Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (33)

Search Parameters:
Keywords = longitudinal ventilation velocity

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 1682 KiB  
Article
Dynamic Multi-Path Airflow Analysis and Dispersion Coefficient Correction for Enhanced Air Leakage Detection in Complex Mine Ventilation Systems
by Yadong Wang, Shuliang Jia, Mingze Guo, Yan Zhang and Yongjun Wang
Processes 2025, 13(7), 2214; https://doi.org/10.3390/pr13072214 - 10 Jul 2025
Viewed by 373
Abstract
Mine ventilation systems are critical for ensuring operational safety, yet air leakage remains a pervasive challenge, leading to energy inefficiency and heightened safety risks. Traditional tracer gas methods, while effective in simple networks, exhibit significant errors in complex multi-entry systems due to static [...] Read more.
Mine ventilation systems are critical for ensuring operational safety, yet air leakage remains a pervasive challenge, leading to energy inefficiency and heightened safety risks. Traditional tracer gas methods, while effective in simple networks, exhibit significant errors in complex multi-entry systems due to static empirical parameters and environmental interference. This study proposes an integrated methodology that combines multi-path airflow analysis with dynamic longitudinal dispersion coefficient correction to enhance the accuracy of air leakage detection. Utilizing sulfur hexafluoride (SF6) as the tracer gas, a phased release protocol with temporal isolation was implemented across five strategic points in a coal mine ventilation network. High-precision detectors (Bruel & Kiaer 1302) and the MIVENA system enabled synchronized data acquisition and 3D network modeling. Theoretical models were dynamically calibrated using field-measured airflow velocities and dispersion coefficients. The results revealed three deviation patterns between simulated and measured tracer peaks: Class A deviation showed 98.5% alignment in single-path scenarios, Class B deviation highlighted localized velocity anomalies from Venturi effects, and Class C deviation identified recirculation vortices due to abrupt cross-sectional changes. Simulation accuracy improved from 70% to over 95% after introducing wind speed and dispersion adjustment coefficients, resolving concealed leakage pathways between critical nodes and key nodes. The study demonstrates that the dynamic correction of dispersion coefficients and multi-path decomposition effectively mitigates errors caused by turbulence and geometric irregularities. This approach provides a robust framework for optimizing ventilation systems, reducing invalid airflow losses, and advancing intelligent ventilation management through real-time monitoring integration. Full article
(This article belongs to the Section Process Control and Monitoring)
Show Figures

Figure 1

17 pages, 4478 KiB  
Article
Numerical Study on Smoke Characteristics in Ultra-Long Tunnels with Multi-Train Fire Scenarios
by Jiaming Zhao, Cheng Zhang, Saiya Feng, Shiyi Chen, Guanhong He, Yanlong Li, Zhisheng Xu and Wenbin Wei
Fire 2025, 8(7), 265; https://doi.org/10.3390/fire8070265 - 3 Jul 2025
Viewed by 493
Abstract
Metropolitan city express line tunnels are fully enclosed and often span long distances between stations, allowing multiple trains within a single interval. Traditional segmented ventilation ensures only one train per section, but ultra-long tunnels with shaftless designs introduce new challenges under fire conditions. [...] Read more.
Metropolitan city express line tunnels are fully enclosed and often span long distances between stations, allowing multiple trains within a single interval. Traditional segmented ventilation ensures only one train per section, but ultra-long tunnels with shaftless designs introduce new challenges under fire conditions. This study investigates smoke behavior in an ultra-long inter-district tunnel during multi-train blockage scenarios. A numerical model evaluates the effects of train spacing, fire source location, and receding spacing on smoke back-layering, temperature distribution, and flow velocity. Results indicate that when train spacing exceeds 200 m and longitudinal wind speed is above 1.2 m/s, the impact of train spacing on smoke back-layering becomes negligible. Larger train spacing increases back-layering under constant wind speed, while higher wind speeds reduce it. Fire source location and evacuation spacing affect the extent and pattern of smoke spread and high-temperature zones, especially under reverse ventilation conditions. These findings provide quantitative insights into fire-induced smoke dynamics in ultra-long tunnels, offering theoretical support for optimizing ventilation control and evacuation strategies in urban express systems. Full article
(This article belongs to the Special Issue Advances in Fire Science and Fire Protection Engineering)
Show Figures

Figure 1

20 pages, 3448 KiB  
Review
Tissue Doppler Imaging in Acute and Critical Care: Enhancing Diagnostic Precision
by Ugo Giulio Sisto, Daniele Orso, Davide Maione, Francesco Venturelli and Antonio De Luca
Medicina 2025, 61(6), 1051; https://doi.org/10.3390/medicina61061051 - 6 Jun 2025
Viewed by 1893
Abstract
Background and Objectives: The introduction of portable ultrasound devices has transformed clinical practice in emergency medicine. Diagnostic accuracy and patient safety have been enhanced by point-of-care ultrasonography (POCUS), which has become a fundamental diagnostic and procedural tool. In addition to the standard clinical [...] Read more.
Background and Objectives: The introduction of portable ultrasound devices has transformed clinical practice in emergency medicine. Diagnostic accuracy and patient safety have been enhanced by point-of-care ultrasonography (POCUS), which has become a fundamental diagnostic and procedural tool. In addition to the standard clinical evaluation, POCUS provides quick patient assessments, allowing for the exclusion of life-threatening conditions and prognostication in different critical situations. Tissue Doppler imaging (TDI), as an advanced echocardiographic technique, offers additional quantitative data by measuring myocardial velocities, thereby improving the evaluation of systolic and diastolic ventricular function. The purpose of this review is to highlight the potential use of TDI in multiple acute and critical conditions. Materials and Methods: We conducted a narrative review of the main application topics for TDI. Results: TDI is an essential diagnostic and prognostic tool for acute coronary syndromes, assessing systolic or diastolic dysfunction, and etiological diagnosis of acute heart failure. It helps differentiate cardiogenic pulmonary edema from acute respiratory distress syndrome and identifies right ventricular systolic dysfunction in acute pulmonary embolism. TDI also facilitates distinctions between hypertension emergencies and urgencies and contributes to the stratification of atrial fibrillation reoccurrence risk. Furthermore, it aids in the differentiation of constrictive pericarditis from other restrictive cardiomyopathy patterns. In intensive care settings, TDI is particularly valuable during mechanical ventilation weaning, where elevated E/E’ values serve as a predictor of weaning failure. Due to its accessibility, rapid execution, and high reproducibility, it is suitable for longitudinal monitoring. Conclusions: TDI enhances the diagnostic precision, guides therapeutic strategies, and provides critical prognostic insights across a wide range of time-sensitive clinical scenarios, solidifying its role as an indispensable tool in modern emergency and critical care practice. Full article
(This article belongs to the Section Intensive Care/ Anesthesiology)
Show Figures

Figure 1

21 pages, 8615 KiB  
Article
Investigation of Various Fire Dynamics Simulator Approaches to Modelling Airflow in Road Tunnel Induced by Longitudinal Ventilation
by Peter Weisenpacher, Jan Glasa and Lukas Valasek
Fire 2025, 8(2), 74; https://doi.org/10.3390/fire8020074 - 12 Feb 2025
Viewed by 900
Abstract
The ability of computer simulations to model airflows in a tunnel can significantly contribute to the effectiveness of fire safety precautions. This study examines two ways of modelling the Polana tunnel (Slovakia) and its influence on the airflow created via longitudinal ventilation using [...] Read more.
The ability of computer simulations to model airflows in a tunnel can significantly contribute to the effectiveness of fire safety precautions. This study examines two ways of modelling the Polana tunnel (Slovakia) and its influence on the airflow created via longitudinal ventilation using a fire dynamics simulator. The first class of studied models is based on the assumption that the airflow in the tunnel is influenced to a large extent by the supporting structures and other installations under the tunnel ceiling. Due to the resolution of the computational grid, the constructions are modelled using a system of cuboids distributed along the tunnel at regular distances. The second class of models combines this approach with the previous one, in which tunnel drag is modelled by increased roughness of the tunnel walls. Unlike the previous model, the roughness values are not constant but reflect the curvature of the tunnel walls. The simulations results are compared against on-site measurements during a full-scale ventilation test conducted in 2017 by a grid of five anemometers, as well as with the results of the previous model. The results agree well with the experimental data with relative errors below 2% for bulk velocities and with mean absolute percentage deviations of 3, 6, and 10% for velocities measured using individual grid anemometers for three ventilation modes. The new models achieve several improvements in accuracy compared to the previous one. Full article
(This article belongs to the Section Fire Science Models, Remote Sensing, and Data)
Show Figures

Figure 1

17 pages, 4871 KiB  
Article
Comparative Study on the Evolution of Airflow Temperature and Valid Ventilation Distance Under Different Cooling Strategies in High-Temperature Tunnels for Mining Thermal Energy
by Fangchao Kang, Jinlong Men, Binbin Qin, Guoxi Sun, Ruzhen Chen, Weikang Zhang, Jiamei Chen and Zhenpeng Ye
Fire 2025, 8(1), 16; https://doi.org/10.3390/fire8010016 - 3 Jan 2025
Viewed by 990
Abstract
A comprehensive understanding of airflow temperature distribution within high-temperature tunnels is crucial for developing effective cooling strategies that ensure a safe environment and acceptable construction costs. In this paper, we introduce a novel cooling strategy that integrates thermal insulation layers and heat exchangers [...] Read more.
A comprehensive understanding of airflow temperature distribution within high-temperature tunnels is crucial for developing effective cooling strategies that ensure a safe environment and acceptable construction costs. In this paper, we introduce a novel cooling strategy that integrates thermal insulation layers and heat exchangers aligned along the tunnel axis (TIL-HE strategy). We investigate variations in airflow temperature and valid ventilation distance (VVD) and compare them with two other cooling strategies: natural tunnels only employing mechanical ventilation (NT strategy) and tunnels featuring thermal insulation layers (TIL strategy), through the 3D k-ε turbulence model in COMSOL Multiphysics. Our findings indicate that (1) the TIL-HE strategy demonstrates superior cooling performance, resulting in significantly lower airflow temperatures and markedly higher VVD; (2) higher water velocity and more heat exchangers contribute to lower airflow temperature and prolonged VVD; (3) positioning the heat exchangers within the surrounding rock rather than inside the insulation layer leads to even lower airflow temperature and longer VVD. Longitudinal-arranged heat exchangers present fewer construction challenges compared to traditional radial-drilled ones, ultimately reducing tunnel construction costs. These findings provide valuable insights for optimizing cooling strategies and engineering parameters in high-temperature tunnel environments. Full article
(This article belongs to the Special Issue Clean Combustion and New Energy)
Show Figures

Figure 1

20 pages, 4745 KiB  
Article
Study of Fire Plume Behavior and Maximum Ceiling Temperature Rise in a Curved Tunnel Driven by the Coupling of Blockage Effect and Longitudinal Ventilation
by Xin Zhang, Jie Li, Hao He, Xiaofeng Chen, Kai Zhu, Mingjian Yin, Ying Cao and Ke Wu
Fire 2025, 8(1), 9; https://doi.org/10.3390/fire8010009 - 27 Dec 2024
Viewed by 1270
Abstract
Tunnel fires often lead to vehicles being trapped inside, causing the “blocking effect”. In this work, fire plume behavior and the maximum ceiling temperature rise in a curved tunnel with blocked vehicles under longitudinal ventilation conditions are studied numerically. The results show that, [...] Read more.
Tunnel fires often lead to vehicles being trapped inside, causing the “blocking effect”. In this work, fire plume behavior and the maximum ceiling temperature rise in a curved tunnel with blocked vehicles under longitudinal ventilation conditions are studied numerically. The results show that, in curved tunnels, the fire plume in the quasi-stable state exhibits dynamic deflections between the concave and convex walls of the tunnel, so the location of high-temperature zones varies accordingly. The flow field structure in the near field of the blockage and the fire source is complex but can be decoupled into four characteristic sub-structures, i.e., the free shear layer, recirculation I above the vehicle blockage, recirculation II behind the downstream of the blockage, and recirculation III at the top of the tunnel. Recirculation I and II pull the fire plume upstream, while free shear layer and recirculation III pull the flame downstream. The final plume deflection direction depends on the relative strengths of these two pulling forces. As the longitudinal air velocity increases, the plume deflection direction changes from downstream to upstream of the fire source, forming the “downstream tilt—touch the ceiling above the fire source—upstream tilt” mode, resulting in the maximum ceiling temperature rise fluctuating in a decreasing-increasing-decreasing trend. Moreover, the higher the blocking ratio, the lower the critical air velocity required to induce the transition of the plume deflection directions, e.g., a critical wind speed of 3 m/s for a blockage ratio of 0.46 and a critical wind speed of 1 m/s for a blockage ratio of 0.62. Finally, a semi-empirical equation of the maximum ceiling temperature rise in curved tunnels, considering both longitudinal wind and the vehicle blocking ratio, is proposed and validated. This work highlights the multi-dimensional and non-stable plume behavior pattern in a complex tunnel fire scenario, thus providing a deeper understanding to improve the classical tunnel fire dynamic system. Full article
Show Figures

Figure 1

16 pages, 2129 KiB  
Article
CFD Simulation of Dynamic Temperature Variations Induced by Tunnel Ventilation in a Broiler House
by Lak-yeong Choi, Kehinde Favour Daniel, Se-yeon Lee, Chae-rin Lee, Ji-yeon Park, Jinseon Park and Se-woon Hong
Animals 2024, 14(20), 3019; https://doi.org/10.3390/ani14203019 - 18 Oct 2024
Cited by 1 | Viewed by 1447
Abstract
Maintaining the optimal microclimate in broiler houses is crucial for bird productivity, yet enabling efficient temperature control remains a significant challenge. This study developed and validated a computational fluid dynamics (CFD) model to predict temporal changes in indoor air temperature in response to [...] Read more.
Maintaining the optimal microclimate in broiler houses is crucial for bird productivity, yet enabling efficient temperature control remains a significant challenge. This study developed and validated a computational fluid dynamics (CFD) model to predict temporal changes in indoor air temperature in response to variable ventilation operations in a commercial broiler house. The model accurately simulated air velocity and airflow distribution for different numbers of tunnel fans in operation, with air-velocity errors ranging from −0.22 to 0.32 m s−1. The predicted airflow rates through inlets and cooling pads showed good agreement with measured values with an accuracy of up to 108.1%. Additionally, the CFD model effectively predicted temperature dynamics, accounting for chicken heat production and ventilation effect. The model successfully predicted the longitudinal temperature gradients and their variations during ventilation cycles, validating its reliability through comparison with experimental data. This study also explored different variable inlet configurations to mitigate the temperature gradient. The variable inlet adjustment showed the potential to relieve the high temperatures but may reduce overall ventilation efficiency or intensify temperature gradients, which confirms the importance of optimising ventilation strategies. This CFD model provides a valuable tool for evaluating and improving ventilation systems and contributes to enhanced indoor microclimates and productivity in poultry houses. Full article
(This article belongs to the Section Animal System and Management)
Show Figures

Figure 1

19 pages, 4270 KiB  
Article
Design of Adits for People Passing Spacing in High Altitude Highway Tunnels in Cold Regions
by Yuang Cui and Zhiqiang Liu
Appl. Sci. 2024, 14(17), 7573; https://doi.org/10.3390/app14177573 - 27 Aug 2024
Cited by 2 | Viewed by 912
Abstract
Existing research into this topic primarily focuses on low-altitude areas, neglecting the impact of extreme environmental conditions such as low temperature, low oxygen level, and low pressure in high-altitude regions. Based on the smoke diffusion theory, a series of CFD numerical simulations were [...] Read more.
Existing research into this topic primarily focuses on low-altitude areas, neglecting the impact of extreme environmental conditions such as low temperature, low oxygen level, and low pressure in high-altitude regions. Based on the smoke diffusion theory, a series of CFD numerical simulations were conducted in order to investigate the characteristics of smoke diffusion in the highway tunnel at high altitude. The results indicated that the increase in altitude would enhance the longitudinal propagation velocity of smoke, leading to a more pronounced impact on temperature, CO concentration, and visibility at characteristic heights. Meanwhile, the altitude intensifies the inhibitory impact of longitudinal ventilation on smoke diffusion upwind of the fire source and augments the acceleration effect on smoke diffusion downwind, thereby impeding personnel evacuation on the downwind side. By taking the hazardous range at a characteristic height under the impact of wind velocity and the deceleration of evacuation velocity due to altitude into consideration, a new recommended reduction factor was deduced to design adits for people passing spacing in highway tunnels at high altitude. The findings can serve as a valuable reference for the personal evacuation in high-altitude highway tunnel fires and the design of spacing between adits for people passing within such tunnels. Full article
Show Figures

Figure 1

22 pages, 6692 KiB  
Article
Thermal Characteristics of Multiple Blockages with Various Sizes in Longitudinal Ventilated Tunnel Fire
by Herui Zhang, Fengqiang Dai, Bin Miao, Zhengfei Wu and Jianchun Ou
Fire 2024, 7(8), 269; https://doi.org/10.3390/fire7080269 - 2 Aug 2024
Viewed by 1144
Abstract
In longitudinal ventilation tunnel fires, the thermal characteristics become more intricate due to the presence of blockages. This phenomenon becomes more complex when multiple blockages occur, which results in a unique interaction between the fire and longitudinal ventilation through gaps between the blockages. [...] Read more.
In longitudinal ventilation tunnel fires, the thermal characteristics become more intricate due to the presence of blockages. This phenomenon becomes more complex when multiple blockages occur, which results in a unique interaction between the fire and longitudinal ventilation through gaps between the blockages. Most of the previous studies have only considered single obstacles or have only performed qualitative analyses and have not obtained predictive models. To fill this research gap, we conducted numerical simulations using the Fire Dynamic Simulator (FDS) to study the effects of vehicular blockages in three lanes and two fire locations. Our study highlights the differences in the flame behavior, maximum temperature rise, and smoke back-layering length in the presence of multiple blockages and reveals that as the ventilation velocity increases, the flame bifurcation angle increases and the smoke back-layering length decreases. Additionally, when the fire is in the side lane, the flame tilts towards the sidewall, leading to higher maximum temperatures compared to those in the middle lane. Based on these findings, we have developed modified formulas that predict the maximum temperature rise, smoke back-layering length, and maximum temperature ratio at different fire locations and blockage rates, which are linearly related. Full article
Show Figures

Figure 1

17 pages, 3388 KiB  
Article
Simulation of Fire Evacuation in a Naturally Ventilated Bifurcated Tunnel
by Jianhong Chen, Zekun Hu and Shan Yang
Fire 2024, 7(6), 202; https://doi.org/10.3390/fire7060202 - 16 Jun 2024
Cited by 2 | Viewed by 1410
Abstract
The natural wind velocities in tunnels under different natural conditions are distinct, and the longitudinal ventilation velocity significantly impacts the evacuation environment. This paper examines the evacuation conditions and strategies under varying wind velocities in bifurcated tunnels. Using Fire Dynamics Simulator (FDS) and [...] Read more.
The natural wind velocities in tunnels under different natural conditions are distinct, and the longitudinal ventilation velocity significantly impacts the evacuation environment. This paper examines the evacuation conditions and strategies under varying wind velocities in bifurcated tunnels. Using Fire Dynamics Simulator (FDS) and Pathfinder software, the fire development and evacuation of three distinct longitudinal positions in a bifurcated tunnel are simulated. The simulation results demonstrate that the evacuation conditions for disparate fire sources at varying wind velocities are markedly disparate. In consideration of the construction cost and the maximization of evacuation capacity, the width of the evacuation doors at the three locations should be set to 2 m, 1.5 m, and 1.5 m, respectively. Furthermore, an analysis of the safety of individual personnel through Fractional Effective Dose (FED) revealed that directing evacuees towards the upstream of the fire after the fire is detected can significantly reduce individual personnel injuries while ensuring the overall success of the evacuation. Full article
(This article belongs to the Special Issue Advance in Tunnel Fire Research)
Show Figures

Figure 1

13 pages, 4090 KiB  
Article
Experimental and Theoretical Investigation of Longitudinal Temperature Attenuation and Smoke Movement in Urban Utility Tunnel Fires
by Biteng Cao, Hong Liu, Rui Fan, Xiaoyu Ju and Lizhong Yang
Fire 2024, 7(4), 123; https://doi.org/10.3390/fire7040123 - 8 Apr 2024
Cited by 4 | Viewed by 1598
Abstract
The urban utility tunnel is an indispensable part of modern engineering construction. However, the fire risk cannot be ignored due to the narrow space and limited ventilation of the utility tunnel. A study of smoke filling is performed in a 1/8-scaled utility tunnel [...] Read more.
The urban utility tunnel is an indispensable part of modern engineering construction. However, the fire risk cannot be ignored due to the narrow space and limited ventilation of the utility tunnel. A study of smoke filling is performed in a 1/8-scaled utility tunnel (25 m × 0.5 m × 0.45 m). Five heat release rates (5, 10, 15, 20 and 25 kW) and four positions of fire sources are used for tests. The initial position of the one-dimensional smoke movement of strong plume is determined. Based on the traditional model, the longitudinal temperature attenuation model of tunnel smoke is established with consideration of radiation and convection heat losses. The theoretical value of the longitudinal temperature rise of smoke is in good agreement with the experimental value. A one-dimensional spreading velocity model is established that coincides well with the experimental value, and the relative error is less than 20%. The spreading velocity of smoke is increased by the heat release rate. The velocity of the smoke spreading at the near end is smaller than that at the center, due to the long spreading route. The current conclusions disclosed in this study provide important guidance for the ventilation design of utility tunnels for fire smoke scenarios. Full article
(This article belongs to the Special Issue Unusual Fire in Open and Confined Space)
Show Figures

Figure 1

15 pages, 3246 KiB  
Article
Numerical Simulation of the Smoke Distribution Characteristics in a T-Shaped Roadway
by Cui Ding, Dou Chang, Diange Sun and Songling Zou
Fire 2024, 7(3), 80; https://doi.org/10.3390/fire7030080 - 3 Mar 2024
Cited by 1 | Viewed by 1729
Abstract
This paper numerically analyzes the influence of heat release rate (HRR) and longitudinal ventilation velocity on smoke distribution characteristics in a T-shaped roadway when the fire source was located upstream of the T-junction. The back-layering length, critical ventilation velocity, smoke temperature, and CO [...] Read more.
This paper numerically analyzes the influence of heat release rate (HRR) and longitudinal ventilation velocity on smoke distribution characteristics in a T-shaped roadway when the fire source was located upstream of the T-junction. The back-layering length, critical ventilation velocity, smoke temperature, and CO concentration in the main and branched roadway were investigated and analyzed. The results showed that the ventilation velocity is the key factor influencing back-layering length, while the effect of HRR on back-layering length is gradually weakened as HRR increases. The critical ventilation velocity in the T-shaped roadway is higher than in a single-tube roadway, and the predicted model of dimensional critical ventilation velocity in a T-shaped bifurcated roadway is proposed. The correlation between average temperature (Z = 1.6 m) (both in the main roadway I and the branched roadway) and ventilation velocity fits the power function, and the variation in average temperature (Z = 1.6 m) according to HRR fits the linear formula. The relation between average concentration of CO (Z = 1.6 m) (both inside the main roadway I and the branched roadway) and longitudinal ventilation velocity follows the power relation, and the variation in average concentration of CO (Z = 1.6 m) according to HRR follows the linear function. Full article
(This article belongs to the Special Issue Fire Numerical Simulation)
Show Figures

Figure 1

19 pages, 5351 KiB  
Article
Effect of Semi-Transverse Ventilation Velocity on Combustion Characteristics of Pool Fire Sources in a Scaled Tunnel
by Liyue Gong, Yifan Peng, Jun Xu, Wanli Li, Tianyao Jia, Junqiu Ma and Haihang Li
Fire 2024, 7(1), 18; https://doi.org/10.3390/fire7010018 - 4 Jan 2024
Cited by 4 | Viewed by 2391
Abstract
Compared to longitudinal ventilation, there are few studies on fire source development under semi-transverse ventilation. This work studied the influence of semi-transverse ventilation on the combustion characteristics of fire sources in a scaled tunnel. The burning rate and heat transfer feedback during pool [...] Read more.
Compared to longitudinal ventilation, there are few studies on fire source development under semi-transverse ventilation. This work studied the influence of semi-transverse ventilation on the combustion characteristics of fire sources in a scaled tunnel. The burning rate and heat transfer feedback during pool fire combustion were revealed under different longitudinal and transverse ventilation velocities. The results showed that transverse ventilation had little influence on combustion characteristics, and the burning rate was more obviously affected by longitudinal ventilation. The heat convection feedback increased monotonically with the increase of the longitudinal ventilation, which led to the increase of the total heat feedback on the fuel. The heat radiation feedback changed little, and the heat conduction feedback decreased monotonically with the increase of the longitudinal ventilation velocity. By aid of a Fire Dynamics Simulator, it was found that the flame tilted downstream and was in the flow line of the lower cold air flow coming from upstream and the upper hot smoke flow outgoing in the downstream direction. The transverse ventilation of 2 m/s or lower hardly affected the combustion field of the fire source. Therefore, semi-transverse ventilation is preferable to longitudinal ventilation from the point of view of limiting fire expansion. Full article
(This article belongs to the Special Issue Dynamics of Wind-Fire Interaction: Fundamentals and Applications)
Show Figures

Figure 1

16 pages, 4931 KiB  
Article
Experimental Investigation on Fire Smoke Temperature under Forced Ventilation Conditions in a Bifurcated Tunnel with Fires Situated in a Branch Tunnel
by Hanwen Guo, Zhengyuan Yang, Peiyao Zhang, Yunji Gao and Yuchun Zhang
Fire 2023, 6(12), 473; https://doi.org/10.3390/fire6120473 - 17 Dec 2023
Cited by 3 | Viewed by 2336
Abstract
In this work, a number of experiments were conducted in a reduced scale bifurcation tunnel with a ratio of 1:10 to explore the influence of the position of longitudinal fires (placed in branch tunnel) on smoke temperature profile under forced ventilation. Three heat [...] Read more.
In this work, a number of experiments were conducted in a reduced scale bifurcation tunnel with a ratio of 1:10 to explore the influence of the position of longitudinal fires (placed in branch tunnel) on smoke temperature profile under forced ventilation. Three heat release rates, six ventilation velocities, and three fire locations were considered. The main findings are summarized below, as follows: The temperature of smoke downstream of the main tunnel decreases with the rate of ventilation and longitudinal fire location. In contrast, the smoke temperature downstream of the fire source inside the branch tunnel drops with the ventilation velocity; the maximum temperature of the flame under the ceiling of the tunnel rises with longitudinal fire location. The dimensionless longitudinal smoke temperatures downstream of the main tunnel decrease exponentially with longitudinal distance, and the same observation is found in the branch tunnel. The attenuation coefficient k in the main tunnel increases with longitudinal ventilation velocity according to a power law but does not change significantly with longitudinal fire locations. However, the exponential coefficient k′ in the branch tunnel decreases linearly with ventilation velocity, whereas it increases with longitudinal fire location inside the branch tunnel. Lastly, modified models are established for estimating the longitudinal profile of temperatures downstream of the main tunnel and branch tunnel, where the influence of the rate of ventilation and location of the fire are taken into account. Full article
Show Figures

Figure 1

18 pages, 6920 KiB  
Article
Study on the Air Inlet Velocity and Temperature Distribution in an Inclined Tunnel with Single Shaft under Natural Ventilation
by Liang Yi, Shihan Lan, Xiaofei Wang, Rongwei Bu, Jiaming Zhao and Yang Zhou
Buildings 2023, 13(4), 842; https://doi.org/10.3390/buildings13040842 - 23 Mar 2023
Cited by 6 | Viewed by 2277
Abstract
The emergence of inclined tunnels under natural ventilation has brought many new fire safety issues. The smoke movement in the tunnel is affected by the chimney effect induced by the shaft and the downstream tunnel. The characteristics of temperature distribution in inclined tunnels [...] Read more.
The emergence of inclined tunnels under natural ventilation has brought many new fire safety issues. The smoke movement in the tunnel is affected by the chimney effect induced by the shaft and the downstream tunnel. The characteristics of temperature distribution in inclined tunnels are different from horizontal tunnels, which is worthy of further study. A series of conditions were carried out in an inclined model tunnel with a single shaft to investigate the temperature distribution characteristics. In this study, the longitudinal air inlet velocity is used to replace the longitudinal ventilation wind velocity. Results showed that the variation of fire source location Lf,, shaft height Ls, and the tunnel slope φ have obvious effect on the air inlet velocity. Based on the previous theories and the non-dimension analysis, the formulas of the dimensionless longitudinal inlet air velocity and the distribution of the maximum smoke temperature under the ceiling are proposed, which show good consistency with the simulation results. The reduced-scale experiments were conducted to validate the results of numerical simulation. The error range between the theoretical results and the simulation results is less than 20%. Full article
Show Figures

Figure 1

Back to TopTop