Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (13)

Search Parameters:
Keywords = lost cost flow rate

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 8356 KiB  
Article
Study on Ecological Water Replenishment Calculation and Intelligent Pump Station Scheduling for Non-Perennial Rivers
by Zuohuai Tang, Junying Chu, Zuhao Zhou, Yunfu Zhang, Tianhong Zhou, Kangqi Yuan, Mingyue Ma and Ying Wang
Sustainability 2025, 17(5), 2032; https://doi.org/10.3390/su17052032 - 26 Feb 2025
Viewed by 750
Abstract
The Haidian District was, historically, rich in water resources. However, with urban development, the groundwater levels have declined, and most rivers have lost their ecological baseflows. To restore the aquatic ecosystems, the district has implemented a cyclic water network and advanced water replenishment [...] Read more.
The Haidian District was, historically, rich in water resources. However, with urban development, the groundwater levels have declined, and most rivers have lost their ecological baseflows. To restore the aquatic ecosystems, the district has implemented a cyclic water network and advanced water replenishment projects. Nonetheless, the existing replenishment strategies face challenges, such as an insufficient scientific basis, lack of data, and high energy consumption. There is an urgent need to develop a scientifically robust ecological water replenishment system and optimize pump station scheduling to enhance water resource management efficiency. This study addresses the ecological water replenishment needs of seasonal rivers by integrating the Literature method, Rainfall-Runoff method, and R2cross method to develop a comprehensive approach for calculating the ecological flow and water depth. The proposed method simultaneously meets the ecological functionality and landscape requirements of seasonal rivers. Additionally, the SWMM model is employed to design intelligent pump station scheduling rules, optimizing the replenishment efficiency and energy consumption. Through field measurements and data collection, the ecological water demands of the river channels in different areas are assessed. Using a hydrodynamic model, the dynamic variations in the ecological flow and water depth are simulated. For the Cuihu, Daoxianghu, and Yongfeng areas, this study reveals that the current replenishment volume is insufficient to meet the landscape and ecological needs of the rivers. Most rivers require a 20–30% increase in water levels, with the Dazhai qu needing a substantial rise from 0.17 m to 0.3 m, representing an increase of 76%. Additionally, the results demonstrate that intelligent pump station scheduling can significantly reduce operating costs and energy consumption by dynamically adjusting the replenishment timing and flow rates. This approach optimizes the intervals between equipment activation and deactivation, thereby balancing ecological and energy-saving goals. This research not only provides technical support for the precise calculation of ecological replenishment volumes and the intelligent management of pump stations, but also offers scientific references for water resource management in similar regions. The findings will enhance the ecological functions and landscape quality of the rivers in the Haidian District while promoting refined and intelligent regional water resource management. Moreover, this study presents innovative solutions and theoretical foundations for water resource regulation under the backdrop of climate change. Full article
Show Figures

Figure 1

17 pages, 14672 KiB  
Article
Visualization Experiment on the Influence of the Lost Circulation Material Injection Method on Fracture Plugging
by Yi Feng, Guolin Xin, Wantong Sun, Gao Li, Rui Li and Huibin Liu
Processes 2025, 13(1), 236; https://doi.org/10.3390/pr13010236 - 15 Jan 2025
Viewed by 900
Abstract
The drilling fluid loss or lost circulation via near-wellbore fractures is one of the most critical problems in the drilling of deep oil and gas resources, which causes other problems such as difficulty in achieving wellbore pressure control and reservoir damage. The conventional [...] Read more.
The drilling fluid loss or lost circulation via near-wellbore fractures is one of the most critical problems in the drilling of deep oil and gas resources, which causes other problems such as difficulty in achieving wellbore pressure control and reservoir damage. The conventional treatment is to introduce granular lost circulation material (LCM) into the drilling fluid to plug the fractures. As the migration mechanism of the LCM in irregular fractures has not been completely figured out as of yet, the low success rate of fracture plugging and repeated drilling fluid loss still obstruct the exploitation of deep oil and gas resources. In this paper, the spatial data of actual rock fracture surfaces were obtained through structured light scanning, and an irregular surface identical to the rock was machined on a transparent polymethyl methacrylate plate. On this basis, a visualization experimental apparatus for fracture plugging was established, and the fracture flow space of this device was consistent with that of the actual rock fracture. Employing cylindrical nylon particles as LCM, a visualization experiment study was carried out to investigate the process of LCM bridging and fracture plugging and the influence of LCM injection methods. The experimental results show that the process of fracture plugging includes the sporadic bridging, plugging zone extension and merging, thickening of the plugging zone and complete plugging of the fracture. It was observed in the visualization experiment that a large number of small particles flow deep into the fracture in the traditional fracture plugging method, where all types and sizes of LCM are injected at one time. After changing the injection sequence, which injects the large particles first and the small particles subsequently, it is found that the large particles will form single-particle bridging at a specific depth of the fracture, intercepting subsequently injected particles and thickening the plugging zone, which finally increases the area of the plugging zone by 19%. The visualization experiment results demonstrate that modifying the LCM injection method significantly enhances both the LCM utilization rate and the fracture plugging effect, thereby reducing reservoir damage. This is conducive to reducing the drilling cost of fractured formation. Additionally, the visualized experimental approach introduced in this study can also benefit other research areas, including proppant placement and solute transport in rock fractures. Full article
(This article belongs to the Section Energy Systems)
Show Figures

Figure 1

18 pages, 923 KiB  
Article
Energy, Exergetic, and Thermoeconomic Analyses of Hydrogen-Fueled 1-kW Proton-Exchange Membrane Fuel Cell
by Yungpil Yoo, Sang-Yup Lee, Seok-Ho Seo, Si-Doek Oh and Ho-Young Kwak
Entropy 2024, 26(7), 566; https://doi.org/10.3390/e26070566 - 30 Jun 2024
Cited by 2 | Viewed by 1189
Abstract
Exergy analysis evaluates the efficiency of system components by quantifying the rate of entropy generation. In general, the exergy destruction rate or irreversibility rate was directly obtained through the exergy balance equation. However, this method cannot determine the origin of the component’s entropy [...] Read more.
Exergy analysis evaluates the efficiency of system components by quantifying the rate of entropy generation. In general, the exergy destruction rate or irreversibility rate was directly obtained through the exergy balance equation. However, this method cannot determine the origin of the component’s entropy generation rate, which is a very important factor in system design and improvement. In this study, a thorough energy, exergy, and thermoeconomic analysis of a proton-exchange membrane fuel cell (PEMFC) was performed, providing the heat transfer rate, entropy generation rate, and cost loss rate of each component. The irreversibility rate of each component was obtained by the Gouy–Stodola theorem. Detailed and extensive exergy and thermoeconomic analyses of the PEMFC system determined that water cooling units experience the greatest heat transfer among the components in the studied PEMFC system, resulting in the greatest irreversibility and, thus, the greatest monetary flow loss. Full article
(This article belongs to the Special Issue Thermal Science and Engineering Applications)
Show Figures

Figure 1

18 pages, 2338 KiB  
Article
Techno-Economic Evaluation of Direct Low-Pressure Selective Catalytic Reduction for Boil-Off Gas Treatment Systems of NH3-Fueled Ships
by Sangmin Ji, Wongwan Jung and Jinkwang Lee
J. Mar. Sci. Eng. 2024, 12(5), 698; https://doi.org/10.3390/jmse12050698 - 24 Apr 2024
Cited by 2 | Viewed by 2510
Abstract
This study proposes a feasible solution for boil-off gas (BOG) treatment to facilitate NH3 fuel use by ocean-going ships, which is currently considered an alternative fuel for ships. Two systems were designed and analyzed for BOG in IMO Type-A NH3 fuel [...] Read more.
This study proposes a feasible solution for boil-off gas (BOG) treatment to facilitate NH3 fuel use by ocean-going ships, which is currently considered an alternative fuel for ships. Two systems were designed and analyzed for BOG in IMO Type-A NH3 fuel storage tanks for 14,000 TEU container ships. First, BOG lost inside the storage tank minimized economic losses through the onboard re-liquefaction system. The total energy consumed by the system to process NH3 gas generated in the fuel tank at 232.4 kg/h was 51.9 kW, and the specific energy consumption (SEC) was 0.223 kWh/kg. Second, NH3 was supplied to the direct Low-Pressure Selective Catalytic Reduction (LP-SCR) system to treat marine pollutants generated by combustion engines. The feasible design point was determined by calculating the NH3 feed flow rate using three methodologies. The energy consumed by the direct LP-SCR system was 3.89 and 2.39 kW, and the SEC was 0.0144 at 0.0167 kWh/kg at 100% and 25% load, respectively. The feasibility was indicated via economic analysis. Depending on the life cycle cost, the competitiveness of the re-liquefaction system depends on the price of NH3, where a higher price yields a more economical solution. In conclusion, the direct LP-SCR system has a low overall cost because of its low energy consumption when supplying NH3 and its reduced amount of core equipment. Full article
(This article belongs to the Special Issue Maritime Alternative Fuel and Sustainability)
Show Figures

Figure 1

24 pages, 1450 KiB  
Review
Roadmap for Recommended Guidelines of Leak Detection of Subsea Pipelines
by Ahmed Reda, Ramy Magdy A. Mahmoud, Mohamed A. Shahin, Chiemela Victor Amaechi and Ibrahim A. Sultan
J. Mar. Sci. Eng. 2024, 12(4), 675; https://doi.org/10.3390/jmse12040675 - 18 Apr 2024
Cited by 7 | Viewed by 3945
Abstract
The leak of hydrocarbon-carrying pipelines represents a serious incident, and if it is in a gas line, the economic exposure would be significant due to the high cost of lost or deferred hydrocarbon production. In addition, the leakage of hydrocarbon could pose risks [...] Read more.
The leak of hydrocarbon-carrying pipelines represents a serious incident, and if it is in a gas line, the economic exposure would be significant due to the high cost of lost or deferred hydrocarbon production. In addition, the leakage of hydrocarbon could pose risks to human life, have an impact on the environment, and could cause an image loss for the operating company. Pipelines are designed to operate at full capacity under steady-state flow conditions. Normal operations may involve day-to-day transients such as the operations of pumps, valves, and changes in production/delivery rates. The basic leak detection problem is to distinguish between the normal operational transients and the occurrence of non-typical process conditions that would indicate a leak. To date, the industry has concentrated on a single-phase flow, primarily of oil, gas, and ethylene. The application of a leak-monitoring system to a particular pipeline system depends on environmental issues, regulatory imperatives, loss prevention of the operating company, and safety policy rather than pipe size and configuration. This paper provides a review of the recommended guidance for leak detection of subsea pipelines in the context of pipeline integrity management. The paper also presents a review of the capability and application of various leak detection techniques that can be used to offer a roadmap to potential users of the leak detection systems. Full article
(This article belongs to the Special Issue Applications of Underwater Acoustics in Ocean Engineering)
Show Figures

Figure 1

11 pages, 1317 KiB  
Article
Economical Operation and Hazardous Air Pollutant Emissions of Biodegradable Sludge Combustion Process in Commercial Fluidized Bed Plant
by Ha-Na Jang, Myung Kyu Choi and Hang Seok Choi
Energies 2024, 17(2), 542; https://doi.org/10.3390/en17020542 - 22 Jan 2024
Viewed by 1415
Abstract
Waste sludge is characterized by high moisture, volatile compounds, toxic compounds, and ashes. The efficient operation of a commercial fluidized bed combustion (FBC) plant is important for reducing operational costs. We selected a commercial FBC plant for industrial waste sludge combustion to investigate [...] Read more.
Waste sludge is characterized by high moisture, volatile compounds, toxic compounds, and ashes. The efficient operation of a commercial fluidized bed combustion (FBC) plant is important for reducing operational costs. We selected a commercial FBC plant for industrial waste sludge combustion to investigate the mass balance of the FBC process and the performance of the air pollution control device. Based on fuel analysis, the flow rate of incineration air was calculated as 4567 Nm3/h. After FBC combustion, the flow rate of the incineration gas increased to 8493.8 Nm3/h. Analysis of the heat balance showed that some heat potential was lost through leakage during the combustion process. The temperature of the incineration gas decreased to 200 °C at the inlet of the air pollution control device. According to the hazardous air pollutant emission testing of sampling points, the operation factors of lime slurry injection for SOx and HCl in the semi-dry reactor were 64.20 and 4.81 kg/h, respectively. In the wet scrubber, the operation factors of NaOH for SOx and HCl were 23.88 and 3.14 kg/h, respectively. At these operation factors, the available waste generation in the semi-dry reactor and wet scrubber was optimized to 76.6 and 42.57 kg/h, respectively. Full article
(This article belongs to the Section I2: Energy and Combustion Science)
Show Figures

Figure 1

14 pages, 4686 KiB  
Article
A Turbulent Inflow Generation Method for the LES of High Re Flow by Scaling Low Re Flow Data
by Lei Luo and Honghu Ji
Aerospace 2023, 10(9), 808; https://doi.org/10.3390/aerospace10090808 - 15 Sep 2023
Cited by 1 | Viewed by 1490
Abstract
The rescaling–recycling method (RRM) is usually used to generate turbulent inflow for the LES of compressible wall-bounded flows, which can lead to relatively high computational cost for high Re flows since the mesh resolution increases exponentially with Re number. A turbulent inflow generation [...] Read more.
The rescaling–recycling method (RRM) is usually used to generate turbulent inflow for the LES of compressible wall-bounded flows, which can lead to relatively high computational cost for high Re flows since the mesh resolution increases exponentially with Re number. A turbulent inflow generation method based on the scaling of low Re flow, referred as TIG-LowRe, is proposed, aiming at reducing the computational cost when applying the RRM. To validate the proposed method, the TIG-LowRe method was applied to generate turbulent inflow for the LES of a non-isothermal round jet flow at Re = 86,000. Two cases were carried out with the inflow generated based on two round pipe flows at Re = 10,000 and 24,000. The results show that the mean and fluctuating temperatures of the two cases agree well with the experimental data. In the case of low Re flow at Re = 10,000, the jet flow decays too fast along the axial direction, the mean and fluctuating axial velocities are over-predicted and the radial fluctuating velocity is under-predicted. By increasing the Re of the low Re flow to 24,000, the decay rate of the jet flow decreases and the accuracies of the mean and fluctuating axial velocities are obviously improved, while the radial fluctuating velocity shifts further away from the experimental data. The main reason for the difference between the two cases is that more fine turbulent structure of the inflow in case-Re10000 is lost than in case-Re24000 during the turbulence generation process. Full article
(This article belongs to the Section Aeronautics)
Show Figures

Figure 1

17 pages, 3216 KiB  
Article
Design of the Organic Rankine Cycle for High-Efficiency Diesel Engines in Marine Applications
by Apostolos Pesyridis, Muhammad Suleman Asif, Sadegh Mehranfar, Amin Mahmoudzadeh Andwari, Ayat Gharehghani and Thanos Megaritis
Energies 2023, 16(11), 4374; https://doi.org/10.3390/en16114374 - 27 May 2023
Cited by 11 | Viewed by 2557
Abstract
Over the past few years, fuel prices have increased dramatically, and emissions regulations have become stricter in maritime applications. In order to take these factors into consideration, improvements in fuel consumption have become a mandatory factor and a main task of research and [...] Read more.
Over the past few years, fuel prices have increased dramatically, and emissions regulations have become stricter in maritime applications. In order to take these factors into consideration, improvements in fuel consumption have become a mandatory factor and a main task of research and development departments in this area. Internal combustion engines (ICEs) can exploit only about 15–40% of chemical energy to produce work effectively, while most of the fuel energy is wasted through exhaust gases and coolant. Although there is a significant amount of wasted energy in thermal processes, the quality of that energy is low owing to its low temperature and provides limited potential for power generation consequently. Waste heat recovery (WHR) systems take advantage of the available waste heat for producing power by utilizing heat energy lost to the surroundings at no additional fuel costs. Among all available waste heat sources in the engine, exhaust gas is the most potent candidate for WHR due to its high level of exergy. Regarding WHR technologies, the well-known Rankine cycles are considered the most promising candidate for improving ICE thermal efficiency. This study is carried out for a six-cylinder marine diesel engine model operating with a WHR organic Rankine cycle (ORC) model that utilizes engine exhaust energy as input. Using expander inlet conditions in the ORC model, preliminary turbine design characteristics are calculated. For this mean-line model, a MATLAB code has been developed. In off-design expander analysis, performance maps are created for different speed and pressure ratios. Results are produced by integrating the polynomial correlations between all of these parameters into the ORC model. ORC efficiency varies in design and off-design conditions which are due to changes in expander input conditions and, consequently, net power output. In this study, ORC efficiency varies from a minimum of 6% to a maximum of 12.7%. ORC efficiency performance is also affected by certain variables such as the coolant flow rate, heat exchanger’s performance etc. It is calculated that with the increase of coolant flow rate, ORC efficiency increases due to the higher turbine work output that is made possible, and the condensing pressure decreases. It is calculated that ORC can improve engine Brake Specific Fuel Consumption (BSFC) from a minimum of 2.9% to a maximum of 5.1%, corresponding to different engine operating points. Thus, decreasing overall fuel consumption shows a positive effect on engine performance. It can also increase engine power output by up to 5.42% if so required for applications where this may be deemed necessary and where an appropriate mechanical connection is made between the engine shaft and the expander shaft. The ORC analysis uses a bespoke expander design methodology and couples it to an ORC design architecture method to provide an important methodology for high-efficiency marine diesel engine systems that can extend well beyond the marine sector and into the broader ORC WHR field and are applicable to many industries (as detailed in the Introduction section of this paper). Full article
Show Figures

Figure 1

11 pages, 1269 KiB  
Article
Cost Analysis of Implementing In-Pipe Hydro Turbine in the United Arab Emirates Water Network
by Ghaya Alawadhi, Meera Almehiri, Ahmad Sakhrieh, Ahmad Alshwawra and Jamil Al Asfar
Sustainability 2023, 15(1), 651; https://doi.org/10.3390/su15010651 - 30 Dec 2022
Cited by 4 | Viewed by 5525
Abstract
Water transmission lines have potential reserved energy, which is usually lost. Therefore, targeting this clean energy to produce electricity to power up the auxiliaries and utilities of water plants or consumers is financially and environmentally beneficial. This paper aims to investigate the feasibility [...] Read more.
Water transmission lines have potential reserved energy, which is usually lost. Therefore, targeting this clean energy to produce electricity to power up the auxiliaries and utilities of water plants or consumers is financially and environmentally beneficial. This paper aims to investigate the feasibility of installing an inline hydropower system in an existing transmission water pipe. It analyzes the feasibility of implementing a mini-hydropower plant in the transmission line of Liwa’s reservoir in the UAE. The maximum possible power harvested is 218.175 kW at the given water flow rate and net head. The payback period and the return on investment are analyzed based on different scenarios related to capital investment, operation, maintenance cost, and plant capacity factor. It is found that the payback period ranges between one to six years, where the return on investment can be as high as 85%. Furthermore, the expected CO2 emissions saving for this project is calculated to be between 395 and 1939 tons per year. Full article
Show Figures

Figure 1

8 pages, 1812 KiB  
Proceeding Paper
The PAT Energy Booster, a New Device for the Energy Recovery and Hydraulic Control in Water Supply Systems: Preliminary Experimental Tests
by Oreste Fecarotta, Armando Carravetta and Maria Cristina Morani
Environ. Sci. Proc. 2022, 21(1), 3; https://doi.org/10.3390/environsciproc2022021003 - 12 Oct 2022
Viewed by 1240
Abstract
The energy efficiency of water supply systems is usually very low. They are affected by a high rate of water leakage with a significant loss in terms of the energy that is embedded in the lost water flow. Furthermore, the strategy to reduce [...] Read more.
The energy efficiency of water supply systems is usually very low. They are affected by a high rate of water leakage with a significant loss in terms of the energy that is embedded in the lost water flow. Furthermore, the strategy to reduce the water loss frequently involves pressure reduction with a further decrease in energy efficiency. Several solutions have been proposed in the literature to reduce the pressure in the water distribution networks and recover the hydraulic energy, such as special turbines or pumps as turbines (PATs). Despite the positive aspects related to the use of such devices, the high installation costs, together with the limited hydraulic control capacity and the small power availability, limited the diffusion of such devices among the water utilities. A new device is proposed herein, which consists of two submersible PATs inserted into a booster cylinder. The high control capacity, together with the small production and installation costs, makes this technology very promising. The device has been installed in the Hydro Energy Lab of the CeSMA of the University of Naples and the first experimental results on its behavior are presented herein. A slight difference arises between the performance booster curves and the bare curves provided by the manufacturer due to measurement errors as well as to the presence of head loss within the system. Nevertheless, the energy efficiency of the plant results will be preserved, making this design a promising solution to overcome most of the limitations of the present technologies when low energy is available and large discharge variation occurs. Full article
Show Figures

Figure 1

21 pages, 3247 KiB  
Article
Multivariate Optimization of the FLC-dc-APGD-Based Reaction-Discharge System for Continuous Production of a Plasma-Activated Liquid of Defined Physicochemical and Anti-Phytopathogenic Properties
by Anna Dzimitrowicz, Piotr Jamroz, Pawel Pohl, Weronika Babinska, Dominik Terefinko, Wojciech Sledz and Agata Motyka-Pomagruk
Int. J. Mol. Sci. 2021, 22(9), 4813; https://doi.org/10.3390/ijms22094813 - 1 May 2021
Cited by 6 | Viewed by 3359
Abstract
To the present day, no efficient plant protection method against economically important bacterial phytopathogens from the Pectobacteriaceae family has been implemented into agricultural practice. In this view, we have performed a multivariate optimization of the operating parameters of the reaction-discharge system, employing direct [...] Read more.
To the present day, no efficient plant protection method against economically important bacterial phytopathogens from the Pectobacteriaceae family has been implemented into agricultural practice. In this view, we have performed a multivariate optimization of the operating parameters of the reaction-discharge system, employing direct current atmospheric pressure glow discharge, generated in contact with a flowing liquid cathode (FLC-dc-APGD), for the production of a plasma-activated liquid (PAL) of defined physicochemical and anti-phytopathogenic properties. As a result, the effect of the operating parameters on the conductivity of PAL acquired under these conditions was assessed. The revealed optimal operating conditions, under which the PAL of the highest conductivity was obtained, were as follows: flow rate of the solution equaled 2.0 mL min−1, the discharge current was 30 mA, and the inorganic salt concentration (ammonium nitrate, NH4NO3) in the solution turned out to be 0.50% (m/w). The developed PAL exhibited bacteriostatic and bactericidal properties toward Dickeya solani IFB0099 and Pectobacterium atrosepticum IFB5103 strains, with minimal inhibitory and minimal bactericidal concentrations equaling 25%. After 24 h exposure to 25% PAL, 100% (1−2 × 106) of D. solani and P. atrosepticum cells lost viability. We attributed the antibacterial properties of PAL to the presence of deeply penetrating, reactive oxygen and nitrogen species (RONS), which were, in this case, OH, O, O3, H2O2, HO2, NH, N2, N2+, NO2, NO3, and NH4+. Putatively, the generated low-cost, eco-friendly, easy-to-store, and transport PAL, exhibiting the required antibacterial and physicochemical properties, may find numerous applications in the plant protection sector. Full article
(This article belongs to the Special Issue Plasma Biology)
Show Figures

Figure 1

23 pages, 4223 KiB  
Article
Off-Design Operation of Conventional and Phase-Change CO2 Capture Solvents and Mixtures: A Systematic Assessment Approach
by Theodoros Zarogiannis, Athanasios I. Papadopoulos and Panos Seferlis
Appl. Sci. 2020, 10(15), 5316; https://doi.org/10.3390/app10155316 - 31 Jul 2020
Cited by 7 | Viewed by 2791
Abstract
Solvent-based CO2 capture technologies hold promise for future implementation but conventional solvents incur significant energy penalties and capture costs. Phase-change solvents enable a significant reduction in the regeneration energy but their performance has only been investigated under steady-state operation. In the current [...] Read more.
Solvent-based CO2 capture technologies hold promise for future implementation but conventional solvents incur significant energy penalties and capture costs. Phase-change solvents enable a significant reduction in the regeneration energy but their performance has only been investigated under steady-state operation. In the current work, we employed a systematic approach for the evaluation of conventional solvents and mixtures, as well as phase-change solvents under the influence of disturbances. Sensitivity analysis was used to identify the impact that operating parameter variations and different solvents exert on multiple CO2 capture performance indicators within a wide operating range. The resulting capture process performance was then assessed for each solvent within a multi-criteria approach, which simultaneously accounted for off-design conditions and nominal operation. The considered performance criteria included the regeneration energy, solvent mass flow rate, cost and cyclic capacity, net energy penalty from integration with an upstream power plant, and lost revenue from parasitic losses. The 10 investigated solvents included the phase-change solvents methyl-cyclohexylamine (MCA) and 2-(diethylamino)ethanol/3-(methylamino)propylamine (DEEA/MAPA). We found that the conventional mixture diethanolamine/methyldiethanolamine (DEA/MDEA) and the phase-change solvent DEEA/MAPA exhibited both resilience to disturbances and desirable nominal operation for multiple performance indicators simultaneously. Full article
Show Figures

Figure 1

24 pages, 3957 KiB  
Article
Diagnosis of Combined Cycle Power Plant Based on Thermoeconomic Analysis: A Computer Simulation Study
by Hoo-Suk Oh, Youngseog Lee and Ho-Young Kwak
Entropy 2017, 19(12), 643; https://doi.org/10.3390/e19120643 - 28 Nov 2017
Cited by 13 | Viewed by 6923
Abstract
In this study, diagnosis of a 300-MW combined cycle power plant under faulty conditions was performed using a thermoeconomic method called modified productive structure analysis. The malfunction and dysfunction, unit cost of irreversibility and lost cost flow rate for each component were calculated [...] Read more.
In this study, diagnosis of a 300-MW combined cycle power plant under faulty conditions was performed using a thermoeconomic method called modified productive structure analysis. The malfunction and dysfunction, unit cost of irreversibility and lost cost flow rate for each component were calculated for the cases of pre-fixed malfunction and the reference conditions. A commercial simulating software, GateCycleTM (version 6.1.2), was used to estimate the thermodynamic properties under faulty conditions. The relative malfunction (RMF) and the relative difference in the lost cost flow rate between real operation and reference conditions (RDLC) were found to be effective indicators for the identification of faulty components. Simulation results revealed that 0.5% degradation in the isentropic efficiency of air compressor, 2% in gas turbine, 2% in steam turbine and 2% degradation in energy loss in heat exchangers can be identified. Multi-fault scenarios that can be detected by the indicators were also considered. Additional lost exergy due to these types of faulty components, that can be detected by RMF or RDLC, is less than 5% of the exergy lost in the components in the normal condition. Full article
(This article belongs to the Section Thermodynamics)
Show Figures

Figure 1

Back to TopTop