Research on the Intrinsic Sensing Performance of an Optical Fiber Dosimeter Based on Radiation-Induced Attenuation
Abstract
1. Introduction
2. Application and Analytical Methods
2.1. Application Methods
2.2. Detection Accuracy
2.3. Sensitivity and Resolution
2.4. Detectable Range
3. Experimental Details
3.1. Construction of the Validation Apparatus
3.2. Description of Experiments
4. Analysis and Results
4.1. Detection Accuracy
4.2. Sensitivity and Resolution
4.3. Detectable Range
4.4. Repeatability of Different Fibers of the Same Type
4.5. Discussion of Other Factors
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Girard, S.; Kuhnhenn, J.; Gusarov, A.; Brichard, B.; Van Uffelen, M.; Ouerdane, Y.; Boukenter, A.; Marcandella, C. Radiation Effects on Silica-Based Optical Fibers: Recent Advances and Future Challenges. IEEE Trans. Nucl. Sci. 2013, 60, 2015–2036. [Google Scholar] [CrossRef]
- Francesca, D.D.; Balcon, N.; Cheiney, P.; Chesta, E.; Clement, F.; Girard, S.; Mekki, J.; Melin, G.; Morana, A.; Roche, M.; et al. Low Radiation Dose Calibration and Theoretical Model of an Optical Fiber Dosimeter for the International Space Station. Appl. Opt. 2023, 62, 43–50. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Chen, Q.; Zhou, J.; Cao, Z.; Li, T.; Liu, F.; Yang, Z.; Chang, S.; Zhou, K.; Ming, Y.; et al. Radiation Damage Mechanisms and Research Status of Radiation-Resistant Optical Fibers: A Review. Sensors 2024, 24, 3235. [Google Scholar] [CrossRef]
- Stajanca, P.; Krebber, K. Radiation-Induced Attenuation of Perfluorinated Polymer Optical Fibers for Radiation Monitoring. Sensors 2017, 17, 1959. [Google Scholar] [CrossRef]
- Nelson, C.M.; Weeks, R.A. Trapped Electrons in Irradiated Quartz and Silica: II, Electron Spin Resonance. J. Am. Ceram. Soc. 1960, 43, 399–404. [Google Scholar] [CrossRef]
- Friebele, E.J.; Sigel, G.H.; Gingerich, M.E. Radiation Response of Fiber Optic Waveguides in the 0.4 to 1.7μ Region. IEEE Trans. Nucl. Sci. 1978, 25, 1261–1266. [Google Scholar] [CrossRef]
- Griscom, D.L. Intrinsic and Extrinsic Point Defects in A-SiO2. In The Physics and Technology of Amorphous SiO2, 1st ed.; Devine, R.A.B., Ed.; Plenum Press: New York, NY, USA, 1988; pp. 125–134. [Google Scholar]
- Friebele, E.J.; Long, K.J.; Askina, C.G.; Gingerich, M.E.; Marrone, M.J.; Griacom, D.L. Overview of Radiation Effects in Fiber Optics. In Radiation Effects on Optical Materials, Proceedings of the 1985 Albuquerque Conferences on Optics, Albuquerque, NM, USA, 4–5 March 1985; SPIE: Bellingham, WA, USA, 1985; Volume 0541, pp. 70–88. [Google Scholar]
- Griscom, D.L. Nature of Defects and Defect Generation in Optical Glasses. Radiat. Eff. Opt. Mater. 1985, 541, 38–59. [Google Scholar]
- Skuja, L. Optical Properties of Defects in Silica. In Defects in SiO2 and Related Dielectrics: Science and Technology (NATO Science Series II), 1st ed.; Pacchioni, G., Skuja, L., Griscom, D.L., Eds.; Springer: Dordrecht, The Netherlands; Kluwer: Dordrecht, The Netherlands, 2000; Volume 2, pp. 73–116. [Google Scholar]
- Skuja, L.; Hirano, M.; Hosono, H.; Kajihara, K. Defects in Oxide Glasses. Phys. Stat. Sol. 2005, 2, 15–24. [Google Scholar] [CrossRef]
- Griscom, D.L. A Minireview of the Natures of Radiation-Induced Point Defects in Pure and Doped Silica Glasses and Their Visible/Near-IR Absorption Bands, with Emphasis on Self-Trapped Holes and How They Can Be Controlled. Phys. Res. Int. 2013, 2013, 313–341. [Google Scholar] [CrossRef]
- Salh, R. Defect Related Luminescence in Silicon Dioxide Network: A Review. In Crystalline Silicon—Properties and Uses, 1st ed.; Baku, S., Ed.; InTech: Rijeka, Croatia, 2011; Volume 2, pp. 135–172. [Google Scholar]
- Gilbert, R.M. Photobleaching of Radiation-Induced Color Centers in a Germania-Doped Glass Fiber. IEEE Trans. Nucl. Sci. 1982, 29, 1484–1488. [Google Scholar] [CrossRef]
- Girard, S.; Alessi, A.; Richard, N.; Martin-Samos, L.; Michele, V.D.; Giacomazzi, L.; Agnello, S.; Francesca, D.D.; Morana, A.; Winkler, B.; et al. Overview of Radiation Induced Point Defects in Silica-based Optical Fibers. Rev. Phys. 2019, 4, 100032. [Google Scholar] [CrossRef]
- Sushko, P.V.; Mukhopadhyay, S.; Mysovsky, A.S.; Sulimov, V.B.; Taga, A.; Shluger, A.L. Structure and Properties of Defects in Amorphous Silica: New Insights from Embedded Cluster Calculations. J. Phys. Condens. Mat. 2005, 17, 2115–2140. [Google Scholar] [CrossRef]
- Richard, N.; Girard, S.; Martin-Samos, L.; Cuny, V.; Boukenter, A.; Ouerdane, Y.; Meunier, J.-P. First Principles Study of Oxygen-deficient Centers in Pure and Ge-doped Silica. J. Non Cryst. Solids. 2011, 357, 1994–1999. [Google Scholar] [CrossRef]
- Mélin, G.; Guitton, P.; Montron, R.; Gotter, T.; Robin, T.; Overton, B.; Morana, A.; Rizzolo, S.; Girard, S. Radiation Resistant Single-Mode Fiber with Different Coatings for Sensing in High Dose Environments. IEEE Trans. Nucl. Sci. 2019, 66, 1657–1662. [Google Scholar] [CrossRef]
- Kashaykin, P.F.; Tomashuk, A.L.; Vasiliev, S.A.; Britskiy, V.A.; Ignatyev, A.D.; Ponkratov, Y.V.; Kulsartov, T.V.; Samarkhanov, K.K.; Gnyrya, V.S.; Zarenbin, A.V.; et al. Radiation Resistance of Single-Mode Optical Fibers at λ = 1.55 μm Under Irradiation at IVG.1M Nuclear Reactor. IEEE Trans. Nucl. Sci. 2020, 67, 2162–2171. [Google Scholar] [CrossRef]
- Morana, A.; Campanella, C.; Vidalot, J.; De Michele, V.; Marin, E.; Reghioua, I.; Boukenter, A.; Ouerdane, Y.; Paillet, P.; Girard, S. Extreme Radiation Sensitivity of Ultra-Low Loss Pure-Silica-Core Optical Fibers at Low Dose Levels and Infrared Wavelengths. Sensors 2020, 20, 7254. [Google Scholar] [CrossRef]
- Francesca, D.D.; Vecchi, G.L.; Girard, S.; Morana, A.; Reghioua, I.; Alessi, A.; Hoehr, C.; Kadi, Y.; Brugger, M. Qualification and Calibration of Single-Mode Phosphosilicate Optical Fiber for Dosimetry at CERN. J. Light Technol. 2019, 37, 4643–4649. [Google Scholar] [CrossRef]
- Girard, S.; Kuhnhenn, J.; Gusarov, A.; Morana, A.; Paillet, P.; Robin, T.; Weninger, L.; Fricano, F.; Roche, M.; Campanella, C.; et al. Overview of Radiation Effects on Silica-Based Optical Fibers and Fiber Sensors. IEEE Trans. Nucl. Sci. 2025, 72, 982–1020. [Google Scholar] [CrossRef]
- Rana, S.; Subbaraman, H.; Fleming, A.; Kandadai, N. Numerical Analysis of Radiation Effects on Fiber Optic Sensors. Sensors 2021, 21, 4111. [Google Scholar] [CrossRef]
- Gaebler, W. Characteristics of Fiber Optic Radiation Detectors. In Optical Fibers in Broadband Networks, Instrumentation, and Urban and Industrial Environments, Proceedings of the Photon 83 International Conference on Optical Fibers, Paris, France, 16–19 May 1983; SPIE: Bellingham, WA, USA, 1984; Volume 0403, pp. 142–145. [Google Scholar]
- Moss, C.E.; Casperson, D.E.; Echave, M.A.; Edwards, B.C.; Miller, J.R.; Saylor, W.W.; Sweet, M.R.; Valencia, J.E. A Space Fiber-optic X-ray Burst Detector. IEEE Trans. Nucl. Sci. 1994, 41, 1328–1332. [Google Scholar] [CrossRef]
- Kandemir, K.; Tagkoudi, E.; Francesca, D.D.; Ricci, D. Investigation of Ge/P-Doped Silica Optical Fibers for Radiation Sensing. IEEE Trans. Nucl. Sci. 2024, 71, 1807–1812. [Google Scholar] [CrossRef]
- Girard, S.; Keurinck, J.; Boukenter, A.; Meunier, J.-P.; Ouerdane, Y.; AzaÏs, B.; Charre, P.; Vié, M. Gamma-rays and Pulsed X-ray Radiation Responses of Nitrogen-, Germanium-doped and Pure Silica Core Optical Fibers. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2004, 215, 187–195. [Google Scholar] [CrossRef]
- Alessi, A.; Guttilla, A.; Agnello, S.; Sabatier, C.; Robin, T.; Barnini, A.; Francesca, D.D.; Vecchi, G.L.; Cannas, M.; Boukenter, A.; et al. Near-IR Radiation Induced Attenuation of Aluminosilicate Optical Fibers. Phys. Status. Solidi 2021, 218, 2000807. [Google Scholar] [CrossRef]
- Vecchi, G.L.; Francesca, D.D.; Sabatier, C.; Girard, S.; Alessi, A.; Guttilla, A.; Robin, T.; Kadi, Y.; Brugger, M. Infrared Radiation Induced Attenuation of Radiation Sensitive Optical Fibers: Influence of Temperature and Modal Propagation. Opt. Fiber Technol. 2020, 55, 102166. [Google Scholar] [CrossRef]
- Neustruev, V.B. Colour Centres in Germanosilicate Glass and Optical Fibres. J. Phys. Condens. Mat. 1994, 6, 6901–6936. [Google Scholar] [CrossRef]
- Morana, A.; Campanella, C.; Aubrey, M.; Marin, E.; Boukenter, A.; Ouerdane, Y.; Girard, S. Temperature Dependence of Low-Dose Radiation-Induced Attenuation of Germanium-Doped Optical Fiber at Infrared Wavelengths. IEEE Trans. Nucl. Sci. 2022, 69, 512–517. [Google Scholar] [CrossRef]
- Friebele, E.J.; Askins, C.G.; Gingerich, M.E. Effect of Low Dose Rate Irradiation on Doped Silica Core Optical Fibers. Appl. Opt. 1984, 23, 4202–4208. [Google Scholar] [CrossRef]
- Girard, S.; Ouerdane, Y.; Marcandella, C.; Boukenter, A.; Quenard, S.; Authier, N. Feasibility of Radiation Dosimetry with Phosphorus-doped Optical Fibers in the Ultraviolet and Visible Domain. J. Non Cryst. Solids 2011, 357, 1871–1874. [Google Scholar] [CrossRef]
- Paul, M.C.; Bohra, D.; Dhar, A.; Sen, R.; Bhatnagar, P.K.; Dasgupta, K. Radiation Response Behavior of High Phosphorous Doped Step-index Multimode Optical Fibers under Low Dose Gamma Irradiation. J. Non Cryst. Solids 2009, 355, 1496–1507. [Google Scholar] [CrossRef]
- Morana, A.; Campanella, C.; Marin, E.; Mélin, G.; Robin, T.; Li Vecchi, G.; Francesca, D.D.; Boukenter, A.; Ouerdane, Y.; Mady, F.; et al. Operating Temperature Range of Phosphorous-Doped Optical Fiber Dosimeters Exploiting Infrared Radiation-Induced Attenuation. IEEE Trans. Nucl. Sci. 2021, 68, 906–912. [Google Scholar] [CrossRef]
- Vecchi, G.L.; Francesca, D.D.; Kadi, Y.; Ricci, D.; Brugger, M.; Campanella, C.; Alessi, A.; Ouerdane, Y.; Girard, S. In-situ Regeneration of P-doped Optical Fiber Dosimeter. Opt. Lett. 2020, 45, 5201–5204. [Google Scholar] [CrossRef]
- Francesca, D.D.; Kandemir, K.; Vecchi, G.L.; Alia, R.G.; Kadi, Y.; Brugger, M. Implementation of Optical-Fiber Postmortem Dose Measurements: A Proof of Concept. IEEE Trans. Nucl. Sci. 2020, 67, 140–145. [Google Scholar] [CrossRef]
- Henschel, H.; Körfer, M.; Kuhnhenn, J.; Weinand, U.; Wulf, F. Fibre Optic Radiation Sensor Systems for Particle Accelerators. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2004, 526, 537–550. [Google Scholar] [CrossRef]
- O"Keeffe, S.; Fernandez, F.A.; Fitzpatrick, C.; Brichard, B.; Lewis, E. Real-time Gamma Dosimetry Using PMMA Optical Fibres for Applications in the Sterilization Industry. Meas. Sci. Technol. 2007, 18, 3171–3176. [Google Scholar] [CrossRef]
- Kovačević, M.S.; Savović, S.; Djordjevich, A.; Bajić, J.; Stupar, D.; Kovačević, M.; Simić, S. Measurements of Growth and Decay of Radiation Induced Attenuation During the Irradiation and Recovery of Plastic Optical Fibres. Opt. Laser Technol. 2013, 47, 148–151. [Google Scholar] [CrossRef]
- Henschel, H.; Kohn, O.; Schmidt, H.U.; Bawirzanski, E.; Landers, A. Optical Fibres for High Radiation Dose Environments. IEEE Trans. Nucl. Sci. 1994, 41, 510–516. [Google Scholar] [CrossRef]
- Griscom, D.L.; Mizuguchi, M. Determination of the Visible Range Optical Absorption Spectrum of Peroxy Radicals in Gamma-irradiated Fused Silica. J. Non Cryst. Solids 1998, 239, 66–77. [Google Scholar] [CrossRef]
- Henschel, H.; Koehn, O.; Schmidt, H.U. Influence of Dose Rate on Radiation-induced Loss in Optical Fibers. In Optical Systems in Adverse Environments, Singapore, 22–27 October 1990; SPIE: Bellingham, WA, USA, 1991; Volume 1399, pp. 49–63. [Google Scholar]
- Girard, S.; Marcandella, C.; Morana, A.; Perisse, J.; Francesca, D.D.; Paillet, P. Combined High Dose and Temperature Radiation Effects on Multimode Silica-Based Optical Fibers. Nuclear Science. IEEE Trans. Nucl. Sci. 2013, 60, 4305–4313. [Google Scholar] [CrossRef]
- Henschel, H.; Kohn, O. Regeneration of Irradiated Optical Fibres by Photobleaching? IEEE Trans. Nucl. Sci. 1999, 47, 699–704. [Google Scholar] [CrossRef]
- Fricano, F.; Morana, A.; Roche, M.; Facchini, A.; Mélin, G.; Clément, F.; Balcon, N.; Mekki, J.; Marin, E.; Ouerdane, Y.; et al. Photobleaching Effect on the Sensitivity Calibration at 638 nm of a Phosphorus-Doped Single-Mode Optical Fiber Dosimeter. Sensors 2024, 24, 5547. [Google Scholar] [CrossRef]
- Henschel, H.; Kohn, O. Radiation-induced Loss of Rare Earth Doped Silica Fibres. IEEE Trans. Nucl. Sci. 1998, 45, 1552–1557. [Google Scholar] [CrossRef]
- Origlio, G.; Cannas, M.; Girard, S.; Boscaino, R.; Boukenter, A.; Ouerdane, Y. Influence of the Drawing Process on the Defect Generation in Multistep-index Germanium-doped Optical Fibers. Opt. Lett. 2009, 34, 2282–2284. [Google Scholar] [CrossRef]
- Borgermans, P.; Brichard, B. Kinetic Models and Spectral Dependencies of the Radiation-induced Attenuation in Pure Silica Fibers. IEEE Trans. Nucl. Sci. 2002, 49, 1439–1445. [Google Scholar] [CrossRef]
- Mashkov, V.A.; Austin, W.R.; Zhang, L.; Leisure, R.G. Fundamental Role of Creation and Activation in Radiation-Induced Defect Production in High-Purity Amorphous SiO2. Phys. Rev. Lett. 1996, 76, 2926–2929. [Google Scholar] [CrossRef]
- Griscom, D. Fractal Kinetics of Radiation-induced Point-defect Formation and Decay in Amorphous Insulators: Application to Color Centers in Silica-based Optical Fibers. Phys. Rev. 2001, 64, 174201. [Google Scholar] [CrossRef]
- Friebele, E.J.; Gingerich, M.E.; Griscom, D.L. Survivability of Optical Fibers in Space. In Optical Materials Reliability and Testing: Benign and Adverse Environments, Proceeding of the Fibers ’92, Boston, MA, USA, 8–11 September 1992; SPIE: Bellingham, WA, USA, 1993; Volume 1791, pp. 177–188. [Google Scholar]
- Griscom, D.L.; Gingerich, M.E.; Friebele, E.J. Model for the Dose, Dose-rate and Temperature Dependence of Radiation-induced Loss in Optical Fibers. IEEE Trans. Nucl. Sci. 1994, 41, 523–527. [Google Scholar] [CrossRef]
- Devine, R.A.B. On the Physical Models of Annealing of Radiation Induced Defects in Amorphous SiO2. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 1990, 46, 261–264. [Google Scholar] [CrossRef]
- Friebele, E.J.; Griscom, D.L. Radiation Effects in Glass. In Treatise on Materials Science and Technology, 1st ed.; Tomozawa, M., Doremus, R.H., Eds.; Academic Press: New York, NY, USA, 1979. [Google Scholar]
- Liu, D.T.H.; Johnston, A.R. Theory of Radiation-induced Absorption in Optical Fibers. Opt. Lett. 1994, 19, 548–550. [Google Scholar] [CrossRef]
- Gilard, O.; Caussanel, M.; Duval, H.; Quadri, G.; Reynaud, F. New Model for Assessing Dose, Dose rate, and Temperature Sensitivity of Radiation-Induced Absorption in Glasses. J. Appl. Phys. 2010, 108, 093115. [Google Scholar] [CrossRef]
- Ravotti, F. Dosimetry Techniques and Radiation Test Facilities for Total Ionizing Dose Testing. IEEE Trans. Nucl. Sci. 2018, 65, 1440–1464. [Google Scholar] [CrossRef]
- Yang, X.; Tang, Z.; Yang, Y.; Wei, C.; Liu, Y.; Peng, Z.; Li, H.; Peng, Y.; Liu, Q.; Ge, L.; et al. Design and Evaluation of a Monitoring Instrument for the High-Energy Proton and TID Effects in LEO. Space Sci. Rev. 2024, 220, 33. [Google Scholar] [CrossRef]
- Deng, Z. Study on Radiation Resistance Properties of Silica Glass and Silica Optical Fibre. Ph.D. Thesis, Wuhan University of Technology, Wuhan, China, 2010. [Google Scholar]
- Weninger, L.; Campanella, C.; Morana, A.; Fricano, F.; Marin, E.; Ouerdane, Y.; Boukenter, A.; Alía, R.G.; Girard, S. Calibration in the Visible and Infrared Domains of Multimode Phosphosilicate Optical Fibers for Dosimetry Applications. IEEE Trans. Nucl. Sci. 2023, 70, 1908–1916. [Google Scholar] [CrossRef]
- Thakur, B.R.; Singh, R.K. Food Irradiation-chemistry and Applications. Food Rev. Int. 1994, 10, 437–473. [Google Scholar] [CrossRef]
- Agostinelli, S.; Allison, J.; Amako, K.; Apostolakis, J.; Araujo, H.; Arce, P.; Asai, M.; Axen, D.; Banerjee, S.; Barrand, G.; et al. Geant4—A simulation Toolkit. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2003, 506, 250–303. [Google Scholar] [CrossRef]
- Allison, J.; Amako, K.; Apostolakis, J.; Araujo, H.; Arce Dubois, P.; Asai, M.; Barrand, G.; Capra, R.; Chauvie, S.; Chytracek, R.; et al. Geant4 Developments and Applications. IEEE Trans. Nucl. Sci. 2006, 53, 270–278. [Google Scholar] [CrossRef]
- Allison, J.; Amako, K.; Apostolakis, J.; Arce, P.; Asai, M.; Aso, T.; Bagli, E.; Bagulya, A.; Banerjee, S.; Barrand, G.; et al. Recent Developments in Geant4. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2016, 835, 186–225. [Google Scholar] [CrossRef]
- Ott, M.N. Radiation Effects Data on Commercially Available Optical Fiber: Database Summary. In 2002 Radiation Effects Data Workshop, Phoenix, Arizona, USA, 15–19 July 2002; IEEE: New York, NY, USA, 2025; pp. 24–31. [Google Scholar]
- Yang, H.; Dai, X.; Hu, D.; Chen, C.; Feng, Y.; He, B. Self-Compensating Structural Design for Fiber Optic X-Ray Sensors: A Solution to Bending Loss. In 2024 IEEE Academic International Symposium on Optoelectronics and Microelectronics Technology (AISOMT), Harbin, China, 21–22 November 2024; IEEE: New York, NY, USA, 2025; pp. 226–232. [Google Scholar]
- Guillermain, E.; Kuhnhenn, J.; Ricci, D.; Weinand, U. Macro-Bending Influence on Radiation Induced Attenuation Measurement in Optical Fibres. IEEE Trans. Nucl. Sci. 2014, 61, 1834–1837. [Google Scholar] [CrossRef]
- Girard, S.; Morana, A.; Hoehr, C.; Trinczek, M.; Vidalot, J.; Paillet, P.; Belanger-Champagne, C.; Mekki, J.; Balcon, N.; Vecchi, G.L.; et al. Atmospheric Neutron Monitoring through Optical Fiber-Based Sensing. Sensors 2020, 20, 4510. [Google Scholar] [CrossRef]
Fiber Parameter | Value |
---|---|
Numerical Aperture | 0.22 |
Core Diameter | 50 µm |
Cladding Diameter | 125 µm |
Coating Diameter | 0.9 mm |
Losses @800 nm | <3.5 dB/km |
Models | Results | R-Squares |
---|---|---|
Saturation-exponential | 0.9998 | |
Power law | 0.9998 | |
Linearity | 0.9998 |
Thicknesses (mm) | Fitting Results | R-Squares | SRIA (dB·km−1·Gy−1) | Detectable Ranges * (kGy) |
---|---|---|---|---|
0.3 | 0.9993 | 34.86 | 0.8943 | |
0.4 | 1.000 | 1.703 | 17.61 | |
0.5 | 0.9974 | 0.1104 | 271.4 | |
0.6 | 0.9999 | 0.0743 | 403.8 | |
0.7 | 0.9998 | 0.0449 | 647.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hou, J.; Feng, Z.; Ma, G.; Zhang, W.; Meng, Z.; Li, Y. Research on the Intrinsic Sensing Performance of an Optical Fiber Dosimeter Based on Radiation-Induced Attenuation. Sensors 2025, 25, 3716. https://doi.org/10.3390/s25123716
Hou J, Feng Z, Ma G, Zhang W, Meng Z, Li Y. Research on the Intrinsic Sensing Performance of an Optical Fiber Dosimeter Based on Radiation-Induced Attenuation. Sensors. 2025; 25(12):3716. https://doi.org/10.3390/s25123716
Chicago/Turabian StyleHou, Junyu, Zhanzu Feng, Ge Ma, Weiwei Zhang, Zong Meng, and Yuhe Li. 2025. "Research on the Intrinsic Sensing Performance of an Optical Fiber Dosimeter Based on Radiation-Induced Attenuation" Sensors 25, no. 12: 3716. https://doi.org/10.3390/s25123716
APA StyleHou, J., Feng, Z., Ma, G., Zhang, W., Meng, Z., & Li, Y. (2025). Research on the Intrinsic Sensing Performance of an Optical Fiber Dosimeter Based on Radiation-Induced Attenuation. Sensors, 25(12), 3716. https://doi.org/10.3390/s25123716