterogeneous symptom profiles and sociocultural variability, particularly in understudied Asian populations. This study investigated psychosocial impacts across pediatric and adult VAM patients via validated, condition-specific measures. Methods: A prospective cohort of 233 hospitalized VAM patients (114 pediatric patients, 119 adult patients) completed the OVAMA questionnaire, and 114 adult, 68 pediatric patients, and 115 parent-proxies completed corresponding PROMIS questionnaires. The subtypes included arteriovenous malformations (AVMs), venous/lymphatic/lymphovenous malformations (VMs/LMs/LVMs), port-wine stains (PWSs), and other vascular malformations. Statistical analyses (Mann–Whitney U test, Kruskal–Wallis test, linear regression) were used to evaluate associations between demographics, clinical characteristics, and psychosocial outcomes. Results: Compared with children, adults reported significantly greater distress related to general (p = 0.004) and appearance (p = 0.003) problems. Compared with AVM (p = 0.01) and PWS (p = 0.041) patients, VM/LM/LVM patients presented elevated general problem scores. Pain and bleeding were related to general problems, whereas temporary enlargement was related togeneral and appearance problems. The PROMIS results revealed that 42.1% of adults had below-normal psychosocial-positive scores, whereas 33% demonstrated abnormal psychosocial-negative scores. Pediatric self-reports were associated with higher anxiety and depression rates than parent proxies were, with the VM/LM/LVM subgroups reporting poorer family relationships (p = 0.0062) and life purposes (p = 0.0075). Treatment frequency was correlated with increased psychological stress in children (p = 0.007). Conclusion: VAMs significantly impair psychosocial functioning across all ages, with adults experiencing heightened distress and social role deficits. Pediatric patients with low-flow malformations (VMs/LMs/LVMs) face compound depressive symptoms and familial strain. Disease-specific tools such as OVAMA and PROMIS are essential for comprehensive assessments, guiding tailored interventions to address both physical and psychosocial burdens. Full article
(This article belongs to the Section Clinical Pediatrics)
Show Figures

Figure 1

16 pages, 4713 KiB  
Article
Cutting-Edge Vibration Sensor Morphologically Configured by Mimicking a Tactile Cutaneous Receptor Using Magnetic-Responsive Hybrid Fluid (HF)
by Kunio Shimada
Sensors 2025, 25(11), 3366; https://doi.org/10.3390/s25113366 - 27 May 2025
Viewed by 414
Abstract
Vibration sensors are important in many engineering fields, including industry, surgery, space, and mechanics, such as for remote and autonomous driving. We propose a novel, cutting-edge vibratory sensor that mimics human tactile receptors, with a configuration different from current sensors such as strain [...] Read more.
Vibration sensors are important in many engineering fields, including industry, surgery, space, and mechanics, such as for remote and autonomous driving. We propose a novel, cutting-edge vibratory sensor that mimics human tactile receptors, with a configuration different from current sensors such as strain gauges and piezo materials. The basic principle involves the perception of vibration via touch, with a cutaneous mechanoreceptor that is sensitive to vibration. We investigated the characteristics of the proposed vibratory sensor, in which the mechanoreceptor was covered either in hard rubber (such as silicon oil) or soft rubber (such as urethane), for both low- and high-frequency ranges. The fabricated sensor is based on piezoelectricity with a built-in voltage. It senses applied vibration by means of hairs in the sensor and the hardness of the outer cover. We also investigated two proposed parameters: the sensor response time to stimuli to the vibration aiding the equivalent firing rate (e.f.r.) and the gauge factor (GF,pe) proposed as treated in piezo-resistivity. The evaluation with the parameters was effective in designing a sensor based on piezoelectricity. These parameters were enhanced by the hairs in the sensor and the hardness of the outer cover. Our results were helpful for designing the present novel vibratory sensor. Full article
(This article belongs to the Special Issue Advancements and Applications of Biomimetic Sensors Technologies)
Show Figures

Figure 1

14 pages, 3555 KiB  
Article
Experimental Study on Acoustic Emission Characteristics of Modified Phosphogypsum at Different Loading Rates
by Bo Zhang, Ji Zhang, Qiaoli Le, Duoduo Wang, Jiangtao Ding and Chaohua Xu
Materials 2025, 18(11), 2491; https://doi.org/10.3390/ma18112491 - 26 May 2025
Viewed by 368
Abstract
Modified phosphogypsum (MPG) is a new type of solid waste, which could show unique mechanical properties in complex stress conditions. In this study, the effects of different loading rates (0.05, 0.1, 0.5, and 1 MPa/s) on the mechanical properties and acoustic emission (AE) [...] Read more.
Modified phosphogypsum (MPG) is a new type of solid waste, which could show unique mechanical properties in complex stress conditions. In this study, the effects of different loading rates (0.05, 0.1, 0.5, and 1 MPa/s) on the mechanical properties and acoustic emission (AE) characteristics of modified phosphogypsum were systematically studied through uniaxial compression tests combined with AE technology. The results showed that (1) the peak strength and elastic modulus of MPG increased as a power function of the loading rate, while the peak strain gradually decreased. (2) The cumulative event count of AE decreased as a power function with an increasing loading rate. Compared to the lowest loading rate, the cumulative event count was reduced by nearly two orders of magnitude. (3) An increase in the loading rate resulted in greater large-scale macroscopic failure in MPG specimens, along with an increased proportion of low-frequency AE signals and tensile cracks. (4) The b-value of AE decreased with an increasing loading rate, suggesting that microcrack-dominated small-scale damage prevailed at low loading rates, whereas large-scale damage became more pronounced at high loading rates. The abrupt drop in the b-value served as a precursor signal for macroscopic failure. This study presents an innovative methodology combining variable loading rates with AE technology to investigate the mechanical response of MPG, and the findings reveal the influence of the loading rate on the mechanical properties and AE characteristics of MPG, providing a theoretical basis for its engineering application under different loading environments. Full article
Show Figures

Figure 1

15 pages, 2205 KiB  
Article
Highly Stretchable, Low Hysteresis, and Transparent Ionogels as Conductors for Dielectric Elastomer Actuators
by Limei Zhang, Hong Li, Zhiquan Li, Weimin Pan, Yi Men, Niankun Zhang, Jing Xu and Xuewei Liu
Gels 2025, 11(5), 369; https://doi.org/10.3390/gels11050369 - 17 May 2025
Viewed by 644
Abstract
As conductive materials, ionogels have attracted significant attention for their potential applications in flexible wearable electronics. However, preparing an ionogel with mechanical properties akin to human skin while also achieving transparency, adhesion, and low hysteresis through simple processes remains challenging. Here, we introduce [...] Read more.
As conductive materials, ionogels have attracted significant attention for their potential applications in flexible wearable electronics. However, preparing an ionogel with mechanical properties akin to human skin while also achieving transparency, adhesion, and low hysteresis through simple processes remains challenging. Here, we introduce a multifunctional ionogel synthesized via a one-step photopolymerization method. By leveraging the good compatibility between the ionic liquid and the polymer network, as well as the hydrogen bonding and chemical crosslinking within the gel network, we achieved an ionogel with high transparency (>98%), stretchability (fracture strain of 19), low hysteresis (<5.83%), strong adhesion, robust mechanical stability, excellent electrical properties, a wide operating temperature range, and a tunable modulus (1–103 kPa) that matches human skin. When used as a conductor in soft actuators, the ionogel enabled a large area strain of 36% and a fast electromechanical conversion time of less than 1 s. The actuator demonstrated good actuation performance with voltage and frequency dependence, electrochemical stability, and outstanding durability over millions of cycles. This study provides a simple and effective method to produce multifunctional ionogels with tailored mechanical properties that match those of human skin, paving the way for their application in flexible wearable electronics. Full article
(This article belongs to the Section Gel Analysis and Characterization)
Show Figures

Graphical abstract

19 pages, 1310 KiB  
Article
Irritable Bowel Syndrome with Diarrhea (IBS-D): Effects of Clostridium butyricum CBM588 Probiotic on Gastrointestinal Symptoms, Quality of Life, and Gut Microbiota in a Prospective Real-Life Interventional Study
by Francesco Di Pierro, Fabrizio Ficuccilli, Laura Tessieri, Francesca Menasci, Chiara Pasquale, Amjad Khan, Fazle Rabbani, Nazia Mumtaz Memon, Massimiliano Cazzaniga, Alexander Bertuccioli, Mariarosaria Matera, Ilaria Cavecchia, Martino Recchia, Chiara Maria Palazzi, Maria Laura Tanda and Nicola Zerbinati
Microorganisms 2025, 13(5), 1139; https://doi.org/10.3390/microorganisms13051139 - 15 May 2025
Viewed by 1751
Abstract
Diarrhea-predominant irritable bowel syndrome (IBS-D) is a functional gastrointestinal disorder characterized by altered motility, abdominal pain, and dysbiosis—particularly reduced biodiversity and a lower abundance of butyrate-producing bacteria. Strategies that modulate the gut microbiota may offer therapeutic benefit. Clostridium butyricum (C. butyricum) [...] Read more.
Diarrhea-predominant irritable bowel syndrome (IBS-D) is a functional gastrointestinal disorder characterized by altered motility, abdominal pain, and dysbiosis—particularly reduced biodiversity and a lower abundance of butyrate-producing bacteria. Strategies that modulate the gut microbiota may offer therapeutic benefit. Clostridium butyricum (C. butyricum) CBM588 is a butyrate-producing probiotic with immunomodulatory properties and potential efficacy in treating gastrointestinal disorders. This pragmatic, prospective, open-label, single-arm interventional study assessed the clinical, microbial, and safety-related effects of an 8-week CBM588 supplementation, along with a low-fiber and low-residue diet, in 205 patients with IBS-D who attended Quisisana Nursing Home Hospital, Rome, Italy, between November 2024 and February 2025. The primary outcomes included the global symptom response, the Bristol Stool Scale (BSS), stool frequency, diarrhea episodes, abdominal pain (severity and frequency), bloating, bowel dissatisfaction, quality of life (QoL), safety, and treatment tolerability—measured using the IBS Symptom Severity Scale (IBS-SSS) and a standardized tolerability scale. CBM588, in patients treated with a low-fiber and low-residue diet, significantly improved all clinical endpoints, with a >80% reduction in diarrhea episodes; ~60% reductions in stool frequency and abdominal pain; and >50% improvements in bloating, bowel dissatisfaction, and QoL. Treatment was well tolerated (mean tolerability score 8.95 ± 0.88), with >95% adherence, and no serious adverse events were reported. The secondary outcomes included changes in gut microbiota. In a subset of patients, 16S rRNA gene sequencing showed increased α-diversity and enrichment of butyrate-producing genera (Agathobacter, Butyricicoccus, Coprococcus), which correlated with symptom improvement. Bloating increased in some patients, possibly related to fermentation activity. These findings support the C. butyricum CBM588 probiotic strain as a safe, well-tolerated, and microbiota-targeted intervention for IBS-D. Randomized controlled trials are warranted to confirm efficacy. Full article
(This article belongs to the Section Gut Microbiota)
Show Figures

Figure 1

26 pages, 4583 KiB  
Article
Mathematical Modeling and Finite Element Simulation of the M8514-P2 Composite Piezoelectric Transducer for Energy Harvesting
by Demeke Girma Wakshume and Marek Łukasz Płaczek
Sensors 2025, 25(10), 3071; https://doi.org/10.3390/s25103071 - 13 May 2025
Viewed by 3416
Abstract
This paper focuses on the mathematical and numerical modeling of a non-classical macro fiber composite (MFC) piezoelectric transducer, MFC-P2, integrated with an aluminum cantilever beam for energy harvesting applications. It seeks to harness the transverse vibration energy in the environment to power small [...] Read more.
This paper focuses on the mathematical and numerical modeling of a non-classical macro fiber composite (MFC) piezoelectric transducer, MFC-P2, integrated with an aluminum cantilever beam for energy harvesting applications. It seeks to harness the transverse vibration energy in the environment to power small electronic devices, such as wireless sensors, where conventional power sources are inconvenient. The P2-type macro fiber composites (MFC-P2) are specifically designed for transverse energy harvesting applications. They offer high electric source capacitance and improved electric charge generation due to the strain developed perpendicularly to the voltage produced. The system is modeled analytically using Euler–Bernoulli beam theory and piezoelectric constitutive equations, capturing the electromechanical coupling in the d31 mode. Numerical simulations are conducted using COMSOL Multiphysics 6.29 to reduce the complexity of the mathematical model and analyze the effects of material properties, geometric configurations, and excitation conditions. The theoretical model is based on the transverse vibrations of a cantilevered beam using Euler–Bernoulli theory. The natural frequencies and mode shapes for the first four are determined. Depending on these, the resonance frequency, voltage, and power outputs are evaluated across a 12 kΩ resistive load. The results demonstrate that the energy harvester effectively operates near its fundamental resonant frequency of 10.78 Hz, achieving the highest output voltage of approximately 0.1952 V and a maximum power output of 0.0031 mW. The generated power is sufficient to drive ultra-low-power devices, validating the viability of MFC-based cantilever structures for autonomous energy harvesting systems. The application of piezoelectric phenomena and obtaining electrical energy from mechanical vibrations can be powerful solutions in such systems. The application of piezoelectric phenomena to convert mechanical vibrations into electrical energy presents a promising solution for self-powered mechatronic systems, enabling energy autonomy in embedded sensors, as well as being used for structural health monitoring applications. Full article
(This article belongs to the Special Issue Smart Sensors Based on Optoelectronic and Piezoelectric Materials)
Show Figures

Figure 1

Back to TopTop