Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (520)

Search Parameters:
Keywords = low and high repetition

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 3812 KiB  
Article
Generation of Four-Beam Output in a Bonded Nd:YAG/Cr4+:YAG Laser via Fiber Splitter Pumping
by Qixiu Zhong, Dongdong Meng, Zhanduo Qiao, Wenqi Ge, Tieliang Zhang, Zihang Zhou, Hong Xiao and Zhongwei Fan
Photonics 2025, 12(8), 760; https://doi.org/10.3390/photonics12080760 - 29 Jul 2025
Viewed by 121
Abstract
To address the poor thermal performance and low output efficiency of conventional solid-state microchip lasers, this study proposes and implements a bonded Nd:YAG/Cr4+:YAG laser based on fiber splitter pumping. Experimental results demonstrate that at a 4.02 mJ pump pulse energy and [...] Read more.
To address the poor thermal performance and low output efficiency of conventional solid-state microchip lasers, this study proposes and implements a bonded Nd:YAG/Cr4+:YAG laser based on fiber splitter pumping. Experimental results demonstrate that at a 4.02 mJ pump pulse energy and a 100 Hz repetition rate, the system achieves four linearly polarized output beams with an average pulse energy of 0.964 mJ, a repetition rate of 100 Hz, and an optical-to-optical conversion efficiency of 23.98%. The energy distribution ratios for the upper-left, lower-left, upper-right, and lower-right beams are 22.61%, 24.46%, 25.50%, and 27.43%, with pulse widths of 2.184 ns, 2.193 ns, 2.205 ns, and 2.211 ns, respectively. As the optical axis distance increases, the far-field spot pattern transitions from a single circular profile to four fully separated spots, where the lower-right beam exhibits beam quality factors of Mx2 = 1.181 and My2 = 1.289. Simulations at a 293.15 K coolant temperature and a 4.02 mJ pump energy reveal that split pumping reduces the volume-averaged temperature rise in Nd:YAG by 28.81% compared to single-beam pumping (2.57 K vs. 3.61 K), decreases the peak temperature rise by 66.15% (6.97 K vs. 20.59 K), and suppresses peak-to-peak temperature variation by 78.6% (1.34 K vs. 6.26 K). Compared with existing multi-beam generation methods, the fiber splitter approach offers integrated advantages—including compact size, low cost, high energy utilization, superior beam quality, and elevated damage thresholds—and thus shows promising potential for automotive multi-point ignition, multi-beam single-photon counting LiDAR, and laser-induced breakdown spectroscopy (LIBS) online analysis. Full article
(This article belongs to the Special Issue Laser Technology and Applications)
Show Figures

Figure 1

13 pages, 1130 KiB  
Article
Feasibility and Preliminary Results of a Standardized Stair Climbing Test to Evaluate Cardiorespiratory Fitness in Children and Adolescents in a Non-Clinical Setting: The “Hand Aufs Herz” Study
by Federico Morassutti Vitale, Jennifer Wieprecht, Maren Baethmann, Delphina Gomes, Anja Tengler, Roxana Riley, Samar Shamas, Marcel Müller, Guido Mandilaras, Simone Katrin Manai, Maria Jaros, Nikolaus Alexander Haas and Meike Schrader
Children 2025, 12(8), 993; https://doi.org/10.3390/children12080993 - 28 Jul 2025
Viewed by 265
Abstract
Background/Objectives: Cardiorespiratory fitness (CRF) is of great interest in children and adolescents. Due to the limited availability of cardiopulmonary exercise testing, simple and reliable alternatives are needed. A stair climbing test (SCT) for the assessment of CRF developed at the Department of [...] Read more.
Background/Objectives: Cardiorespiratory fitness (CRF) is of great interest in children and adolescents. Due to the limited availability of cardiopulmonary exercise testing, simple and reliable alternatives are needed. A stair climbing test (SCT) for the assessment of CRF developed at the Department of Pediatric Cardiology of the LMU University Hospital in Munich showed a strong correlation with VO2max. The aim of this study is to prove its feasibility in a non-clinical setting and to analyse its results in a larger study population. Methods: During the “Hand aufs Herz” study, a comprehensive cardiovascular examination was carried out on 922 pupils and siblings (13.2 ± 7.8 years) at a high school in Bavaria. The SCT was performed to evaluate CRF: participants had to run up and down a total of four floors (14.8 m) as quickly as possible without skipping steps or holding on to the banister. Absolute time has been normalized over the standard height of 12 m to allow comparisons with different settings. An SCT Index was calculated to adjust results to the different weights of participants and the exact height of the staircase. Results: The SCT proved to be easily feasible and safe in non-clinical contexts. Out of 922 participants, 13 (1.4%) were not able to perform the test, and 3 (0.3%) had to interrupt it following fatigue or stumbling. A total of 827 participants aged from 9 to 17 years (13.1 ± 2.1 years, 45.8% girls) had a mean absolute SCT time of 53.4 ± 6.2 s and 43.3 ± 5.1 s when normalized over 12 m. Conclusions: The SCT represents a simple, cost- and time-saving test that allows a rapid and solid assessment of cardiorespiratory fitness in children and adolescents. We could demonstrate that it is safe and feasible in non-clinical contexts. Its short duration and universal applicability are valuable advantages that could facilitate the establishment of a repetitive cardiovascular screening in the pediatric population, particularly in outpatient departments or settings with low-resource systems. Full article
(This article belongs to the Special Issue Prevention of Cardiovascular Diseases in Children and Adolescents)
Show Figures

Figure 1

17 pages, 295 KiB  
Article
Understanding Educational Inequality in Spain: Factors Influencing Low and High Mathematical Competence
by David Molina-Muñoz, José Miguel Contreras-García and Elena Molina-Portillo
Soc. Sci. 2025, 14(8), 463; https://doi.org/10.3390/socsci14080463 - 26 Jul 2025
Viewed by 232
Abstract
Academic performance has become a consolidated indicator of a nation’s educational and social equity. Consequently, increasing attention has been paid to determining the factors associated with school performance, particularly in the case of students with extreme academic outcomes. The aim of this study [...] Read more.
Academic performance has become a consolidated indicator of a nation’s educational and social equity. Consequently, increasing attention has been paid to determining the factors associated with school performance, particularly in the case of students with extreme academic outcomes. The aim of this study is to identify and compare the factors related to the level of mathematical competence of Spanish students with low and high levels of achievement, based on data from the Spanish sample of PISA 2022 (n = 30,800). The results of the multilevel quantile regression analysis reveal that the social, economic, and cultural status of the students have a significant and positive effect on both groups. Other variables, such as gender, grade repetition, and length of pre-primary education, show differentiated effects depending on the level of competence. Moreover, school-related factors, such as school location and competition among centres, exhibit opposite effects. Finally, aspects such as school ownership, average class size, and the degree of curricular autonomy only have a significant impact on the mathematical competence of low-achieving students. These findings highlight the need for differentiated educational policies that address the specific needs of each group of students. Full article
(This article belongs to the Special Issue Tackling Educational Inequality: Issues and Solutions)
13 pages, 1449 KiB  
Article
Cardiocirculatory and Metabolic Responses to Low- and High-Load Squat Exercise in Young and Middle-Aged Individuals
by Alessandro L. Colosio, Massimo Teso, Alberto Bottari, Luca Ferrari, Gianluca Bochicchio, Jan Boone and Silvia Pogliaghi
J. Funct. Morphol. Kinesiol. 2025, 10(3), 287; https://doi.org/10.3390/jfmk10030287 - 25 Jul 2025
Viewed by 346
Abstract
Objectives: The aim of this study was to assess the safety and feasibility of resistance training (RT) in middle-aged and young individuals by examining cardiocirculatory and metabolic responses to squat performed under low and high external loads as per current exercise prescription [...] Read more.
Objectives: The aim of this study was to assess the safety and feasibility of resistance training (RT) in middle-aged and young individuals by examining cardiocirculatory and metabolic responses to squat performed under low and high external loads as per current exercise prescription guidelines. Methods: Eighteen RT-trained individuals (nine middle-aged individuals, including eight women who were equally distributed) performed a cycling incremental test for the determination of their maximal aerobic capacity and three sessions of RT, respectively, to determine their one repetition maximum (1RM) of squat and their physiological responses during different training protocols of squat with equal training loads (3 × 12 at 55% 1RM vs. 5 × 5 at 80% 1RM). Whole-body metabolic (oxygen update and blood lactate) and cardiocirculatory (heart rate and blood pressure) responses and rate of perceived exertion (RPE) were compared across age groups and % 1RM to determine the metabolic stimulus and cardiovascular strain imposed by this form of training. Results: Young and middle-aged individuals exhibited similar cardiocirculatory responses to RT, with the only exception being a higher diastolic response in the middle-aged group for both protocols (present also at rest). No difference was found between the two age groups in terms of metabolic response and RPE. 80% 1RM induced a similar cardiocirculatory response and a higher RPE but a lower metabolic response compared to 55% 1RM. Conclusions: While no difference in physiological responses was found between the groups, the lower-load and higher-repetition training scheme demonstrated better time efficiency, metabolic activation, and perceived effort with equivalent cardiocirculatory strain. These findings support the safety of RT and can guide practitioners in the design of training protocols. Full article
(This article belongs to the Section Sports Medicine and Nutrition)
Show Figures

Figure 1

15 pages, 14270 KiB  
Article
Repetition Frequency-Dependent Formation of Oxidized LIPSSs on Amorphous Silicon Films
by Liye Xu, Wei Yan, Weicheng Cui and Min Qiu
Photonics 2025, 12(7), 667; https://doi.org/10.3390/photonics12070667 - 1 Jul 2025
Viewed by 302
Abstract
Laser-induced periodic surface structures (LIPSSs) produced via ultrafast laser-induced oxidation offer a promising route for high-quality nanostructuring, with reduced thermal damage compared to conventional ablation-based methods. However, the influence of laser repetition frequency on the formation and morphology of oxidized LIPSSs remains insufficiently [...] Read more.
Laser-induced periodic surface structures (LIPSSs) produced via ultrafast laser-induced oxidation offer a promising route for high-quality nanostructuring, with reduced thermal damage compared to conventional ablation-based methods. However, the influence of laser repetition frequency on the formation and morphology of oxidized LIPSSs remains insufficiently explored. In this study, we systematically investigate the effects of varying the femtosecond laser repetition frequency from 1 kHz to 100 kHz while keeping the total pulse number constant on the oxidation-induced LIPSSs formed on amorphous silicon films. Scanning electron microscopy and Fourier analysis reveal a transition between two morphological regimes with increasing repetition frequency: at low frequencies, the long inter-pulse intervals result in irregular, disordered oxidation patterns; at high frequencies, closely spaced pulses promote the formation of highly ordered, periodic surface structures. Statistical measurements show that the laser-modified area decreases with frequency, while the LIPSS period remains relatively stable and the ridge width exhibits a peak at 10 kHz. Finite-difference time-domain (FDTD) and finite-element simulations suggest that the observed patterns result from a dynamic balance between light-field modulation and oxidation kinetics, rather than thermal accumulation. These findings advance the understanding of oxidation-driven LIPSS formation dynamics and provide guidance for optimizing femtosecond laser parameters for precise surface nanopatterning. Full article
Show Figures

Figure 1

23 pages, 6713 KiB  
Article
Global Aerosol Climatology from ICESat-2 Lidar Observations
by Shi Kuang, Matthew McGill, Joseph Gomes, Patrick Selmer, Grant Finneman and Jackson Begolka
Remote Sens. 2025, 17(13), 2240; https://doi.org/10.3390/rs17132240 - 30 Jun 2025
Viewed by 518
Abstract
This study presents a global aerosol climatology derived from six years (October 2018–October 2024) of the Ice, Cloud, and land Elevation Satellite-2 (ICESat-2) observations, using a U-Net Convolutional Neural Network (CNN) machine learning algorithm for Cloud–Aerosol Discrimination (CAD). Despite ICESat-2’s design primarily as [...] Read more.
This study presents a global aerosol climatology derived from six years (October 2018–October 2024) of the Ice, Cloud, and land Elevation Satellite-2 (ICESat-2) observations, using a U-Net Convolutional Neural Network (CNN) machine learning algorithm for Cloud–Aerosol Discrimination (CAD). Despite ICESat-2’s design primarily as an altimetry mission with a single-wavelength, low-power, high-repetition-rate laser, ICESat-2 effectively captures global aerosol distribution patterns and can provide valuable insights to bridge the observational gap between the Cloud–Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) and Earth Cloud, Aerosol and Radiation Explorer (EarthCARE) missions to support future spaceborne lidar mission design. The machine learning approach outperforms traditional thresholding methods, particularly in complex conditions of cloud embedded in aerosol, owing to a finer spatiotemporal resolution. Our results show that annually, between 60°S and 60°N, 78.4%, 17.0%, and 4.5% of aerosols are located within the 0–2 km, 2–4 km, and 4–6 km altitude ranges, respectively. Regional analyses cover the Arabian Sea (ARS), Arabian Peninsula (ARP), South Asia (SAS), East Asia (EAS), Southeast Asia (SEA), the Americas, and tropical oceans. Vertical aerosol structures reveal strong trans-Atlantic dust transport from the Sahara in summer and biomass burning smoke transport from the Savanna during dry seasons. Marine aerosol belts are most prominent in the tropics, contrasting with earlier reports of the Southern Ocean maxima. This work highlights the importance of vertical aerosol distributions needed for more accurate quantification of the aerosol–cloud interaction influence on radiative forcing for improving global climate models. Full article
Show Figures

Figure 1

20 pages, 1016 KiB  
Article
Effects of Eight-Week Single-Set Resistance Training on Muscle Health, Metabolic Profile and Oxidative Stress in Individuals with Cognitive Impairment
by Mariana Lopes, Mário C. Marques, Nuno Fonseca, Diogo L. Marques, Célia Nunes, Daniel A. Marinho, Henrique P. Neiva, Mikel Izquierdo, Dulce Esteves and Carla P. Fonseca
Appl. Sci. 2025, 15(13), 7091; https://doi.org/10.3390/app15137091 - 24 Jun 2025
Viewed by 555
Abstract
Resistance training (RT) has emerged as an effective strategy to counteract the deleterious effects of aging, improving metabolic health, and preserving functional capacity. However, the impact of low-volume RT on older adults, particularly those with cognitive impairment, remains underexplored. This study investigated the [...] Read more.
Resistance training (RT) has emerged as an effective strategy to counteract the deleterious effects of aging, improving metabolic health, and preserving functional capacity. However, the impact of low-volume RT on older adults, particularly those with cognitive impairment, remains underexplored. This study investigated the effects of an eight-week low-volume RT program on muscle health, liver function, lipid profile, glycemic control, and oxidative stress markers in individuals with cognitive decline. Twenty-eight participants were assigned to a low-volume RT group (81.0 ± 9.66) and a control group (90.0 ± 10.39 years). The low-volume RT group performed an 8-week RT program (two sessions per week) comprised of one set of 6–12 repetitions at 40–70% 1RM. The control group did not receive the intervention. Before and after the 8 weeks, the biomarkers of muscle health, metabolic profile, and oxidative stress were assessed. The results showed no significant differences between the groups in any biomarker at the baseline or post-test. The intervention group showed a significant increase in serum lactate dehydrogenase, aspartate aminotransferase (AST), and alanine aminotransferase (ALT) activities, all of which remained within normal ranges. No changes were observed in serum creatine kinase activity or the AST/ALT ratio in the intervention group, suggesting that acute-phase responses were occurring rather than tissue damage. Additionally, the intervention group showed a significant increase in high-density lipoprotein cholesterol levels, accompanied by a reduction in the atherogenic index, indicating potential cardiovascular benefits. No significant alterations were detected in the glycemic control and lipid peroxidation markers. These results suggest that low-volume RT can elicit modest, yet clinically meaningful metabolic improvements in individuals with cognitive impairment. Future studies should focus on identifying the minimal effective RT dose needed to optimize the health benefits in this vulnerable population, facilitating long-term adherence to exercise interventions. Full article
(This article belongs to the Special Issue Advances in Sport Physiology, Nutrition, and Metabolism)
Show Figures

Figure 1

14 pages, 2193 KiB  
Article
Distance Measurement and Data Analysis for Civil Aviation at 1000 Frames per Second Using Single-Photon Detection Technology
by Yiming Shan, Xinyu Pang, Huan Wang, Jitong Zhao, Shuai Yang, Yunlong Li, Guicheng Xu, Lihua Cai, Zhenyu Liu, Xiaoming Wang and Yi Yu
Sensors 2025, 25(13), 3918; https://doi.org/10.3390/s25133918 - 24 Jun 2025
Viewed by 346
Abstract
During high-speed maneuvers, aircraft experience rapid distance changes, necessitating high-frame-rate ranging for accurate characterization. However, existing optical ranging technologies often lack simplicity, affordability, and sufficient frame rates. While dual-station triangulation enables high-frame-rate distance calculation via geometry, it suffers from complex and costly deployment. [...] Read more.
During high-speed maneuvers, aircraft experience rapid distance changes, necessitating high-frame-rate ranging for accurate characterization. However, existing optical ranging technologies often lack simplicity, affordability, and sufficient frame rates. While dual-station triangulation enables high-frame-rate distance calculation via geometry, it suffers from complex and costly deployment. Conventional laser rangefinders are limited by low repetition rates. Single-photon ranging, using high-frequency low-energy pulses and detecting single reflected photons, offers a promising alternative. This study presents a kilohertz-level single-photon ranging system validated through civil aviation field tests. At 1000 Hz, relative distance, velocity, and acceleration were successfully captured. Simulating lower frame rates (100 Hz, 50 Hz, 10 Hz) via misalignment merging revealed standard deviations of 0.1661 m, 0.2361 m, and 0.2683 m, respectively, indicating that higher frame rates enhance distance measurement reproducibility. Error analysis against the 1000 Hz baseline further confirms that high-frame-rate ranging improves precision when monitoring high-speed maneuvers. Full article
(This article belongs to the Section Optical Sensors)
Show Figures

Figure 1

19 pages, 4360 KiB  
Article
A Feasibility Study on UV Nanosecond Laser Ablation for Removing Polyamide Insulation from Platinum Micro-Wires
by Danial Rahnama, Graziano Chila and Sivakumar Narayanswamy
J. Manuf. Mater. Process. 2025, 9(7), 208; https://doi.org/10.3390/jmmp9070208 - 21 Jun 2025
Cited by 1 | Viewed by 560
Abstract
This study presents the optimization of a laser ablation process designed to achieve the precise removal of polyamide coatings from ultra-thin platinum wires. Removing polymer coatings is a critical challenge in high-reliability manufacturing processes such as aerospace thermocouple fabrication. The ablation process must [...] Read more.
This study presents the optimization of a laser ablation process designed to achieve the precise removal of polyamide coatings from ultra-thin platinum wires. Removing polymer coatings is a critical challenge in high-reliability manufacturing processes such as aerospace thermocouple fabrication. The ablation process must not only ensure the complete removal of the polyamide insulation but also maintain the tensile strength of the wire to withstand mechanical handling in subsequent manufacturing stages. Additionally, the exposed platinum surface must exhibit low surface roughness to enable effective soldering and be free of thermal damage or residual debris to pass strict visual inspections. The wires have a total diameter of 65 µm, consisting of a 50 µm platinum core encased in a 15 µm polyamide coating. By utilizing a UV laser with a wavelength of 355 nm, average power of 3 W, a repetition rate range of 20 to 200 kHz, and a high-speed marking system, the process parameters were systematically refined. Initial attempts to perform the ablation in an air medium were unsuccessful due to inadequate thermal control and incomplete removal of the polyamide coating. Hence, a water-assisted ablation technique was explored to address these limitations. Experimental results demonstrated that a scanning speed of 1200 mm/s, coupled with a line spacing of 1 µm and a single ablation pass, resulted in complete coating removal while ensuring the integrity of the platinum substrate. The incorporation of a water layer above the ablation region was considered crucial for effective heat dissipation, preventing substrate overheating and ensuring uniform ablation. The laser’s spot diameter of 20 µm in air and a focal length of 130 mm introduced challenges related to overlap control between successive passes, requiring precise calibration to maintain consistency in coating removal. This research demonstrates the feasibility and reliability of water-assisted laser ablation as a method for a high-precision, non-contact coating material. Full article
(This article belongs to the Special Issue Advances in Laser-Assisted Manufacturing Techniques)
Show Figures

Figure 1

23 pages, 3907 KiB  
Article
Woodot: An AI-Driven Mobile Robotic System for Sustainable Defect Repair in Custom Glulam Beams
by Pierpaolo Ruttico, Federico Bordoni and Matteo Deval
Sustainability 2025, 17(12), 5574; https://doi.org/10.3390/su17125574 - 17 Jun 2025
Viewed by 441
Abstract
Defect repair on custom-curved glulam beams is still performed manually because knots are irregular, numerous, and located on elements that cannot pass through linear production lines, limiting the scalability of timber-based architecture. This study presents Woodot, an autonomous mobile robotic platform that combines [...] Read more.
Defect repair on custom-curved glulam beams is still performed manually because knots are irregular, numerous, and located on elements that cannot pass through linear production lines, limiting the scalability of timber-based architecture. This study presents Woodot, an autonomous mobile robotic platform that combines an omnidirectional rover, a six-dof collaborative arm, and a fine-tuned Segment Anything computer vision pipeline to identify, mill, and plug surface knots on geometrically variable beams. The perception model was trained on a purpose-built micro-dataset and reached an F1 score of 0.69 on independent test images, while the integrated system located defects with a 4.3 mm mean positional error. Full repair cycles averaged 74 s per knot, reducing processing time by more than 60% compared with skilled manual operations, and achieved flush plug placement in 87% of trials. These outcomes demonstrate that a lightweight AI model coupled with mobile manipulation can deliver reliable, shop-floor automation for low-volume, high-variation timber production. By shortening cycle times and lowering worker exposure to repetitive tasks, Woodot offers a viable pathway to enhance the environmental, economic, and social sustainability of digital timber construction. Nevertheless, some limitations remain, such as dependency on stable lighting conditions for optimal vision performance and the need for tool calibration checks. Full article
Show Figures

Figure 1

22 pages, 10786 KiB  
Article
Research on the Intrinsic Sensing Performance of an Optical Fiber Dosimeter Based on Radiation-Induced Attenuation
by Junyu Hou, Zhanzu Feng, Ge Ma, Weiwei Zhang, Zong Meng and Yuhe Li
Sensors 2025, 25(12), 3716; https://doi.org/10.3390/s25123716 - 13 Jun 2025
Viewed by 505
Abstract
Current research on dosimeters based on radiation-induced attenuation (RIA) primarily focused on enhancing radiation sensitivity or reducing dependencies from interference factors. However, their intrinsic sensing performance has received limited attention. This work proposed application and analysis methods for RIA-based dosimeters, validated by a [...] Read more.
Current research on dosimeters based on radiation-induced attenuation (RIA) primarily focused on enhancing radiation sensitivity or reducing dependencies from interference factors. However, their intrinsic sensing performance has received limited attention. This work proposed application and analysis methods for RIA-based dosimeters, validated by a low-cost apparatus using commercial fibers. Initially, a generic protocol of high-dose detection after low-dose calibration was suggested to overcome the various dependencies of RIA, enabling repetitive monitoring of near-stable radiation by simple replacement of commercial fibers. Experiments comparing three dose-loss models demonstrated that the saturation-exponential model exhibited superior accuracy, achieving absolute errors below 4 Gy within a measurable range of up to ~300 Gy. Subsequently, the system’s RIA-based sensitivity was ~125.6 dB·Gy−1·km−1. The resolution and sensitivity expressed by optical power were newly defined, effectively quantifying the decline in precision and response ratio during detection. Moreover, an additional structure was introduced to extend the measurable range. Simulations and experiments under 1-MeV electron irradiation verified that adjustable ranges could be achieved through configuration of attenuation layers. In summary, these advancements provided critical guidance for component selection and operational evaluation, facilitating the commercialization and practical deployment of RIA-based dosimeters. Full article
(This article belongs to the Special Issue Optical Fiber Sensors in Radiation Environments: 2nd Edition)
Show Figures

Figure 1

29 pages, 560 KiB  
Review
Application of Electroencephalography (EEG) in Combat Sports—Review of Findings, Perspectives, and Limitations
by James Chmiel and Jarosław Nadobnik
J. Clin. Med. 2025, 14(12), 4113; https://doi.org/10.3390/jcm14124113 - 10 Jun 2025
Viewed by 883
Abstract
Introduction: Combat sport athletes are exposed to repetitive head impacts yet also develop distinct performance-related brain adaptations. Electroencephalography (EEG) provides millisecond-level insight into both processes; however, findings are dispersed across decades of heterogeneous studies. This mechanistic review consolidates and interprets EEG evidence to [...] Read more.
Introduction: Combat sport athletes are exposed to repetitive head impacts yet also develop distinct performance-related brain adaptations. Electroencephalography (EEG) provides millisecond-level insight into both processes; however, findings are dispersed across decades of heterogeneous studies. This mechanistic review consolidates and interprets EEG evidence to elucidate how participation in combat sports shapes brain function and to identify research gaps that impede clinical translation. Methods: A structured search was conducted in March 2025 across PubMed/MEDLINE, Scopus, Cochrane Library, ResearchGate, Google Scholar, and related databases for English-language clinical studies published between January 1980 and March 2025. Eligible studies recorded raw resting or task-related EEG in athletes engaged in boxing, wrestling, judo, karate, taekwondo, kickboxing, or mixed martial arts. Titles, abstracts, and full texts were independently screened by two reviewers. Twenty-three studies, encompassing approximately 650 combat sport athletes and 430 controls, met the inclusion criteria and were included in the qualitative synthesis. Results: Early visual EEG and perfusion studies linked prolonged competitive exposure in professional boxers to focal hypoperfusion and low-frequency slowing. More recent quantitative studies refined these findings: across boxing, wrestling, and kickboxing cohorts, chronic participation was associated with reduced alpha and theta power, excess slow-wave activity, and disrupted small-world network topology—alterations that often preceded cognitive or structural impairments. In contrast, elite athletes in karate, fencing, and kickboxing consistently demonstrated neural efficiency patterns, including elevated resting alpha power, reduced task-related event-related desynchronization (ERD), and streamlined cortico-muscular coupling during cognitive and motor tasks. Acute bouts elicited transient increases in frontal–occipital delta and high beta power proportional to head impact count and cortisol elevation, while brief judo chokes triggered short-lived slow-wave bursts without lasting dysfunction. Methodological heterogeneity—including variations in channel count (1 to 64), reference schemes, and frequency band definitions—limited cross-study comparability. Conclusions: EEG effectively captures both the adverse effects of repetitive head trauma and the cortical adaptations associated with high-level combat sport training, underscoring its potential as a rapid, portable tool for brain monitoring. Standardizing acquisition protocols, integrating EEG into longitudinal multimodal studies, and establishing sex- and age-specific normative data are essential for translating these insights into practical applications in concussion management, performance monitoring, and regulatory policy. Full article
Show Figures

Figure 1

19 pages, 10165 KiB  
Article
Experimental Guide for Compact Bow-Tie Femtosecond Solid-State Laser Development
by Vinícius Pereira Pinto, Giovana Trevisan Nogueira, Fátima Maria Mitsue Yasuoka and Jarbas Caiado de Castro Neto
Photonics 2025, 12(6), 548; https://doi.org/10.3390/photonics12060548 - 29 May 2025
Viewed by 469
Abstract
Bow-tie cavity configurations have gained significant attention due to their efficacy in facilitating stable resonator operation for applications requiring short pulse operation and high repetition rate pulses, offering versatility and reliability. While there is an extensive body of literature addressing the theoretical aspects [...] Read more.
Bow-tie cavity configurations have gained significant attention due to their efficacy in facilitating stable resonator operation for applications requiring short pulse operation and high repetition rate pulses, offering versatility and reliability. While there is an extensive body of literature addressing the theoretical aspects and applications of this laser configuration, there exists a gap in practical insights and systematic approaches guidance pertaining to the development and precision alignment of this laser type. The paper achieves this by compiling a range of analytical and optimization techniques for the bow-tie cavity configuration and delineating the necessary steps for the optimization required for continuous wave operation. This ultimately leads to the attainment of the pulsed regime through the Kerr Lens Mode-locking technique, offering a detailed account of the development, optimization, and performance evaluation of a Ti:Sapphire femtosecond laser cavity, using dispersion-compensating mirrors to produce a low-energy pulse of 1 nJ, a high repetition rate of 1 GHz, and a short pulse duration of 61 fs. This work can be useful for researchers and engineers seeking to embark on the development of compact and high-performance femtosecond lasers for a spectrum of applications, encompassing biomedical imaging, laser-assisted surgery, spectroscopy, and optical frequency combs. Full article
(This article belongs to the Section Lasers, Light Sources and Sensors)
Show Figures

Figure 1

14 pages, 639 KiB  
Article
A Comparison Between the Mézières Method and Isostretching Postures for Frontal Stand Curvatures and Functionality in Elite Female Rhythmic Gymnasts with Low Back Pain: A Randomized Controlled Trial
by Jasemin Todri, Erda Qorri, Juan Martínez-Fuentes and Orges Lena
Appl. Sci. 2025, 15(11), 5932; https://doi.org/10.3390/app15115932 - 24 May 2025
Viewed by 459
Abstract
Rhythmic and artistic gymnastics expose athletes to a high risk of musculoskeletal disorders such as low back pain (LBP), often caused by repetitive and intensive training demands. This study aimed to evaluate the effects of a 12-week postural treatment using the Mézières method, [...] Read more.
Rhythmic and artistic gymnastics expose athletes to a high risk of musculoskeletal disorders such as low back pain (LBP), often caused by repetitive and intensive training demands. This study aimed to evaluate the effects of a 12-week postural treatment using the Mézières method, focused on posture correction and vertebral movement assessed with the Spinal Mouse system, in elite rhythmic gymnasts with LBP. A randomized controlled trial with two parallel groups was conducted, comparing the Mézières method to an equivalent isostretching intervention under similar conditions. Seventeen elite gymnasts with LBP participated, receiving two weekly sessions for 12 weeks. Frontal stand posture (upright, left, and right) was measured at baseline, post-treatment, and at 2, 6, and 12 weeks using the Spinal Mouse system. The experimental group (n = 8) received Mézières therapy; the control group (n = 9) received isostretching. Significant differences in pain reduction were found between the groups (p = 0.000). In the frontal upright position, lumbar and sacral segmental angles (p = 0.021) and regional inclination (p = 0.000) also showed significant group differences. Similarly, in the frontal left position, all vertebral variables except LSpTH12 also demonstrated significant differences between the groups, with p-values ranging from 0.001 to 0.017. Both treatments reduced pain and improved flexibility, but the Mézières group showed significantly greater improvements than the isostretching group. Full article
(This article belongs to the Special Issue Advanced Technologies in Physical Therapy and Rehabilitation)
Show Figures

Figure 1

18 pages, 3009 KiB  
Article
A Highly Specific Antibody-Based Assay for Nipah Virus AlphaLISA Detection
by Xuyang Sun, Qingyu Lv, Wenhua Huang, Xinran Zhang, Huiqi Duan, Yuhao Ren, Xiaojing Zhang, Yongqiang Jiang, Ruili Zhao and Shaolong Chen
Viruses 2025, 17(6), 748; https://doi.org/10.3390/v17060748 - 23 May 2025
Viewed by 533
Abstract
Nipah virus (NiV) is an emerging zoonotic pathogen whose surface glycoprotein (G)-mediated host cell invasion mechanism leads to fatal encephalitis in infected patients (case fatality rate 40–75%). Given the limitations of existing diagnostic technologies, such as low sensitivity and prolonged processing times, we [...] Read more.
Nipah virus (NiV) is an emerging zoonotic pathogen whose surface glycoprotein (G)-mediated host cell invasion mechanism leads to fatal encephalitis in infected patients (case fatality rate 40–75%). Given the limitations of existing diagnostic technologies, such as low sensitivity and prolonged processing times, we prepared an anti-NiV-G monoclonal antibody to establish a novel Amplified Luminescent Proximity Homogeneous Assay (AlphaLISA) detection system. Firstly, five high-affinity anti-NiV-G monoclonal antibodies were screened from the spleens of immunized mice by flow cytometry-single-cell cloning technology. The reaction system was further optimized, and the optimal dilution ratio of antibody-conjugated receptor microspheres, biotinylated antibodies, and donor microspheres was screened, and the AlphaLISA detection platform was successfully constructed. The detection sensitivity of NiV-G protein was 0.024 ng/mL (41.7 times higher than that of conventional ELISA), the coefficient of variation was <9.5%, and the repetition was good. It showed good specificity in the detection of 5 zoonotic viruses, including Japanese encephalitis virus and Zika virus. At the same time, this method is less disturbed by human serum, and the detection time is less than 30 min, showing a good clinical application prospect. Full article
(This article belongs to the Section Animal Viruses)
Show Figures

Figure 1

Back to TopTop