Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (94)

Search Parameters:
Keywords = long-span steel bridges

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 5500 KB  
Article
Low-Damage Seismic Design Approach for a Long-Span Cable-Stayed Bridge in a High Seismic Hazard Zone: A Case Study of the New Panama Canal Bridge
by Zhenghao Xiao, Shan Huang, Sheng Li, Minghua Li and Yao Hu
Buildings 2026, 16(2), 428; https://doi.org/10.3390/buildings16020428 - 20 Jan 2026
Viewed by 142
Abstract
Designing long-span cable-stayed bridges in high seismic hazard zones presents significant challenges due to their flexible structural systems, the influence of multi-support excitation, and the need to control large displacements while limiting seismic demands on critical components. These difficulties are further amplified in [...] Read more.
Designing long-span cable-stayed bridges in high seismic hazard zones presents significant challenges due to their flexible structural systems, the influence of multi-support excitation, and the need to control large displacements while limiting seismic demands on critical components. These difficulties are further amplified in regions with complex geology and for bridges required to maintain high levels of post-earthquake serviceability. This study develops a low-damage seismic design approach for long-span cable-stayed bridges and demonstrates its application in the New Panama Canal Bridge. Probabilistic seismic hazard assessment and site response analyses are performed to generate spatially varying ground motions at the pylons and side piers. The pylons adopt a reinforced concrete configuration with embedded steel stiffeners for anchorage, forming a composite zone capable of efficiently transferring concentrated stay-cable forces. The lightweight main girder consists of a lattice-type steel framework connected to a high-strength reinforced concrete deck slab, providing both rigidity and structural efficiency. A coordinated girder–pylon restraint system—comprising vertical bearings, fuse-type restrainers, and viscous dampers—ensures controlled stiffness and effective energy dissipation. Nonlinear seismic analyses show that displacements of the girder remain well controlled under the Safety Evaluation Earthquake, and the dampers and bearings exhibit stable hysteretic behaviours. Cable tensions remain within 500–850 MPa, meeting minimal-damage performance criteria. Overall, the results demonstrate that low-damage seismic performance targets are achievable and that the proposed design approach enhances structural control and seismic resilience in long-span cable-stayed bridges. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

15 pages, 12905 KB  
Article
Rapid Vibration Suppression Measures Research for Mitigating Vortex-Induced Vibration in Long-Span Steel Box Girder Suspension Bridges
by Zhipeng Chen, Guangwei Zhou and Changping Chen
Buildings 2025, 15(24), 4505; https://doi.org/10.3390/buildings15244505 - 12 Dec 2025
Viewed by 366
Abstract
Long-span steel box girder suspension bridges are prone to vortex-induced vibrations (VIVs) due to their light weight, flexible characteristics, and low structural damping. Traditional temporary aerodynamic measures, although effective in vibration suppression, involve prolonged construction periods and high costs, leading to traffic disruptions [...] Read more.
Long-span steel box girder suspension bridges are prone to vortex-induced vibrations (VIVs) due to their light weight, flexible characteristics, and low structural damping. Traditional temporary aerodynamic measures, although effective in vibration suppression, involve prolonged construction periods and high costs, leading to traffic disruptions and considerable socio-economic losses. To address these limitations, this study implemented rapid vibration suppression by prescribing designated lanes and traveling speeds for vehicles with varying aerodynamic configurations, dynamically arranged on the bridge deck for efficient vibration control. Through CFD numerical simulations, the influence of vehicle placement on vibration suppression efficiency was systematically investigated. The results indicated that the strategic arrangement of vehicles could reduce the root-mean-square (RMS) amplitude of VIV of the main girder by more than 75%, with suppression efficiency significantly correlated with the spatial distribution of the vehicles. Moreover, the suppression mechanism was analyzed, revealing that resonance occurs when the vortex-shedding frequency matches the natural frequency of the main girder in the absence of suppression measures. Vehicle deployment alters the vortex-shedding frequency from the bridge surface, shifting it away from the structural natural frequency, while simultaneously weakening the periodic energy input from vortex shedding, thus effectively mitigating the vibration response. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

42 pages, 3902 KB  
Article
Uncovering Symmetric and Asymmetric Deterioration Patterns in Maryland’s Steel Bridges Through Time-Series Clustering and Principal Component Analysis
by Soroush Piri, Zeinab Bandpey, Mehdi Shokouhian and Ruel Sabellano
Symmetry 2025, 17(12), 2074; https://doi.org/10.3390/sym17122074 - 3 Dec 2025
Viewed by 401
Abstract
This study analyzes long-term deterioration patterns in 1378 Maryland steel bridges using annual Bridge Health Index (BHI) records from 1995–2021. Missing observations were addressed through linear interpolation combined with forward/backward filling, after which feature-wise z-score standardization was applied to ensure comparability across annual [...] Read more.
This study analyzes long-term deterioration patterns in 1378 Maryland steel bridges using annual Bridge Health Index (BHI) records from 1995–2021. Missing observations were addressed through linear interpolation combined with forward/backward filling, after which feature-wise z-score standardization was applied to ensure comparability across annual trajectories. Euclidean K-means clustering (k-means++ initialization, 10 restarts) was implemented to identify deterioration archetypes, with K = 6 selected using the elbow method and the silhouette coefficient. Cluster-internal stability was evaluated using bridge-level Root Mean Squared Error (RMSE), and uncertainty in median deterioration profiles was quantified using 2000-iteration percentile-based bootstrap confidence intervals. To interpret structural and contextual drivers within each group, Principal Component Analysis (PCA) was performed on screened and standardized geometric, structural, and traffic-related attributes. Results revealed strong imbalance in cluster membership (757, 503, 35, 33, 44, and 6 bridges), reflecting substantial diversity in long-term BHI behavior. Cluster-median RMSE values ranged from 2.69 to 22.66, while wide confidence bands in smaller clusters highlighted elevated uncertainty due to limited sample size. PCA indicated that span length, deck width, truck percentage, and projected future ADT were the most influential differentiators of deteriorating clusters, while stable clusters were distinguished by consistently high BHI component values and limited geometric complexity. Missing rehabilitation records prevented definitive attribution of U-shaped or recovering trajectories to specific intervention events. Overall, this study establishes a scalable, statistically supported framework for deterioration-trajectory profiling and provides actionable insight for proactive inspection scheduling, rehabilitation prioritization, and long-term asset management planning for state-level bridge networks. Full article
(This article belongs to the Special Issue Application of Symmetry in Civil Infrastructure Asset Management)
Show Figures

Figure 1

18 pages, 9918 KB  
Article
Experimental and Numerical Investigation of Post-Weld Heat Treatment on Residual Stress Relaxation in Orthotropic Steel Decks Welding
by Qinhe Li, Hao Chen, Zhe Hu, Ronghui Wang and Chunguang Dong
Buildings 2025, 15(23), 4319; https://doi.org/10.3390/buildings15234319 - 28 Nov 2025
Viewed by 389
Abstract
Orthotropic steel decks (OSDs) serve as critical load-bearing components in long-span steel bridges, but high-amplitude welding residual stresses (WRSs) generated during the welding process pose significant threats to structural integrity. To mitigate these stresses, post-weld heat treatment (PWHT) has emerged as a promising [...] Read more.
Orthotropic steel decks (OSDs) serve as critical load-bearing components in long-span steel bridges, but high-amplitude welding residual stresses (WRSs) generated during the welding process pose significant threats to structural integrity. To mitigate these stresses, post-weld heat treatment (PWHT) has emerged as a promising technique. This investigation first establishes a semi-structural thermo-elasto-plastic finite element model of the Deck-U-rib-Diaphragm system with a six-pass welding sequence. The temperature field is modeled via a double-ellipsoidal heat source and birth–death element approach. Subsequently, thermo-mechanical coupling analysis is conducted to investigate the distribution characteristics of Von Mises residual stresses. The stress relief effect of PWHT is then explored by comparing different holding temperatures (T) and holding times (t), achieving a balance between stress reduction effectiveness and economic efficiency, when T = 550 °C and t = 40 min. Finally, full-scale experimental tests are designed, and the hole-drilling method is utilized to validate the numerical simulation results. This research provides valuable insights for the design of PWHT processes for OSDs. Full article
(This article belongs to the Special Issue Advanced Analysis and Design for Steel Structure Stability)
Show Figures

Figure 1

25 pages, 9095 KB  
Article
Construction Control of Long-Span Combined Rail-Cum-Road Continuous Steel Truss Girder Bridge of High-Speed Railway
by Jun Zhou, Fangwen Weng, Yuxiong Liang, Zhiwei Liao, Feng Zhang and Meizhen Fu
Buildings 2025, 15(22), 4204; https://doi.org/10.3390/buildings15224204 - 20 Nov 2025
Viewed by 612
Abstract
The construction of long-span continuous steel truss rail-cum-road bridges for high-speed railways presents significant challenges, primarily due to structural complexity, stringent deformation tolerances, and intricate construction sequences. This paper presents a comprehensive construction control methodology developed and implemented for such bridges. Using a [...] Read more.
The construction of long-span continuous steel truss rail-cum-road bridges for high-speed railways presents significant challenges, primarily due to structural complexity, stringent deformation tolerances, and intricate construction sequences. This paper presents a comprehensive construction control methodology developed and implemented for such bridges. Using a real-world bridge project in China as a case study, the methodology integrates mechanical analysis of key construction stages, deformation prediction, real-time monitoring, and adjustment techniques. Furthermore, the application of machine learning (ML) for camber prediction is explored. Key findings indicate that the longitudinal displacement (X-direction) of the top chord at the upper-deck closure segment is highly sensitive to temperature variations, with a differential of about 10–12 mm observed under a 15 °C temperature change. Consequently, closure welding is recommended near the design reference temperature, with field measurements guiding final fit-up adjustments. A comparative analysis between ML predictions and theoretical methods for member elongation revealed that the Extra Trees (ET) model and K-Nearest Neighbors (KNN) model achieved excellent accuracy, with errors within 2 mm, demonstrating the feasibility of ML-based camber setting. The proposed integrated approach, combining finite element analysis, real-time monitoring, and detailed sensitivity analysis of closure accuracy, proves effective in ensuring structural safety and meeting precise alignment requirements, particularly for high-speed railway track. The findings offer valuable insights for the construction control of similar long-span steel truss rail-cum-road bridges. Full article
(This article belongs to the Special Issue Application of Experiment and Simulation Techniques in Engineering)
Show Figures

Figure 1

19 pages, 2445 KB  
Article
Analysis of Wind-Induced Effects and Vibration Control of a Cable-Supported Bridge with a Steel Truss Girder in Strong Marine Wind Environments
by Zhou Fang and Ying Zhu
Appl. Sci. 2025, 15(22), 11950; https://doi.org/10.3390/app152211950 - 10 Nov 2025
Viewed by 614
Abstract
This study aims to analyze the wind-induced effects and vibration control of a long-span cable-stayed bridge with a steel truss girder under strong marine wind conditions during its maximum single-cantilever state. During the cantilever construction stage of cable-stayed bridges, the reduction in structural [...] Read more.
This study aims to analyze the wind-induced effects and vibration control of a long-span cable-stayed bridge with a steel truss girder under strong marine wind conditions during its maximum single-cantilever state. During the cantilever construction stage of cable-stayed bridges, the reduction in structural stiffness and damping may lead to excessive wind-induced responses, affecting construction accuracy and safety. Focusing on a newly constructed sea-crossing railway cable-stayed bridge with a steel truss girder and a main span of 364 m, this research utilizes field-measured data and finite element simulations to analyze the buffeting responses of the bridge in the maximum single-cantilever state during construction. The vibration suppression effects of different wind-resistant measures are compared, and we propose an economical and efficient vibration mitigation solution. The results indicate that using the turbulent field parameters and unit aerodynamic admittance function recommended in JTG/T 3360-01—2018 Wind-resistant Design Specification for Highway Bridges leads to conservative in predictions regarding the buffeting responses, and this approach can be used in the preliminary design of large-span bridges. The measured turbulent field parameters can effectively estimate the bridge buffeting responses, especially in the transverse direction. Measuring wind speeds at the bridge site is crucial for the rational design and construction of cable-stayed bridges in strong marine wind environments. The effectiveness of vibration reduction decreases in the order of temporary piers, inclined struts, tuned mass dampers, and wind-resistant cables. The inclined strut scheme achieved vibration reductions of 84.45% in the transverse direction and 68.17% in the vertical direction, slightly lower than those of the auxiliary pier scheme (89.04% and 85.47%). However, the installation of temporary piers during the construction of a sea-crossing bridge would significantly increase construction costs, whereas the inclined strut scheme requires only temporary steel structures near the main tower and piers without substantially increasing the construction workload. Therefore, the inclined strut scheme is recommended as an effective and economical vibration control measure for large-span sea-crossing cable-stayed bridges. Full article
(This article belongs to the Section Civil Engineering)
Show Figures

Figure 1

18 pages, 4454 KB  
Article
Analysis on Wind-Induced Fatigue Life of Steel Tall Buildings Based on Wind Tunnel Test and Time-Domain Analysis
by Ze-Kang Wang, Rui-Fang Gao and Lei Wang
Appl. Sci. 2025, 15(21), 11736; https://doi.org/10.3390/app152111736 - 3 Nov 2025
Viewed by 631
Abstract
Dynamic wind-induced vibrations of structures will cause cyclic stresses in structural elements, potentially leading to fatigue damage accumulation or structural failure. Existing research on wind-induced fatigue mainly focuses on tower and large-span steel structures, such as chimneys, signal towers, transmission towers, long-span bridges, [...] Read more.
Dynamic wind-induced vibrations of structures will cause cyclic stresses in structural elements, potentially leading to fatigue damage accumulation or structural failure. Existing research on wind-induced fatigue mainly focuses on tower and large-span steel structures, such as chimneys, signal towers, transmission towers, long-span bridges, and wind turbines. However, existing studies on wind-induced fatigue damage in tall steel buildings remain limited. To determine whether and under what conditions wind-induced fatigue damage needs to be considered in tall steel structures, this study investigates wind-induced fatigue failure through wind tunnel tests and numerical simulations. Specifically, six real tall steel buildings were examined to assess their fatigue life under dynamic wind loads. First, wind tunnel tests using synchronous pressure models were conducted to obtain wind load time histories of these six buildings. Subsequently, time histories of wind-induced displacements and component stresses were calculated. The wind-induced fatigue life of each building was evaluated using the rain-flow counting method and the Palmgren–Miner rule, revealing that the fatigue life generally exceeds 400 years. The results demonstrate that tall steel structures designed according to current standards perform well in resisting wind-induced fatigue damage. Furthermore, when the ratio of the wind-induced root mean square (RMS) stress to the ultimate strength of a structural element reaches 0.125–0.164, the fatigue life of components may fall below the design life, indicating the necessity of considering potential fatigue damage. The RMS stress ratio can be preliminarily compared with the RMS stress ratio threshold proposed in this study to determine whether wind-induced fatigue damage needs to be considered in tall steel buildings. Finally, a simplified fatigue life prediction formula is established to provide approximate estimates for the fatigue life of tall steel buildings. Full article
(This article belongs to the Special Issue Recent Advances in Wind Engineering)
Show Figures

Figure 1

15 pages, 4079 KB  
Article
Study on the Impact Coefficient of Tied Arch Bridge Shock Effect Based on Vehicle-Bridge Coupling
by Yipu Peng, Hongjun Gan, Zhiyuan Tang, Ning Zhou and Bin Wang
Appl. Sci. 2025, 15(20), 11258; https://doi.org/10.3390/app152011258 - 21 Oct 2025
Viewed by 537
Abstract
In order to study the impact on the shock effect when a high-speed train passes over a concrete-filled steel tube (CFST) tied-arch bridge, a dynamic load test was carried out in the background of the Qinjiang River Bridge in Qinzhou, Guangxi Province, to [...] Read more.
In order to study the impact on the shock effect when a high-speed train passes over a concrete-filled steel tube (CFST) tied-arch bridge, a dynamic load test was carried out in the background of the Qinjiang River Bridge in Qinzhou, Guangxi Province, to test the bridge displacements, accelerations, and dynamic stresses. The bridge finite element model was coupled with a CRH2 train model developed in SIMPACK to perform ANSYS–SIMPACK co-simulation of vehicle–bridge interactions. Model reliability was verified by comparing simulated results with field measurements under matched operating conditions. On this basis, a parametric study was conducted for single-line operation with a mainline spacing of 4.2–5.4 m (0.4 m increments) and train speeds of 80–270 km/h (10 km/h increments), yielding 80 working conditions to evaluate hanger impact responses. The results indicate that the ANSYS–SIMPACK co-simulation provides reliable predictions. Compared with long hangers, short hangers exhibit larger stress impact coefficients. As train speed increases, the hanger impact effect shows a wavelike increasing trend. When the speed approaches 180–200 km/h, the excitation nears the bridge’s dominant natural frequency, and impact effects on bridge components peak, identifying a critical speed range that is more prone to inducing vehicle–bridge resonance; the impact coefficient of the shock effect on both sides of the train is different: the coefficient on the far side of the bridge is about 2 times of that on the near side of the bridge, so when the impact coefficient is regulated, the unevenness of the impact of the shock effect on both sides can be taken into account. Single-line operation can introduce a lateral load bias on the train, and the distance of the train from the center line is positively correlated with the impact size of the shock effect, with the stress impact coefficient of the shock effect on both sides of the bridge and span deflection increasing as the spacing of the main line increases. Full article
Show Figures

Figure 1

4 pages, 1473 KB  
Abstract
Assessment Technique for the Degradation of Heavy-Duty Anticorrosion Coatings on Long-Span Bridges Utilizing Near-Infrared Measurement
by Akinori Tani, Shinsuke Haruna, Yuki Ogawa, Daiki Shiozawa, Takahide Sakagami, Kenji Fujita, Haruhiko Kono and Hiroto Tamura
Proceedings 2025, 129(1), 36; https://doi.org/10.3390/proceedings2025129036 - 12 Sep 2025
Viewed by 380
Abstract
Long-span steel bridges are coated with heavy-duty anticorrosion coatings consisting of several layers of paint to prevent corrosion of steel materials, as shown in Figure 1 [...] Full article
Show Figures

Figure 1

17 pages, 4544 KB  
Article
Seismic Performance of Long-Span Continuous Rigid-Frame Bridge Equipped with Steel Wire Rope Damper Isolation Bearings
by Xiaoli Liu, Penglei Zhao, Yongzhi Chen, Bin Huang, Zhifeng Wu, Kai Yang and Zijun Weng
Buildings 2025, 15(18), 3249; https://doi.org/10.3390/buildings15183249 - 9 Sep 2025
Cited by 1 | Viewed by 1481
Abstract
Aiming to address the seismic vulnerability of long-span continuous rigid-frame bridges in high-intensity seismic zones, this study proposes to use a novel annular steel wire rope damper spherical bearing (SWD-SB) to dissipate the input earthquake energy and reduce the seismic responses. Firstly, the [...] Read more.
Aiming to address the seismic vulnerability of long-span continuous rigid-frame bridges in high-intensity seismic zones, this study proposes to use a novel annular steel wire rope damper spherical bearing (SWD-SB) to dissipate the input earthquake energy and reduce the seismic responses. Firstly, the structural configuration and mechanical model of the new isolation bearing are introduced. Then, based on the dynamic finite element formulation, the equation of motion of a continuous rigid-frame bridge with the new isolation bearings is established, where the soil-structure interaction is considered. In a practical engineering case, the dynamic responses of the Pingchuan Yellow river bridge with the SWD-SB bearings are calculated and analyzed under multi-level earthquakes including the E1 and E2 waves. The results show that, compared with the bidirectional movable pot bearings, the SWD-SB significantly reduces the internal forces and displacement responses at the critical locations of the bridge. Under the E2 earthquake, the peak bending moments at the basement of main piers and at the pile caps are reduced by up to 72.6% and 44.7%, respectively, while the maximum displacement at the top of the main piers decreases by about 34.6%. The overall structural performance remains elastic except the SWD-SB bearings, meeting the two-stage seismic design objective. This paper further analyzes the hysteretic energy dissipation characteristics of the SWD-SB, highlighting its advantages in energy dissipation, deformation coordination, and self-centering capability. The research results demonstrate that the steel wire rope isolation bearings can offer an efficient and durable seismic protection for long-span continuous rigid-frame bridges in high-intensity seismic regions. Full article
Show Figures

Figure 1

19 pages, 3765 KB  
Article
Thermal Effects on Main Girders During Construction of Composite Cable-Stayed Bridges Based on Monitoring Data
by Hua Luo, Wan Wu, Qincong She, Bin Li, Chen Yang and Yahua Pan
Buildings 2025, 15(17), 2990; https://doi.org/10.3390/buildings15172990 - 22 Aug 2025
Viewed by 965
Abstract
Thermal effects critically influence the design and construction of steel-concrete composite cable-stayed bridges, where material thermal mismatch complicates structural responses. Current code-specified temperature gradient models inadequately address long-span bridges. This study employs in-situ monitoring of the Chibi Yangtze River Bridge to propose a [...] Read more.
Thermal effects critically influence the design and construction of steel-concrete composite cable-stayed bridges, where material thermal mismatch complicates structural responses. Current code-specified temperature gradient models inadequately address long-span bridges. This study employs in-situ monitoring of the Chibi Yangtze River Bridge to propose a refined vertical temperature gradient model, utilizing an exponential function for the concrete deck and a linear function for the steel web. Finite element analysis across six construction stages reveals: (1) Under negative temperature gradients, the concrete deck develops tensile stresses (2.439–2.591 MPa), approximately 30% lower than code-predicted values (3.613–3.715 MPa), highlighting risks of longitudinal cracking. (2) At the maximum double-cantilever stage, transverse stress distributions show pronounced shear lag effects, positive shear lag in deck sections connected to crossbeams and negative shear lag in non-connected sections. The proposed model reduces tensile stress conservatism in codes by 30–33%, enhancing prediction accuracy for composite girders. This work provides critical insights for thermal effect management in long-span bridge construction. Full article
Show Figures

Figure 1

23 pages, 5280 KB  
Article
Seismic Damage Pattern Analysis of Long-Span CFST Arch Bridges Based on Damper Configuration Strategies
by Bin Zhao, Longhua Zeng, Qingyun Chen, Chao Gan, Lueqin Xu and Guosi Cheng
Buildings 2025, 15(15), 2728; https://doi.org/10.3390/buildings15152728 - 2 Aug 2025
Viewed by 833
Abstract
Variations in damper configuration strategies have a direct impact on the seismic damage patterns of long-span deck-type concrete-filled steel tube (CFST) arch bridges. This study developed an analysis and evaluation framework to identify the damage category, state, and progression sequence of structural components. [...] Read more.
Variations in damper configuration strategies have a direct impact on the seismic damage patterns of long-span deck-type concrete-filled steel tube (CFST) arch bridges. This study developed an analysis and evaluation framework to identify the damage category, state, and progression sequence of structural components. The framework aims to investigate the influence of viscous dampers on the seismic response and damage patterns of long-span deck-type CFST arch bridges under near-fault pulse-like ground motions. The effects of different viscous damper configuration strategies and design parameters on seismic responses of long-span deck-type CFST arch bridges were systematically investigated, and the preferred configuration and parameter set were identified. The influence of preferred viscous damper configurations on seismic damage patterns of long-span deck-type CFST arch bridges was systematically analyzed through the established analysis and evaluation frameworks. The results indicate that a relatively optimal reduction in bridge response can be achieved when viscous dampers are simultaneously installed at both the abutments and the approach piers. Minimum seismic responses were attained at a damping exponent α = 0.2 and damping coefficient C = 6000 kN/(m/s), demonstrating stability in mitigating vibration effects on arch rings and bearings. In the absence of damper implementation, the lower chord arch foot section is most likely to experience in-plane bending failure. The piers, influenced by the coupling effect between the spandrel construction and the main arch ring, are more susceptible to damage as their height decreases. Additionally, the end bearings are more prone to failure compared to the central-span bearings. Implementation of the preferred damper configuration strategy maintains essentially consistent sequences in seismic-induced damage patterns of the bridge, but the peak ground motion intensity causing damage to the main arch and spandrel structure is significantly increased. This strategy enhances the damage-initiation peak ground acceleration (PGA) for critical sections of the main arch, while concurrently reducing transverse and longitudinal bending moments in pier column sections. The proposed integrated analysis and evaluation framework has been validated for its applicability in capturing the seismic damage patterns of long-span deck-type CFST arch bridges. Full article
Show Figures

Figure 1

24 pages, 4306 KB  
Article
Structural Behavior Analyses and Simple Calculation of Asynchronous-Pouring Construction in PC Composite Girder Bridges with Corrugated Webs for Sustainability
by Bo Gan, Jun He, Sidong Feng, Baojun Guo, Bo Liu and Weisheng Lu
Buildings 2025, 15(14), 2434; https://doi.org/10.3390/buildings15142434 - 11 Jul 2025
Viewed by 677
Abstract
Asynchronous-pouring construction (APC) technology employs a suspended hanging basket directly supported by corrugated steel webs (CSWs) with high shear strength, significantly enhancing construction efficiency. To further elucidate the characteristics of APC and promote its application in prestressed concrete (PC) composite box girder bridges [...] Read more.
Asynchronous-pouring construction (APC) technology employs a suspended hanging basket directly supported by corrugated steel webs (CSWs) with high shear strength, significantly enhancing construction efficiency. To further elucidate the characteristics of APC and promote its application in prestressed concrete (PC) composite box girder bridges with CSWs, this study analyzes the sustainable development of APC from two aspects, including environmental impact and economic performance. Finite element models of APC and traditional balanced cantilever construction (TBCC) were established for the case bridge with a main span of 105 m. The stress distribution and deflection of the main girder in the cantilever construction state are compared with field measurements, and the variations in stress and deflection in typical sections during construction are analyzed. Additionally, a simplified theoretical method is proposed for calculating stress and deflection in PC composite girder bridges during the cantilever construction stage using APC. Results demonstrate that APC demonstrates significant advantages in reducing economic costs and minimizing long-term environmental impacts. Furthermore, this method ensures acceptable stress and deflection throughout construction. The proposed simplified formula for CSW deflection in the maximum segment agrees well with both measured data and finite element results, providing a valuable reference for deflection calculation in APC applications. Full article
Show Figures

Figure 1

18 pages, 3740 KB  
Article
Study on the Strength and Mechanism Analysis of Coarse Aggregate Reactive Powder Concrete
by Xiuhong Hao, Haichuan Jia, Guangyao Ding, Xianxian Kong and Xianghe Meng
Buildings 2025, 15(13), 2327; https://doi.org/10.3390/buildings15132327 - 2 Jul 2025
Viewed by 1023
Abstract
The demand for super-tall buildings and long-span bridges has driven concrete development toward higher strength and durability. Therefore, this study investigated the impact of composition of materials (aggregates, admixtures, and steel fibers) on the mechanical performance and economic feasibility of coarse aggregate reactive [...] Read more.
The demand for super-tall buildings and long-span bridges has driven concrete development toward higher strength and durability. Therefore, this study investigated the impact of composition of materials (aggregates, admixtures, and steel fibers) on the mechanical performance and economic feasibility of coarse aggregate reactive powder concrete (CA-RPC). The goal is to identify optimal combinations for both performance and cost. Scanning electron microscopy (SEM) and pore structure analysis were used to assess microstructural characteristics. The results demonstrated that replacing quartz sand with yellow sand as the fine aggregate in CA-RPC effectively reduced construction costs without compromising compressive strength. The use of basalt as the coarse aggregate led to higher mechanical strength compared to limestone. Incorporating 20% fly ash reduced the 7-day compressive strength, while the 28-day strength remained unaffected. The addition of 10% silica fume showed no obvious effect on the early strength but significantly improved the 28-day strength and workability of the concrete. Moreover, the incorporation of steel fibers improved the flexural strength and structural integrity of CA-RPC, shifting the failure mode from brittle fracture to a more ductile cracking behavior. SEM observations and pore structure analyses revealed that the admixtures altered the hydration products and pore distribution, thereby affecting the mechanical performance. This study provides valuable insights into the strength development and underlying mechanisms of CA-RPC, offering a theoretical basis for its practical application in bridge deck pavement and tunnels. Full article
(This article belongs to the Section Building Materials, and Repair & Renovation)
Show Figures

Figure 1

21 pages, 4834 KB  
Article
Static and Dynamic Performance of Long-Span Suspension Bridges with Flexible CFRP Central Buckles
by Maoqiang Wang, Taike Zhang, Huaimao Yang, Yaoyu Zhu, Bin Liu and Yue Liu
Polymers 2025, 17(13), 1807; https://doi.org/10.3390/polym17131807 - 28 Jun 2025
Viewed by 835
Abstract
The central buckle is essential for maintaining longitudinal stability in suspension bridges. However, conventional steel buckles are often excessively stiff, leading to stress concentration and insufficient durability. Moreover, they tend to perform poorly under fatigue loading conditions. This study proposes a novel flexible [...] Read more.
The central buckle is essential for maintaining longitudinal stability in suspension bridges. However, conventional steel buckles are often excessively stiff, leading to stress concentration and insufficient durability. Moreover, they tend to perform poorly under fatigue loading conditions. This study proposes a novel flexible central buckle system based on a Carbon Fiber-Reinforced Polymer (CFRP) to address these limitations. This study proposes a novel flexible central buckle system based on Carbon Fiber-Reinforced Polymer (CFRP) to address these limitations. Taking the long-span Shiziyang Suspension Bridge as a case study, a finite element model is developed to investigate the effects of CFRP central buckles with eight different stiffness levels on the static and dynamic responses of the bridge. The results indicate that a CFRP central buckle with a low elastic modulus achieves comparable displacement control performance to that of traditional steel buckles, while inducing significantly lower internal forces, demonstrating strong potential as a substitute. Based on this finding, a coordinated control strategy combining the CFRP central buckle with end-span restraining devices is proposed. This integrated system reduces midspan displacement and central buckle internal force by 61.1% and 49.8%, respectively. Considering both performance and cost-efficiency, a low-modulus CFRP material such as T300 is recommended. The proposed approach offers a new and effective solution for longitudinal control in ultra-long-span suspension bridges. Full article
Show Figures

Figure 1

Back to TopTop